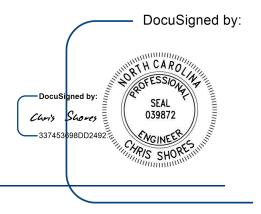


CFR Long-Term Remedy Performance Monitoring Report #4

October – December 2023

Chemours Fayetteville Works

Prepared for


The Chemours Company FC, LLC 22828 NC Highway 87 Fayetteville, NC 28306

Prepared by

Geosyntec Consultants of NC, P.C. 2501 Blue Ridge Road, Suite 430 Raleigh, NC 27607

Project Number TR0795

March 28, 2024

EXECUTIVE SUMMARY

This CFR Long-Term Remedy Performance Monitoring Report #4 ("Report") has been prepared for the Q4 2023 period of October 1 through December 31, 2023 and documents the operation of the interim seep Flow-Through Cells (FTCs), the ex-situ seeps and weeps capture systems ("Ex-Situ Capture Systems"), the groundwater extraction and conveyance system (GWEC), and the groundwater treatment plant (GWTP). The table below summarizes the flow capture in millions of gallons (MG) and the per- and polyfluoroalkyl substances (PFAS) removal (Table 3+ [17 compounds]) in pounds (lbs) for each remedy element.

	Report Period (Oct – Dec 2023)	Cumulative through Dec 2023		
Remedy Element	Flow Captured/ Treated (MG)	-		Mass Removed (lbs)*	
Interim FTCs	4.9	1.5	418.3	548.1	
004 Treatment Plant	45.6	50.4	197.2	252.4	
Ex-Situ Capture Systems	3.6	Included in 004	11.5	Included in 004	
GWEC	44.2	Included in 004	188.9	Included in 004	
Total (Interim FTCs + 004)	50.5	51.9	615.5	800.5	

*Cumulative values reflect the lifetime operation of each remedy component (e.g., since December 2020 for Interim FTC Seep C). Please note that some previous reports have reported the total mass removed of 20 Compounds. Mass removal in this report for all remedy components is reported as 17 Compounds.

**Differences in flow totals are attributable to the measurement resolution of flow meters on the different remedy systems as well as storage time in the surge pond, break tank, and other components. The calculated total influent of the Ex-Situ Capture Systems and GWEC system above is 47.8 MG for Q4 2023. The total influent as measured by Veolia's flow meter was 46.4 MG. The total effluent as measured by Veolia's flow meter was 45.6 MG as shown.

Flow into the interim FTCs during the reporting period was 90% less compared to the previous year, Q4 2022, and approximately 60% less compared to the previous quarter, Q3 2023. In Q4 2023, batch mode was utilized for the majority of the reporting period, particularly at FTCs A, B, and D: for the full months of October and November and for the first half of December, these FTCs were shut off, with little to no effect observed in the impoundment water level elevations. This indicates the long-term remedy components have eliminated the seep baseflow. Batch mode has been successful in maintaining high PFAS removal efficiency levels for the intermittent periods where rainfall raises the impoundment sufficient to require opening the systems; the interim FTCs removed on average approximately 99.3% of PFAS (Total Table 3+, 17 Compounds) during the reporting period.

A reduction in influent concentration into the FTCs has also been observed. At all four FTCs, the influent concentrations decreased between 62 to 81% (December 2023 as compared to historical data through December 2022). This reduction in concentration is attributed to the barrier wall cutting off upgradient groundwater flow, and the overall water balance into the FTCs becoming predominately wet weather, rainfall derived flow. The combination of reduced flow component and reduced influent concentration has resulted in an asymptotic mass removal trend.

The 004 GWTP removed greater than 99% of PFAS¹ from the combined flow of the GWEC and Ex-Situ Capture Systems, as required by the Addendum to the Consent Order Paragraph 12 [COA] Paragraph 2.c.v.

Performance monitoring activities, including hydraulic head monitoring and surface water sampling, are also documented in this Report. Similar to the previous reporting period, performance monitoring indicates that the GWEC system has resulted in a reduction in gradient between the barrier wall and the Cape Fear River, thus reducing groundwater PFAS flux to the Cape Fear River. This reduction in PFAS mass discharge is evident in the diminished flows into the FTCs and is also documented in a report for the Mass Loading Model (MLM) program, submitted for the same reporting period concurrent to this Report (Geosyntec, 2024a).

The Cape Fear River flooded late in the reporting period (December 19). The prior flood event occurred in April 2023, while the barrier wall was still under construction. Hydraulic separation of the Black Creek aquifer by the barrier wall was observed in this flood event at all transects, as evidenced by monitoring wells downgradient of the wall (i.e., closer to the river) indicating a pressure response from the flooding, whereas wells upgradient of the installed barrier wall were not affected. This flood event was also evident in the Willis Creek extraction wells, demonstrating connectivity between the aquifer unit and surface water in this area.

Collectively, the Willis Creek EWs are exerting drawdown of the Black Creek aquifer along the length of the alignment, particularly in the midsection of the Northern Alignment along Willis Creek, with nearly 8 feet of groundwater elevation reduction observed in monitoring wells. Drawdown along the alignment has also resulted in four EWs with insufficient water to pump, as compared to startup, demonstrating overlapping influence within the EWs from the collective pumping. The extensive drawdown is a line of evidence of hydraulic control. Additionally, a reduction in Willis Creek mass discharges has been observed. At sampling locations WC-2 (upstream) and WC-1 (downstream near the confluence with the Cape Fear River), the post-startup mass discharge to Willis Creek along this reach is estimated to be approximately 65% less than pre-startup. This apparent reduction effect will continue to be evaluated in future reports.

¹ As measured by indicator parameters hexafluoropropylene oxide dimer (HFPO-DA), perfluoromethoxypropyl carboxylic acid (PMPA), and perfluoro-2-methoxyaceticacid (PFMOAA)

TABLE OF CONTENTS

EXE	CUTI	VE SUM	MARYES-1
1	INTI	RODUCT	ION1
	1.1	Data Val	idation1
	1.2	Laborato	ry Analyses2
2	IN-S	ITU SEEF	PFLOW-THROUGH CELLS
	2.1	Inspectio 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	ons, Operation, and Maintenance
	2.2	Data Col 2.2.1	lected
	2.3	Results 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6	9 System Flowrates and Operational Periods
3	EX-S	SITU SEE	PS AND WEEPS CAPTURE14
	3.1	Operatio	n and Maintenance
	3.2	Data Col	lected
	3.3	Results	
4	GRO	UNDWA	TER EXTRACTION AND CONVEYANCE
	4.1	Operatio	n and Maintenance
	4.2	Data Col 4.2.1 4.2.2	lected
	4.3	Results 4.3.1	
5	004	FREATM	ENT PLANT
	5.1	Data Col 5.1.1 5.1.2	lected

	5.2	Results		18
		5.2.1	Flow Rates	18
		5.2.2	Analytical Results	19
		5.2.3	PFAS Mass Removal	19
6	PER	FORMAN	ICE MONITORING EVALUATION	20
	6.1	Data Col	llected	20
		6.1.1	Hydraulic Head and Surface Water Elevation	20
		6.1.2	PFAS Concentrations in Groundwater and Surface Water	21
		6.1.3	Passive Flux Meters	22
	6.2	Results		22
		6.2.1	Hydraulic Head and Surface Water Elevation	22
		6.2.2	PFAS Concentrations and Mass Discharge in Groundwater and Surface	
			Water	26
7	SUM	IMARY		28
8	REF	ERENCE	S	30

LIST OF TABLES

Table 1-1	Summary of Sampling and Monitoring Activities
Table 2-1A-D	FTC Operations and Maintenance Summary
Table 2-2	Cape Fear River Elevation and Local Precipitation Statistics
Table 2-3A-D	FTC Sampling Summary
Table 2-4A-D	FTC Performance Monitoring Analytical Results
Table 2-5A-D	FTC Water Quality Data
Table 3-1	Ex-Situ Seeps and Weeps Flow Data
Table 4-1	Extraction and Observation Well Construction Details
Table 4-2	Summary of GWEC Flow Data
Table 4-3	Extraction Well Flow Data
Table 5-1	004 Treatment Plant Flow Data
Table 5-2	004 Treatment Plant PFAS Analytical Results
Table 6-1	Summary of Groundwater Level Information

- Table 6-2PFAS Concentrations in Downgradient Groundwater Monitoring Wells
- Table 6-3Willis Creek PFAS Analytical Results
- Table 6-4Willis Creek PFAS Mass Discharge

LIST OF FIGURES

- Figure 1-1 Remedy Layout Overview
- Figure 2-1 River Level During Reporting Period & FTC As-Built Elevations
- Figure 2-2A-D FTC Discharge Flowrate (Oct Dec 2023)
- Figure 2-3 FTC Monthly Total Discharge Volumes (July 2021 Dec 2023)
- Figure 2-4A-D FTC Influent Water Elevation (Oct Dec 2023)
- Figure 2-5A-D FTC Staff Gauge Water Elevation (Oct Dec 2023)
- Figure 2-6 FTC Influent PFAS Concentrations
- Figure 2-7 FTC Mass Removal Curve
- Figure 6-1 Hydraulic Head Evaluation Network
- Figure 6-2A-D Southern Alignment Downgradient Groundwater Transects
- Figure 6-3A-C Southern Alignment Dampening Analysis Transects
- Figure 6-4A-C Northern Alignment EW Flood Response
- Figure 6-5A-C Northern Alignment January October/November/December 2023 Elevation Difference
- Figure 6-6A-C Northern Alignment Potentiometric Map January -October/November/December 2023
- Figure 6-7A-C PFAS Analytical Results
- Figure 6-8 Willis Creek PFAS Concentrations and Water Elevation
- Figure 6-9 Cape Fear River Transect Sampling Locations and PFAS Analytical Results in Groundwater
- Figure 6-10A-C Indicator PFAS Concentrations Across Cape Fear River Transects (Oct Dec 2023)

Figure 6-11 Total Table 3+ (17 Compounds) Concentrations, Mass Discharge and Daily Flow at Tar Heel Ferry Road Bridge

LIST OF APPENDICES

- Appendix A Laboratory Analytical Data Review Narratives
- Appendix B FTC Transducer Data Reduction

Geosyntec[▷]

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

LIST OF ACRONYMS AND ABBREVIATIONS

COA	Addendum to Consent Order Paragraph 12			
DO	Dissolved Oxygen			
DQO	Data Quality Objectives			
DVM	Data Verification Module			
eDMR	Electronic Discharge Monitoring Reports			
EIM	Environmental Information Management			
EPA	Environmental Protection Agency			
EW	Extraction Well			
gpm	gallons per minute			
FTC	flow-through cells			
GAC	Granular Activated Carbon			
GWEC	Groundwater Extraction and Conveyance			
GWTP	Groundwater Treatment Plant			
HFPO-DA	hexafluoropropylene oxide-dimer acid			
lbs	pounds			
MG	million gallons			
mg/L	milligram per liter			
µS/cm	microsiemens per centimeter			
MLM	Mass Loading Model			
NCDEQ	North Carolina Department of Environmental Quality			
NAVD88	North American Vertical Datum of 1988			
ng/L	nanograms per liter			
NPDES	National Pollutant Discharge Elimination System			
NTU	nephelometric turbidity units			
OM&M	Operations, Maintenance, and Monitoring			
OW	Observation Well			
PFAS	per- and polyfluoroalkyl substances			
PFM	Passive Flux Meter			
PFMOAA	perfluoro-2-methoxyacetic acid			

PMP	Performance Monitoring Plan
PMPA	perfluoro-2-methoxypropionic acid
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
SU	Standard Units
USGS	United States Geological Survey

1 INTRODUCTION

Geosyntec Consultants of NC, P.C. (Geosyntec) has prepared this CFR Long-Term Remedy Performance Monitoring Report #4 ("Report") on behalf of The Chemours Company FC, LLC (Chemours) to provide a summary report of Operations, Maintenance, and Monitoring (OM&M) for the groundwater and seep remedies installed at the Chemours Fayetteville Works Site (the Site) pursuant to the Addendum to the Consent Order Paragraph 12 [COA] Paragraph 2.c.v.

This Report has been prepared for the period of October 1 through December 31, 2023 (Q4 2023). The remedy components consist of the interim in-situ flow-through cells (FTCs), groundwater extraction and conveyance (GWEC) system, the Ex-Situ Seeps and Weeps capture systems ("Ex-Situ Capture Systems"), and the groundwater treatment plant (GWTP). The components of the remedies are shown in an overview layout in Figure 1-1. Various monitoring and sampling activities were conducted during the reporting period as summarized in Table 1-1.

1.1 Data Validation

Analytical data for the data collected during the Q3 2023 reporting period were reviewed using the Data Verification Module (DVM) within the LocusTM Environmental Information Management (EIM) system, a commercial software program used to manage data. Following the DVM process, a manual review of the data was conducted. The DVM and the manual review results were combined in a DVM narrative report for each set of sample results, which were consistent with Stage 2b of the *USEPA Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (USEPA, 2009). The DVM narrative report summarizes which samples were qualified (if any), the specific reasons for the qualification, and any potential bias in reported results. The data usability, in view of the project's data quality objectives (DQOs), was assessed, and the data were entered into the EIM system.

The data were evaluated by the DVM against the following data usability checks:

- Hold time criteria
- Field and laboratory blank contamination
- Completeness of QA/QC samples
- Matrix spike/matrix spike duplicate recoveries and the relative percent differences (RPDs) between these spikes
- Laboratory control sample/control sample duplicate recoveries and the RPD between these spikes
- Surrogate spike recoveries for organic analyses

• RPD between field duplicate sample pairs

A manual review of the data was also conducted, which included visual inspection of sample chromatograms for appropriate integration and verification that detections in field or equipment blanks have been applied to all applicable samples. Based on the results of the DVM plus manual review, the following data evaluation qualifiers were applied to the analytical results as required:

- J Analyte present, reported value may not be accurate or precise.
- UJ Analyte not present above the reporting limit, reporting limit may not be accurate or precise.
- B Analyte present in a blank sample, reported value may have a high bias.

The DVM narrative reports are provided in Appendix A. The data review process described above was performed for all laboratory chemical analytical data generated for the sampling event. Overall, the DQOs were met for accuracy and precision. During this sampling event, all samples were within the acceptable temperature requirements for preservation during storage and shipping (i.e., between not frozen to 6°C with a target of 4°C) as outlined in the Chemours PFAS Program QAPP (AECOM, 2018). The data collected are believed to be complete, representative, and comparable, with the exception of R-PSDA, Hydrolyzed PSDA, and R-EVE; matrix interference studies have shown that quantitation these compounds is inaccurate due to interferences by the sample matrix (Geosyntec, 2020a). Results for these three analytes are J-qualified as estimated.

1.2 Laboratory Analyses

Groundwater and surface water samples collected in Q4 2023 were analyzed for 21 Table 3+ PFAS and 35 other PFAS compounds by Method 537MM. Matrix interference studies have shown that quantitation of three of the compounds included in the Table 3+ PFAS group, R-PSDA, Hydrolyzed PSDA, and R-EVE^[1] is inaccurate due to interferences by the sample matrix (Geosyntec, 2020a). Groundwater and surface water results for Table 3+ PFAS compounds are presented in report tables as three PFAS groupings:

- Total Table 3+ (21 compounds), which is the sum of all Table 3+ PFAS compounds.
- Total Table 3+ (18 compounds), which excludes R-PSDA, Hydrolyzed PSDA, and R-EVE due to the matrix interferences noted above.
- Total Table 3+ (17 compounds), which additionally excludes PFPrA, to allow for a direct comparison of results to prior years and to discuss mass removal of remedial components.

^[1] 2,2,3,3,4,5,5,5-octafluoro-4-(1,1,2,2-tetrafluoro-2-sulfoethoxy)-pentanoic acid (R-PSDA), 2-fluoro-2-[1,1,2,3,3,3-hexafluoro-2-(1,1,2,2-tetrafluoro-2-sulfoethoxy)propoxy]-acetic acid, (Hydrolyzed PSDA), and 4-(2-carboxy-1,1,2,2-tetrafluoroethoxy)-2,2,3,3,4,5,5,5-octafluoro-pentanoic acid (R-EVE)

Although the report tables include results for the three groupings above, the text and figures of this report focus on the Total Table 3+ (17 compounds) PFAS grouping.

2 IN-SITU SEEP FLOW-THROUGH CELLS

The in-situ FTC remedies have been in operation since December 2020 beginning with Seep C. Detailed information on the hydraulic mechanics of the FTC system, flood management practices, data collection methodology and reduction process, and flow calculation formulas is presented in previous Seeps O&M reports. As a simplifying step for presentation clarity, at various sections in this report, reference is made to these details within Seeps O&M Report #14 (Geosyntec, 2023a), the last of the bimonthly Seeps O&M Reports.

2.1 Inspections, Operation, and Maintenance

The following sections describe the inspections, operation, and maintenance activities completed at the four FTCs during the current reporting period.

2.1.1 Inspections

Routine inspections occurred on a weekly basis (at a minimum), and also occurred within a 24hour period after rain events of 0.5 inches or greater. An Inspection Form was filled out by O&M personnel during each inspection.

The routine inspections included, but were not limited to:

- Documenting the system duty cycle (i.e., batch mode operation, or lead/lag orientation of the granular activated carbon [GAC] filter beds if there was flow to process).
- Measuring and collecting operational parameters/data, notably water elevation data that are used to evaluate influent flowrate and the occurrence (if any) of bypass.
- Documenting potential observed issues, such as sediment accumulation in the impoundment basin, structural problems, GAC fouling, and debris that is impairing flow through the system.
- Inspecting the autosamplers.
- Photographing the conditions observed, including any bypass flow.

A summary of the inspection and maintenance events completed during this reporting period is provided in Tables 2-1A-D for Seeps A-D, respectively. Further details of these events are provided in the following subsections.

2.1.2 Duty Cycling

The Seep FTCs are constructed of two filter beds which typically operate in series. Tables 2-1A-D detail the filter bed configurations for Seeps A, B, C, and D over the reporting period of October 1 through December 31, 2023. The table below summarizes the approximate number of days in the reporting period each FTC was either in batch mode operation (i.e., the FTC closed to flow); or if in operation, which filter bed was in lead.

Seep	FTC Closed to Flow in Batch Mode (days)	FB1 Lead (days)	FB2 Lead (days)	Total Uptime in Reporting Period (days)
А	75	0	17	92
В	75	17	0	92
С	36	54	2	92
D	75	0	17	92

2.1.3 FTC Management During River Flooding

During the reporting period, the Cape Fear River rose above the action level² from December 18 through December 20, 2023. The river rose above the discharge weirs of the systems but did not enter the bypass spillways or rise above the top of wall. Cape Fear River elevation data are described in Section 2.3.5. Cape Fear River elevation statistics are presented in Table 2-2, and elevation changes during the reporting period are shown on Figure 2-1.

2.1.4 Material Changeouts

The table below summarizes the material changeouts through this reporting period:

² See Section 2.3 of Seeps O&M Report #14 for details regarding the action level that was established to protect the electronic components of the autosamplers from flood events.

Geosyntec Consultants

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

		GAC Changeouts				
Seep Filter Bed		Date	GAC Age/Lead Days	GAC Removed (lbs)		
С	FB2	10/4/2023	104/100.5	9,000		
В	FB2	11/2/2023	196/119	27,000		
А	FB1	11/15/2023	196/112	27,000		
		63,000				

2.1.5 Issue Resolution and System Optimization

During the reporting period, approximately in early November, flow was observed to be entering Seep C FTC in dry weather, in contrast to the other FTCs that experienced no flow entering the inlets. Seep C flow appeared to be emanating from seepage at the bluff face in the vicinity of the Outfall 002 discharge pipe. An investigation, described below, indicated that the flow originated from a now repaired leak in the Outfall 002 discharge pipe. The approximate location of this investigation and leak repair is shown on Figure 1-1.

Expedited sampling of the seepage entering Seep C indicated much lower Table 3+ PFAS concentrations than historically observed in groundwater in this area, potentially indicating a subsurface discharge of relatively unimpacted water to the shallow water table³. A field investigation consisting of shallow piezometer installations was undertaken with the objective of identifying potential water table mounding, and if found, to then isolate the location of the discharge.

The investigation consisted of the installation of 31 shallow piezometers during two different mobilizations (19 piezometers in mid-November, and 12 more piezometers in early December). All piezometers were installed with 1-inch diameter pre-packed PVC screens to target saturated zones of the surficial aquifer. Gravel pack was added to a minimum of 1 foot (ft) above the top of the screen, and bentonite pellets were added to the surface and hydrated.

During piezometer installation, upwelling groundwater was observed in the macro-core samplers that were recovered closest to the Outfall 002 discharge pipe. Upwelling values ranged from 0.2 ft to 3.3 ft with higher upwelling values consistently observed in locations closest to the pipe. To evaluate potential leaks in the discharge pipe, transducers were installed in piezometers to monitor changes in water levels during temporary shutdowns of Outfall 002. Temporary shutdown tests were implemented and moderate drops in water levels were observed. Visual observations of the

³ The Outfall 002 discharge pipe contains treated water from the 004 GWTP, and treated wastewater and noncontact cooling water from the facility.

inside of the Outfall 002 discharge pipe also identified gaps in pipe joint surfaces. After this initial investigation, Chemours applied a joint sealing remedy on December 13, 2023.

In the 48-hours following the joint remedy, water levels in all piezometers downgradient of the barrier wall lowered by approximately 1 ft, ranging from approximately 0.5 to 1.5 ft. The greatest drop in water levels was observed in piezometers closest to the Outfall 002 discharge pipe. Additionally, the flowrate at the bluff face was observed to be notably less than before the remedy application, and has continued to decline at the time of this report. Throughout the investigation process, as documented in Section 2.3, this water was captured and treated to typical removal efficiencies by the Seep C FTC.

2.2 Data Collected

The FTCs include design components to measure water levels in the system, precipitation, water quality, and per- and polyfluoroalkyl substances (PFAS) removal performance. The W.O. Huske Lock and Dam gauge station is also used to reference nearby precipitation and river levels. Details regarding the procedures for each type of data collected, including pressure transducer management and data processing, rainfall and river stage data collation, and sample collection can be found in Seeps O&M Report #14. The transducer data reduction process for the current reporting period is provided in Appendix B.

Geosyntec^D consultants

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

Data Type	Monitoring During Q4 2023	
Impoundment Elevation	Monitored every 15-minutes using pressure transducers in the influent stilling basins, and with daily observation of the staff gauges in the impoundments.	
Flowrate Measurements	Monitored for flow every 15-minutes using pressure transducers during passive flow operation. At Seep C, water was occasionally pumped from the impoundment through a manifold equipped with a flowmeter into the lead filter bed, as a means to increase the amount of freeboard. During these instances, volume of water pumped was recorded using the flowmeter.	
Rainfall and River StageMonitored every 15 minutes using data from the W.O. H (gauge 02105500).		
Performance Monitoring and Water Quality Measurements	Sampling is only able to be performed when there is sufficient flow to process in the FTCs (i.e., no samples are collected when in batch mode). During this reporting period, two sets of performance monitoring samples each were collected from Seeps A, B, and D. Eleven sets of performance monitoring samples were collected from Seep C. Dates of composite periods for each sample are listed in Tables 2-3A-D. Water quality in the Inlet Chamber and Effluent Stilling Basin at Seeps A-D was monitored at the same frequency as performance monitoring.	
Breakthrough Monitoring	Grab samples were collected from the Inlet Chamber, Transfer Basin, and Effluent Stilling Basin at Seeps A-D for evaluation of system performance and the need for GAC changeouts. Two sets of breakthrough monitoring samples were collected from Seep A, B, and D, and six sets of breakthrough monitoring samples were collected from Seep C during this reporting period (12 total).	
Rain Event Monitoring	Wet weather monitoring samples were not collected in this reporting period, as either cells were closed for batch mode processing or flow through the cells was hindered due to river flooding.	

2.2.1 Deviations

Performance Monitoring Sampling Deviations

Performance monitoring samples were collected at Seeps A-D per the *Interim Seep Remediation Plan* (Geosyntec, 2020b) when the FTCs were in operation and able to be sampled. There were no deviations in the reporting period. Table 2-3A-D provides a detailed account of the sampling and compositing that was able to be performed during the extensive periods of batch mode operation (closed to flow).

Wet Weather Sampling Deviations

Wet weather monitoring samples were not collected in this reporting period, as either cells were closed in batch mode operation, or flow through the cells was hindered due to river flooding.

2.3 Results

The results for each type of data collected are described in detail in the following subsections. Laboratory analytical results are compiled in Appendix A. A brief overview of the results is as follows:

Reporting Period Metric	Seep A	Seep B	Seep C	Seep D	Total	
Rainfall, Actual (inches)		7.53 (October 1 – December 31, 2023)				
Rainfall, Historical Average (inches)		10.73 (October 1 – December 31, 2004-2020)				
River Above Spillway (days) ¹	0	0	0	0	N/A	
Median Flow Rate over full reporting period (gpm) ²	0	0	0	0	0	
Median Flow Rate (gpm) when in operation ³	18	42	35	11	106	
Seep Volume Treated (MG)	0.7	1.4	2.6	0.2	4.9	
PFAS Removed (lbs) ⁴	0.31	0.58	0.52	0.05	1.46	

1 - Seeps *A* and *D* are approximately 1 ft lower in elevation than Seeps B and C.

2 – Median flow rate calculated during entire reporting period, including during batch mode operations when cells are closed to flow.

3 – Median flow rate calculated when FTCs were processing flow (i.e., not in batch mode).

4 – Total PFAS calculations are based on the total Table 3+ (17 compounds) presented in Table 2-4A-D.

2.3.1 System Flowrates and Operational Periods

System Flowrates

Figures 2-2A-D show the measurable flowrates through the FTC over the reporting period for Seeps A-D, respectively. The flowrate statistics calculated from measurable discharge flowrates for Seeps A-D for the current reporting period are tabulated below. Due to widespread batch mode

conditions in Q4 2023, the median flow rate in the systems (i.e., the middle value in the flow data set) was zero. The median flow rate during intermittent operation is also provided.

Flowrate Metric	Seep A	Seep B	Seep C	Seep D
Median Flow Rate (gpm) during the Reporting Period	0	0	0	0
Median Flow Rate (gpm) when in operation	18	42	35	11
Median Flow Rate (gpm) prior to Barrier Wall installation (from FTC startup through December 2022)	85	124	49	83

Approximately 0.7 MG, 1.4 MG, 2.6 MG, and 0.2 MG of water (4.9 MG total) were treated by the Seeps A, B, C, and D FTCs, respectively, from October 1 through December 31, 2023. As shown in Figure 2-3, total volume discharged by the FTCs has decreased dramatically since January 2023. The reductions in flow are attributed to the barrier wall and the operation of the groundwater extraction system and Ex-Situ Capture Systems. It is also noted that the flow captured by the Seep C FTC in this period includes a component of Outfall 002 discharge pipe water.

Instances of Bypass

The influent water level elevation and occurrences of bypass flow for Seeps A-D for the reporting period are shown in Figures 2-4A-D. The total rainfall received in the reporting period is shown below. In late December, the heavy rains caused bypass at Seeps A, B, and C. These few instances of bypass at the seeps were resolved with maintenance events lowering the impoundment below the spillway, similar to previous reporting periods.

Period	Rainfall (inches)	Historical Rainfall (inches)	% Difference Compared to Historical
October 2023	0.8	3.24	-75%
November 2023	2.14	3.59	-40%
December 2023	4.59	3.91	+25%
Q4 2023	7.53	10.73	-30%

Long-Term Remedy Impacts on Baseflow

Figures 2-4A-D depict the elevation of the influent pond at each seep and instances of batch mode processing. As shown, even with the FTCs turned off, the impoundment elevation generally appears to respond only during rainfall events, indicating that the long-term remedy components

have eliminated the seep baseflow. This effect was most apparent at FTCs A, B, and D, as FTC C was affected by the Outfall 002 discharge pipe as discussed in Section 2.1.5. It is anticipated that FTC C will resemble the other FTCs after the Outfall 002 discharge pipe repairs are complete.

As an additional means to measure changes in impoundment elevation, a staff gauge was installed in the impoundment of each seep on September 25-26. Daily observations of these gauges at each Seep are provided in Figures 2-5A-D and facilitate tracking of changes of impoundment elevation even when the elevation decreases below the invert of the inlet weir or during batch mode processing (thereby becoming inaccessible to the transducer in the Influent Stilling Basin). Continued assessment of impoundment elevation in future reporting periods will further support evaluating if baseflow to the seeps has been mitigated by the installation of the barrier wall and operation of the extraction wells as part of the remedy.

2.3.2 Performance Monitoring Analytical Results

Analytical results for the composite performance monitoring samples are provided in Tables 2-4A-D and summarized below. Figure 2-6 shows that influent concentration of total Table 3+ PFAS (17 compounds) into the FTCs has reduced in the recent months. For data up through December 2022 (approximately the time when barrier wall test panel installation began), the average influent concentration into FTCs A-D ranged from 102,000 to 236,000 nanograms per liter (ng/L). As shown below, the average Influent concentration into the FTCs in Q4 2023 ranged from 18,500 to 50,000 ng/L⁴. This reduction in concentration is attributed to the barrier wall cutting off upgradient groundwater flow, and the overall contribution of water balance into the FTCs becoming more dominated by wet weather, rainfall derived flow. The combination of reduced flow component and reduced influent concentration has resulted in an overall mass removal trend that is approaching asymptotic levels as shown in Figure 2-7. These trends will continue to be monitored in future quarters.

Implementation of batch mode, in which the impoundment levels are managed such that accumulated water in the basin is processed at flow rates more typical of the historical operation, appear to be increasing the removal efficiencies to the same level (i.e., \sim 99%) as previous.

⁴ Seep C influent data were likely affected by the Outfall 002 discharge pipe, particularly in November and early December (a low value of 7,800 ng/L on November 30 is not typical of dry or wet weather flow in this area). After repairs were initiated in mid-December, the influent concentrations increased closer to typical values, for example 40,000 ng/L on December 26. Removal efficiencies were not affected.

Analytical Results – Performance Monitoring	Seep A	Seep B	Seep C	Seep D
Average Influent Total Table 3+ PFAS, 17 compounds (ng/L)	50,000	48,500	18,500	38,500
Average Effluent Total Table 3+ PFAS, 17 compounds (ng/L)	980	111	20	255
Average Removal Efficiency (%)	98.0	99.8	>99.9	99.4

2.3.3 System Effectiveness

System effectiveness calculation procedures are presented Seeps O&M Report #14. Based on the system flowrate data and the performance monitoring composite sample data of the three indicator compounds, the system effectiveness for Seeps A-D was calculated as follows. For FTCs that were closed in batch mode during full calendar months, there was no flow to sample, and thus System Effectiveness is not calculated.

	System Effectiveness (%)			
	Seep A	Seep B	Seep C	Seep D
October	No Flow	No Flow	>99.9	No Flow
November	No Flow	No Flow	>99.9	No Flow
December	98.0	99.7	>99.9	99.5
Overall Average	99.5			

2.3.4 Wet Weather Sampling Results

Wet weather monitoring samples were not collected in this reporting period, as either cells were closed for batch mode processing or flow through the cells was hindered due to river flooding. As noted in Paragraph 2(a)(iii) in the CO Addendum, wet weather sampling results are not to be used to determine compliance under Paragraph 2(a)(vi).

2.3.5 River Elevation and Precipitation

The Cape Fear River was monitored using the existing United States Geological Survey (USGS) weather monitoring station at the W.O. Huske Dam (gauge 02105500), as described in Section 2.2. Beginning on December 18, the river rose above the elevation of the discharge weir (but not the bypass spillway or top of wall) at all four FTCs and receded below these features by December 20. On December 28, due to additional rain, the river rose again, this time only above the discharge weir elevations of Seep A and D, as these two systems are installed in lower-lying areas than Seeps B and C. The changes in elevation of the Cape Fear River during the reporting period (October 1 through December 31, 2023) are shown in Figure 2-1. For clarity of presentation, Figure 2-1 shows the key FTC elevations at Seep C only.

Table 2-2 presents the percent of time the elevation of the Cape Fear River has exceeded these key elevations over the lifetime of operation at each seep FTC. As shown, the amount of time the river has been above the FTC features is similar to the historical record.

2.3.6 Water Quality

The water quality measurements collected during the reporting period are provided in Tables 2-5A-D and described below:

- **Dissolved Oxygen (DO):** No significant differences were observed in the fluctuations of DO between influent and effluent locations at all four seeps. On a median basis, the DO changed by 0.8 milligram per liter (mg/L) or less. Aerobic (>2 mg/L) conditions were consistently observed during the reporting period. The FTC systems do not involve biological activity to treat influent water, therefore, DO is not expected to decrease or increase significantly over the system's residence time.
- **Temperature:** At all four seeps, the median temperature of the effluent was within 2.0°C of the median temperature of the influent during this reporting period. Due to the relatively short residence time in the FTC, temperature is not expected to change significantly throughout the FTC.
- **Specific Conductance:** For all four Seeps, the difference in median specific conductance across influent and effluent locations ranged between -77 and 5.9 microSiemens per centimeter (µS/cm). During normal hydraulic conditions, the FTC is expected to have little effect on the anion/cation content of the seep baseflow.
- **pH:** The median influent pH at the four seeps ranged from 6.5 to 7.7, and the median effluent pH ranged from 6.7 to 8.1 standard units (SU) in this reporting period. From the Inlet Chamber to the Effluent Stilling Basin, the median pH of treated water at Seeps A, B, C, and D changed by 0.2, 1.0, 0.4, and 0.03 SU, respectively.
- **Turbidity:** The median turbidity of the influent water at Seeps A-D ranged from 29 to 103.6 nephelometric turbidity units (NTU). The FTCs significantly decreased the turbidity of the influent water. The median turbidity of the effluent water at Seeps A-D ranged from 2.0 to 53.1 NTU.
- **TSS:** The median influent TSS at Seeps A-D ranged from 6 to 95 mg/L. Median effluent TSS at Seeps A-D was detected in minimal concentrations (18 mg/L or lower). As was the case with turbidity, the FTCs generally decreased the TSS in the influent water.

3 EX-SITU SEEPS AND WEEPS CAPTURE

Section 3 summarizes the operation, maintenance, and monitoring activities performed by GEOServices, LLC as the operator of the Ex-Situ Capture Systems. This remedy consists of four seep capture locations (Willis Creek Tributary, Seep A, Seep A Tributary, and Seep B), and three dedicated weep capture locations⁵ (Weep 1, Weep 3, and Weep 4). Additionally, at seep capture location Seep A, the nearby Weep 7 is tied into the basin and is included in this system's capture. At seep capture location Seep A Tributary, the nearby weeps 9, 10, and 11 are tied into the wet well and are included in this system's capture. The 004 GWTP pad is connected to Weep 4 and includes its capture.

The seep capture locations are required to capture dry weather flows and stormwater flows from rainfall events up to 0.5 inches over 24 hours. Through the ex-situ force main, the captured water is pumped to a lined surge pond, which the GWTP periodically withdraws for treatment.

3.1 Operation and Maintenance

The Ex-Situ Capture Systems have been operating since April 20, 2023. Pumping of captured water from ex-situ seep and weep locations to the surge pond continued during this reporting period. The 004 GWTP treated the captured water after periodically withdrawing from the surge pond. Routine operations and maintenance were performed on the capture systems per GEOServices' O&M Plan.

3.2 Data Collected

On a daily basis Veolia recorded the volume conveyed from the surge pond to the 004 GWTP. Instrumentation and telemetry at each individual capture system became operational on July 20. Via the telemetry network, flow data from totalizers at Seep A, Seep A Tributary, Seep B, Willis Creek Tributary, and Weep 3 began to be automatically collected at a 15-minute frequency. Prior to July 20, flow data from the totalizers was manually noted.

3.3 Results

Table 3-1 shows the daily volume conveyed from the surge pond to the 004 GWTP and totalizer volumes conveyed from Seep A, Seep A Tributary, Seep B, Willis Creek Tributary, and Weep 3. During this reporting period, approximately 3.6 MG of captured water was pumped from the seep and weep capture locations to the surge pond and approximately 3.9 MG was conveyed from the surge pond to the 004 GWTP. The extra 0.3 MG to the 004 GWTP is from captured water in Q3

⁵ The Weep 1 capture system was recently installed in mid-December 2023 and pumps captured water into the GWEC force main. Its capture location has been added to Figure 1-1. Weep 3 and Weep 4 capture systems have been reported previously.

2023 that did not get conveyed for treatment and from rainwater collected in the surge pond. The captured water in Q4 2023 is 35% lower than Q3 2023 (3.6 MG vs 5.5 MG). This decrease is attributed to the relatively dry conditions in Q4 2023.

4 GROUNDWATER EXTRACTION AND CONVEYANCE

Section 4 describes the GWEC operation, maintenance, and monitoring activities that were conducted by Geosyntec as the operator of the system and provides a summary of the critical operational data that were collected and discusses the monitoring results from extraction well sampling activities during the reporting period. Construction details for the extraction wells are provided in Table 4-1.

4.1 **Operation and Maintenance**

The GWEC system has been operating since March 14, 2023. The performance of the individual components of the GWEC system, on a well-by-well basis, are continuously recorded via a telemetry network. System alerts and alarms have been programmed and are generated when a GWEC component is underperforming or not functioning. In such cases, Geosyntec leads the OM&M response, and performs the required corrective measures. On a minimum monthly basis, preventative maintenance and inspection is performed, in which extraction well components, control panels, and forcemain air release valves are individually checked.

4.2 Data Collected

4.2.1 Extraction Well Operational Data

Table 4-2 provides a summary of flow data (daily average flow rate and daily cumulative volume) for the GWEC system (combined flow from all wells). Table 4-3 provides a summary of flow data for each extraction well during the reporting period (average monthly flow rate, and total cumulative volume by month).

4.2.2 PFAS Data

The annual post-startup PFAS sampling of extraction wells for 2023 was performed on April 12, 2023, and discussed in CFR Long-Term Remedy Performance Monitoring Report #2 (Geosyntec, 2023c). The extraction wells will be sampled next in Q2 2024.

4.3 Results

4.3.1 Groundwater Extraction

The GWEC system extracted approximately 44.2 MG during the reporting period, with approximately 4.7 MG from surficial aquifer wells and 39.5 MG from Black Creek aquifer wells. The average extraction rate during the reporting period was approximately 332 gallons per minute

Geosyntec Consultants of NC, P.C.

NC License No.: C-3500 and C-295

(gpm). This was an approximate 16% decrease from the previous reporting period of 394 gpm, which is attributed to continued declines in water levels in the Black Creek aquifer upgradient of the remedy. As shown in Table 4-3, the flow rates in the Northern Alignment are lower than the Southern Alignment (in December, the average Willis Creek EW pumped about 3.4 gpm, whereas the average EW in the Southern Alignment pumped about 5.0 gpm). This is consistent with previous work at the site (Geosyntec, 2021 and Geosyntec, 2022) which indicates that the aquifer sands in this area are generally much thinner, less connected, and less transmissive than aquifer sands in the Southern Alignment.

5 004 TREATMENT PLANT

Section 5 provides GWTP operational data collected by Veolia as the operator of the treatment system and discusses the performance of the treatment relative to the design objectives and the COA, which requires that extracted groundwater is treated to remove PFAS compounds⁶ by at least 99%. As with the GWEC system, the 004 GWTP has been operating since March 14, 2023.

Chemours reports various GWTP performance data in electronic Discharge Monitoring Reports (eDMRs) per the National Pollutant Discharge Elimination System (NPDES) permit NC0090042, and additionally provides laboratory reports and an analysis of the treatment efficiency (in percent removal of the indicator compounds HFPO-DA, PMPA, and PFMOAA) in a data transmittal process to North Carolina Department of Environmental Quality (NCDEQ). This Report does not reproduce that effort, and only reports on the flow and treatment aspects to comply with COA Paragraph 2.c.v. The following data are consistent with the eDMRs and data transmittals.

5.1 Data Collected

5.1.1 Flow Rates

Veolia measures flow at the combined influent and effluent monitoring locations as required by the NPDES permit. Flow measurements are collected by the meters at a 15-minute frequency.

5.1.2 **PFAS Influent and Effluent**

Veolia collects weekly (at a minimum) samples of the total influent and effluent per NPDES reporting requirements. Once per month, the samples are analyzed for Table 3+ PFAS, and once per quarter, the samples are analyzed for Table 3+ and EPA Method 537 MOD. The remaining weekly samples are analyzed for indicator compounds HFPO-DA, PFMOAA, and PMPA. All samples were analyzed by Eurofins TestAmerica Laboratories.

5.2 Results

5.2.1 Flow Rates

The daily total volume treated and discharged, and the average daily discharge flow rate, are provided in Table 5-1. As shown, the GWTP treated and discharged a total volume of 45.6 MG over the reporting period. The average daily flow rate for this duration was 344 gpm. This is 20% lower in comparison to the previous period (431 gpm in Q3 2023) and is attributed to the

⁶ As measured by indicator parameters hexafluoropropylene oxide dimer (HFPO-DA), perfluoromethoxypropyl carboxylic acid (PMPA), and perfluoro-2-methoxyaceticacid (PFMOAA)

coinciding reductions in GWEC flow and water collected at the ex-situ seep and weep capture locations.

5.2.2 Analytical Results

The laboratory analytical results for the influent and effluent samples are shown in Table 5-2. Laboratory analytical reports for 004 samples are compiled in Appendix A. As shown, the total Table 3+ (17 compounds) PFAS concentration in the influent ranged from 120,000 to 150,000 ng/L. The Table 3+ (17 compounds) PFAS analytes were not detected above laboratory reporting limits in effluent samples, indicating at least 99% removal as documented in data transmittals from Chemours to NCDEQ.

5.2.3 PFAS Mass Removal

The flow rate data (monthly totals) and PFAS concentration data (monthly representative concentration per the monthly or quarterly samples, which in this reporting period were collected on October 3, November 13, and December 11) were used to calculate Table 3+ PFAS mass removal. As shown below, the total Table 3+ PFAS mass removed (17 compounds) by the GWTP in the reporting period (Q4 2023) was 50.4 lbs. Through the end of the previous period (Q3 2023), 202.0 lbs of PFAS was removed. Therefore, the amount of PFAS removed from commissioning through December 31, 2023 is 252.4 lbs.

Reporting Month	Total Volume Treated by GWTP (MG)	Total Table 3+ (17 Compounds) PFAS Concentration per Monthly/Quarterly Sample (ng/L)	Table 3+ (17 Compounds) PFAS Mass Removed (lbs)
October	14.2	150,000	17.7
November	14.4	130,000	15.7
December	17.0	120,000	17.0
Q4 2023 Total	45.6	N/A	50.4

6 PERFORMANCE MONITORING EVALUATION

A Performance Monitoring Plan (PMP) was prepared to address long-term groundwater remedial action effectiveness. The PMP proposed to evaluate the effectiveness of the remedy with multiple lines of evidence, which are listed below and discussed in more detail in this section:

- Hydraulic head both along the barrier wall alignment and downgradient of the barrier wall between the wall and the Cape Fear River, to assess groundwater capture and the reduction in hydraulic gradient downgradient of the remedy alignment;
- Passive flux meters (PFMs), to evaluate downgradient groundwater Darcy flux;
- Surface water samples at Willis Creek, to evaluate reduction in PFAS loading to Willis Creek;
- Surface water samples at Tar Heel Ferry Road, to evaluate PFAS concentrations and mass loads in the well-mixed Cape Fear River downstream of the facility; and
- Groundwater sampling at extraction and monitoring wells between the groundwater remedy and the Cape Fear River or Willis Creek.

6.1 Data Collected

6.1.1 Hydraulic Head and Surface Water Elevation

Monthly gauging events of 83 observation wells (OWs) was performed on October 30, November 28, and December 20, 2023. The hydraulic head monitoring network is shown in Figure 6-1. In addition to these manual gauging events, transducers were also deployed in a network of 16 wells that comprise 6 transects that span across the barrier wall alignment. These transducers were deployed on March 8, 2023, during the final GWEC commissioning and about one week prior to the March 14, 2023 operational startup. The transducers record groundwater elevation every 15 minutes and are downloaded monthly. Finally, data is incorporated from three transducer stilling wells⁷ that were installed at Willis Creek between September 20 and October 6, 2023.

⁷ Staff gauges in Willis Creek have been repeatedly damaged by fast moving water in storm events. The stilling wells are able to be anchored more securely into the stream sediments, and the transducers provide much higher resolution data than monthly readings of the staff gauges. Therefore, moving forward, the stilling wells will be relied upon for Willis Creek stream elevations.

6.1.2 PFAS Concentrations in Groundwater and Surface Water

Downgradient Groundwater

PMP wells, to be sampled on a semi-annual basis (Q1 and Q3), were not sampled in Q4 2023.

Mass Loading Model (MLM) wells are sampled quarterly. A total of 14 MLM monitoring wells are downgradient of the long-term remedy and are therefore potentially viable data points for effectiveness monitoring (OW-28, OW-33, LTW-01, LTW-02, LTW-03, LTW-04, LTW-05, PIW-1S, PIW-1D, PIW-3D, PIW-7S, PIW-7D, PZ-22, and SMW-12). Except for PIW-1S, which was consistently dry, these MLM wells were sampled from November 2 through 13, 2023. The collected samples were sent to Eurofins TestAmerica Laboratories for analysis by Table 3+ and EPA Method 537 MOD.

Willis Creek Surface Water

At three locations within Willis Creek (WC), routine quarterly sampling was performed to evaluate potential long-term reductions in concentration (reductions in the short-term are not necessarily anticipated). The sampling procedures were in accordance with the Cape Fear River PFAS Mass Loading Assessment Report series (Geosyntec, 2024a). WC-1, WC-2, and WC-3 were sampled on November 23, 2023. The collected samples were sent to Eurofins TestAmerica Laboratories for analysis by Table 3+ and EPA Method 537 MOD.

Cape Fear River Surface Water

Since November 2022, surface water grab samples have been collected monthly at four transects along the Cape Fear River. Each transect consisted of three sampling locations, for a total of 12 sampling points. The sampling program was in accordance with the *Final National Pollutant Discharge Elimination System (NPDES) Permit for Outfall 004* (Permit: NC0090042). The collected samples were sent to Eurofins TestAmerica Laboratories for analysis by Table 3+. The samples will be collected quarterly starting Q1 2024 (i.e., six months after the completion of the barrier wall as per the Permit requirements).

Since March 2020, routine sampling of the Cape Fear River has been performed at Tar Heel Ferry Road Bridge (or Tar Heel, approximately 7 miles downstream of the Site). The sampling program was in accordance with the Paragraphs 1(a) and 1(b) of the Addendum to Consent Order paragraph 12 (CO Addendum). Composite samples were collected generally twice per week using an autosampler. Grab samples were collected when the composite sampling program was temporarily interrupted due to various factors such as vandalism, equipment malfunction, or high river stages which may flood the autosampler. The collected samples were sent to Eurofins TestAmerica Laboratories for analysis by Table 3+.

6.1.3 Passive Flux Meters

The first post-startup deployment of PFMs was conducted in August 2023 and its results were discussed in CFR Long-Term Remedy Performance Monitoring Report #3 (Geosyntec, 2023d). The next post-startup deployment is planned for Q2 2024.

6.2 Results

6.2.1 Hydraulic Head and Surface Water Elevation

This section discusses hydraulic head which is a critical line of evidence for evaluating hydraulic containment of groundwater. This section is developed in the following sequence:

- 1. As the Cape Fear River can influence some wells screened in the Black Creek aquifer, this section will first discuss the river conditions during each gauging event. Notably, during high river stages (flooding), this can exert a pressure response on the confined aquifer that has connectivity to the river.
- 2. The results in the Southern Alignment (Barrier Wall portion) are discussed next, which includes discussion of both the Black Creek aquifer and the surficial aquifer.
- 3. Last, the results in the Northern Alignment (Willis Creek area) are evaluated separately from the Southern Alignment.

1. River Stage During Gauging Events

Hydraulic connectivity between the Black Creek aquifer and the Cape Fear River was discussed in CFR Long-Term Remedy Performance Monitoring Report #1 (Geosyntec, 2023b). As before, river levels for each gauging event in this reporting period were obtained from the USGS Huske station 02105500. The average river elevation for the duration of the gauging event (e.g., from 8AM to 4PM) was calculated from the 15-minute frequency data available from USGS. These average levels were compared to the available historical dataset (2007 to 2020) to calculate the corresponding percentile values, to show whether those gauging events were performed on relatively high or low river conditions.

As shown below, the three gauging events in this period included a high-river event in December (96th percentile) that was performed during a flood event while the river was beginning to recede. The October and November gauging events (9th and 16th percentiles) are considered low-river events.

Date	Туре	Average River Level During Gauging Event (NAVD88)	Percentile (Gauging Event River Level compared to Historical Dataset)
8/4/2022	Baseline (dry summer)	30.38	52%
8/17/2022	Baseline (dry summer)	29.80	37%
1/30/2023	Baseline (wet winter)	32.50	79%
10/30/2023	Post-Startup (Q4)	29.27	9%
11/28/2023	Post-Startup (Q4)	29.40	16%
12/20/2023	Post-Startup (Q4)	38.01	96%

2. Southern Alignment (Barrier Wall)

2a. Reduction in Groundwater Flux Downgradient of Barrier Wall

Table 6-1 provides groundwater elevation data for the Southern Alignment that is additionally delineated based on location relative to the barrier wall (upgradient or downgradient). Antecedent rainfall data for the previous three days are also included. Similar to the previous CFR Long-Term Remedy Performance Monitoring reports, Table 6-1 shows widespread drawdown in the Black Creek aquifer since the January 2023 baseline, with a median reduction in elevation of approximately 14.9 ft in wells within 200 ft upgradient of the barrier wall. This median reduction is similar to Q2 and Q3 (15.6 ft and 15.7 ft) and is attributed to relatively stabilized levels of Black Creek groundwater elevations now that the barrier wall is complete (as of June 11, 2023) and groundwater extraction is generally at steady-state conditions. The surficial aquifer data in Table 6-1 indicates mounding of between 2.7 and 5.5 ft in OW-34 and OW-35 that was similarly noted in previous reports, indicating generally stabilized water levels in the surficial aquifer upgradient of the barrier wall.

As shown in Figures 6-2A-D, the groundwater elevation data from Table 6-1 has been used to generate 11 gradient maps downgradient of the wall, with plots of the baseline data (August 17, 2022 and January 30, 2023 in greyscale⁸) compared to the October, November, and December gauging events (in green, blue, and red, respectively). Consistent with previous reports, the data

⁸ Transects 1a/1b and 2 at the southern end of the alignment were added to Report #3 per NCDEQ request. These transects include wells that were not accessible to install until after the barrier wall was complete, therefore baseline data is not available in all cases. For OW-39 in particular which is used in both Transects 1a and 1b, the nearest available baseline data in EWs 63, 64, and 65, as well as PIW-10DR to the east, indicate the baseline groundwater elevation in this vicinity ranged from approximately 59-64 ft NAVD88, which is substantially greater than the values measured in Q4 2023 (around 40.3 ft NAVD88), indicating a significant reduction in gradient in this area.

for the three events demonstrate that the gradients in these downgradient sections have reduced (i.e., flattened) significantly:

- Transects 1a, 2, 5, 6a, 7, and 8 indicate a reverse, inward gradient (i.e., towards the remedy alignment, as opposed to towards the river)
- Transects 1b, 3, 4, and 9 indicate that the average Q4 gradient was approximately 78% less than baseline.
 - Transect 6b was added for this report after recent installation and surveying of OW-52 and OW-53. Baseline elevation data are not available at these locations due to construction conflicts during barrier wall installation.
- Despite the December gauging event being affected by the river flood event (i.e., generally increasing groundwater elevations in the downgradient area), the overall reduction in gradient is consistent with the drier October and November events. The long-term remedy appears to reduce groundwater flux beyond the barrier wall in both low and high river conditions.

2b) Hydraulic Separation of Barrier Wall

In CFR Long-Term Remedy Performance Monitoring Report #2, transducer data were used to illustrate the separation of the Black Creek aquifer by the barrier wall, as the April 2023 flood event (with a peak river elevation of approximately 45 ft NAVD88) caused a clear effect on groundwater elevations downgradient of where the barrier wall had been constructed, but no discernible effect on groundwater elevations upgradient of the partially constructed wall. Where this effect was demonstrated (Transects 4, 5, and 6) the upgradient transducers were redeployed to downgradient areas, to monitor the downgradient area over the long-term. Where this effect was not able to be demonstrated yet, the transducers were not moved.

In late December 2023, the Cape Fear River flooded for the first time since April 2023, but to a less significant extent, with a peak river elevation of approximately 39.5 ft NAVD88. Transect plots of the transducer data are shown in Figures 6-3A-C above the Cape Fear River hydrograph. Transects 1, 2, and 3 demonstrate the hydraulic separation of the barrier wall, with an increase in groundwater elevation in the downgradient wells (green colors) and no discernible effect on the upgradient wells (orange). Since this separation has now been demonstrated across all transects in the wall alignment, the upgradient transducers can be redeployed to downgradient areas.

3. Northern Alignment (Willis Creek)

3a. Flood Response in Willis Creek Extraction Wells

The river flooding event in December was also observed in the Willis Creek EWs, demonstrating Black Creek aquifer connectivity to surface water as noted from the April event. Overall, the response in the wells is not as significant since the magnitude of flooding was not as large in December. The Cape Fear River elevation (shown in thick blue line) is compared to the 15 Willis Creek EWs in Figures 6-4A-C (five wells per chart for clarity):

- In EWs that were pumping continuously prior to the flood event and therefore at a relatively stable water level (EW-01, 02, 05, and 14), the rising river elevation that began on December 17 caused a subsequent rise in water level in the wells.
- In EWs that were pumping intermittently prior to the flood, the rising water levels generally caused the pumps to be able to run continuously, or at a much higher frequency (EW-03, 04, 06, 07, and 08). At EW-03 for example, the oscillating water level trend prior to the flood is clearly stabilized during the surge response from the river flood. Ultimately, once the river stabilized, this well returned to intermittent operation in late December. The flow totals for the week prior to the flood and the week after the flood are shown in each figure to demonstrate the effect the rising water levels had on increasing yield from these wells.
- In EWs that were water-limited prior to the flood, the rising water levels in some cases allowed the pumps to activate in an intermittent mode (EW-10 and 12). In other cases, the flood caused a water level increase in the well, but not sufficient to activate the pump level switch (EW-09, 11, and 15).

3b. Hydraulic Containment of Willis Creek Black Creek Aquifer

Groundwater elevation differences relative to January 2023 are shown for the October, November, and December gauging events in Figures 6-5A-C. Consistent with previous reports, the largest reduction of groundwater elevation relative to January 2023 occurred in the midsection of the Northern Alignment between EW-05 and EW-06. In December 2023, this elevation difference was not as significant as October and November 2023 due to the flood event, but the pattern of drawdown is still similar, and nearly 7 ft of drawdown was still observed around EW-05 and EW-06.

Laterally along the alignment north of EW-05 and south of EW-06, elevation reductions between about 2 ft and 7 ft were observed from proximity of OW-14 (near the beginning of the barrier wall at EW-14) to OW-41 (in between EW-01 and EW-02). Drawdown along the alignment has also resulted in four EWs with insufficient water to pump, as compared to startup, demonstrating overlapping influence within the EWs from the collective pumping. The extensive drawdown is a line of evidence of hydraulic control.

Potentiometric contour maps are provided for gauging events from October through December 2023 in Figures 6-6A-C. The January 2023 contours are shown in each figure as magenta solid lines. In January 2023, groundwater generally flows from SMW-03B (near the facility) in a

Geosyntec Consultants

NC License No.: C-3500 and C-295

northeastern direction towards the alignment. The January 2023 groundwater elevations around EW-01 and EW-02 are higher than the remainder of the alignment (on average approximately 45 ft NAVD88, as compared to approximately 30 ft NAVD88 from EW-03 to EW-15) which results in an eastward gradient towards EW-03, which is consistent with previous observations and reports for the Site (e.g., the Mass Loading Model reports). Groundwater gradients in Q4 2023 indicated a more prominent turn toward the east due to pumping, notably at EW-05 and EW-06, as discussed above.

Measurements of surface water in Willis Creek from staff gauges SG-01 through SG-05 are plotted for the first time since their installation, in Figures 6-6A-B, providing a comparison between groundwater and surface water elevations. Measurements from staff gauges in December 2023 were not available because staff gauges were damaged by the flood event. In October 2023, surface water elevations were within a few ft of groundwater elevations along Willis Creek at SG-01, SG-02, and SG-04. Surface water elevation was higher at SG-03 (33.26 ft) than elevations at nearby wells i.e., PIW-12 through PIW-14 (26.48 ft to 29.98 ft). Surface water elevation at SG-05 was lower than the nearby OW-57. However, this staff gauge is hundreds of ft away from the alignment where there is a clear hydraulic gradient of groundwater heading east toward the productive pumping areas between EW-03 and EW-08. Surface water elevations from the same staff gauges in November 2023 were within a few tenths of a ft relative to the October leading to the same observations.

6.2.2 PFAS Concentrations and Mass Discharge in Groundwater and Surface Water

Downgradient Groundwater PFAS Concentrations

Results for the MLM wells sampled in Q4 that are downgradient of the long-term remedy (13 total) are provided in Table 6-2 and shown in Figure 6-7A-C. Laboratory analytical reports for the downgradient groundwater samples are compiled in Appendix A. PFAS concentration trends are not evident at this early stage in the remedy operation process. Future reports will continue to evaluate potential long-term impacts to PFAS concentrations in these locations. However, when evaluated in conjunction with the reduced hydraulic gradients in the downgradient area, a reduction in PFAS mass discharge to the river is evident. This reduction in mass discharge is evaluated in the MLM quarterly report for this same reporting period, submitted concurrently with this report (Geosyntec, 2024a).

Willis Creek Surface Water – Concentration and Mass Discharge

Results for the Willis Creek surface water PFAS samples collected in Q4 2023 are shown in Table 6-3, and also presented in Figure 6-7A-C (along with the downgradient groundwater PFAS data). Laboratory analytical reports for Willis Creek are compiled in Appendix A. PFAS concentrations in Q4 2023 samples collected from WC-1, WC-2, and WC-3 are lower than results from prior quarterly sampling events. This decrease in PFAS concentrations may be partially

attributed to the relatively high-flow conditions in Willis Creek as an effect of antecedent rainfall conditions. Willis Creek PFAS trends since July 2022 are shown along with the Willis Creek hydrograph data from stilling well location WC-1 in Figure 6-8.

A mass discharge analysis of Willis Creek was performed to evaluate if declines have begun to be observed. The mass discharge at location WC-2 (upstream of remedy) was calculated using the measured flow rate and concentration, and compared to the mass discharge at location WC-1 (downstream of remedy). Results are shown in Table 6-4. As shown, prior to startup in March 2023, the mass discharge at upstream location WC-2 ranged from 0.18 to 0.32 mg/s and the mass discharge at downstream location WC-1 ranged from 0.45 to 0.52 mg/s. The delta between the two locations is shown, and on average, the pre-startup change in mass loading is approximately 0.23 mg/s (a range of 0.16 to 0.31 mg/s). After startup, the May and July 2023 events indicate a WC-2 to WC-1 delta of 0.11 mg/s and 0.06 mg/s, respectively, indicating an approximate 65% mass discharge decline post-startup⁹. This apparent reduction effect will continue to be evaluated in future reports.

Cape Fear River Surface Water – Concentration and Mass Discharge

The Cape Fear River transect sampling locations are shown in Figure 6-9. The results of the three indicator compounds (HFPO-DA, PFMOAA, and PMPA) are shown in Figures 6-10A-C. The transects for October, November and December 2023 were collected during periods of relatively low river flow with flows ranging between 691 to 877 cubic feet per second (cfs). In each of the three months PMPA was observed in the upstream transect, Transect 1. HFPO-DA and PFMOAA were observed in each month amongst the adjacent and downstream transects 2, 3 and 4. As described previously, inflows (e.g. offsite groundwater, Willis Creek, Lock and Dam seeps, the downstream offsite seeps, etc.) of Table 3+ PFAS into the Cape Fear River are not fully mixed at the transect locations and therefore concentration profiles along the transect are not necessarily homogeneous. In contrast, the mass discharge plots for the samples collected at Tar Heel (Figure 6-11) provide a mixed river location and take both flow and concentration into account. As shown, the mass discharges have decreased and remain lower than the mass discharges before Q3 2021, which corresponds to the time when the FTCs, 003 and groundwater extraction and barrier wall remedies and were installed and operating.

⁹ Including the November 2023 event in this comparison would have yielded an even greater mass discharge decline (91%), however it was excluded as a precaution as there was a slightly higher river stage during the event which may have caused backflowing river water into WC-1, contributing to a lower concentration at WC-1 than WC-2.

7 SUMMARY

This reporting period (October 1 to December 31, 2023) included the operation of the interim Flow-Through Cells, Ex-Situ Capture Systems, GWEC, and GWTP remedy components. The table below summarizes the flow capture and the Table 3+ (17 compounds) PFAS removal for each remedy component.

	Report Period (O	ct – Dec 2023)	Cumulative th	rough Dec 2023
Remedy Element	Flow Captured/ Treated (MG)	Mass Removed (lbs)*	Flow Captured/ Treated (MG)	Mass Removed (lbs)*
Interim FTCs	4.9	1.5	418.3	548.1
004 Treatment Plant	45.6	50.4	197.2	252.4
Ex-Situ Capture Systems	3.6	Included in 004	11.5	Included in 004
GWEC	44.2	Included in 004	188.9	Included in 004
Total (Interim FTCs + 004)	50.5	51.9	615.5	800.5

*Cumulative values reflect the lifetime operation of each remedy component (e.g., since December 2020 for Interim FTC Seep C). Please note that some previous reports have reported the total mass removed of 20 Compounds. Mass removal in this report for all remedy components is reported as 17 Compounds.

**Differences in flow totals are attributable to the measurement resolution of flow meters on the different remedy systems as well as storage time in the surge pond, break tank, and other components. The calculated total influent of the Ex-Situ Capture Systems and GWEC system above is 47.8 MG for Q4 2023. The total influent as measured by Veolia's flow meter was 46.4 MG. The total effluent as measured by Veolia's flow meter was 45.6 MG as shown.

Flow into the interim FTCs during the reporting period was 90% less compared to the previous year, Q4 2022, and approximately 60% less compared to the previous quarter, Q3 2023. In Q4 2023, batch mode was utilized for the majority of the reporting period, particularly at FTCs A, B, and D: for the full months of October and November and for the first half of December, these FTCs were shut off, with little to no effect observed in the impoundment water level elevations. This indicates the long-term remedy components have eliminated the seep baseflow. Batch mode has been successful in maintaining high PFAS removal efficiency levels for the intermittent periods where rainfall raises the impoundment sufficient to require opening the systems; the interim FTCs removed on average approximately 99.3% of PFAS (Total Table 3+, 17 Compounds) during the reporting period.

A reduction in influent concentration into the FTCs has also been observed. At all four FTCs, the influent concentrations decreased between 62 to 81% (December 2023 as compared to historical

NC License No.: C-3500 and C-295

data through December 2022). This reduction in concentration is attributed to the barrier wall cutting off upgradient groundwater flow, and the overall water balance into the FTCs becoming predominately wet weather, rainfall derived flow. The combination of reduced flow component and reduced influent concentration has resulted in an asymptotic mass removal trend.

The 004 GWTP removed greater than 99% of PFAS¹⁰ from the combined flow of the GWEC and Ex-Situ Capture Systems, as required by the Addendum to the Consent Order Paragraph 12 [COA] Paragraph 2.c.v.

Performance monitoring activities, including hydraulic head monitoring and surface water sampling, are also documented in this Report. Similar to the previous reporting period, performance monitoring indicates that the GWEC system has resulted in a reduction in gradient between the barrier wall and the Cape Fear River, thus reducing groundwater PFAS flux to the Cape Fear River. This reduction in PFAS mass discharge is evident in the diminished flows into the FTCs and is also documented in a report for the Mass Loading Model (MLM) program, submitted for the same reporting period concurrent to this Report (Geosyntec, 2024a).

The Cape Fear River flooded late in the reporting period (December 19). The prior flood event occurred in April 2023, while the barrier wall was still under construction. Hydraulic separation of the Black Creek aquifer by the barrier wall was observed in this flood event at all transects, as evidenced by monitoring wells downgradient of the wall (i.e., closer to the river) indicating a pressure response from the flooding, whereas wells upgradient of the installed barrier wall were not affected. This flood event was also evident in the Willis Creek extraction wells, demonstrating connectivity between the aquifer unit and surface water in this area.

Collectively, the Willis Creek EWs are exerting drawdown of the Black Creek aquifer along the length of the alignment, particularly in the midsection of the Northern Alignment along Willis Creek, with nearly 8 feet of groundwater elevation reduction observed in monitoring wells. Drawdown along the alignment has also resulted in four EWs with insufficient water to pump, as compared to startup, demonstrating overlapping influence within the EWs from the collective pumping. The extensive drawdown is a line of evidence of hydraulic control. Additionally, a reduction in Willis Creek mass discharges has been observed. At sampling locations WC-2 (upstream) and WC-1 (downstream near the confluence with the Cape Fear River), the post-startup mass discharge to Willis Creek along this reach is estimated to be approximately 65% less than pre-startup. This apparent reduction effect will continue to be evaluated in future reports.

¹⁰ As measured by indicator parameters hexafluoropropylene oxide dimer (HFPO-DA), perfluoromethoxypropyl carboxylic acid (PMPA), and perfluoro-2-methoxyaceticacid (PFMOAA)

NC License No.: C-3500 and C-295

8 **REFERENCES**

- AECOM, 2018. Poly and Perfluoroalkyl Substance Quality Assurance Project Plan For the Chemours Corporate Remediation Group. August 2018.
- Geosyntec, 2020a. Matrix Interference During Analysis of Table 3+ Compounds. Chemours Fayetteville Works. June 30, 2020.
- Geosyntec, 2020b. Interim Seep Remediation System Plan. Chemours Fayetteville Works. August 31, 2020.
- Geosyntec, 2021. Pre-Design Investigation Summary (Version 2). Chemours Fayetteville Works. June 29, 2021.
- Geosyntec, 2022. Groundwater and Seeps Remedy 90% Design Submittal. Chemours Fayetteville Works. March 25, 2022.
- Geosyntec, 2023a. Interim Seep Remediation Operation and Maintenance Report #14. Chemours Fayetteville Works. May 31, 2023.
- Geosyntec, 2023b. CFR Long-Term Remedy Performance Monitoring Report #1 (previously titled as Groundwater and Seeps Remediation Report #1). Chemours Fayetteville Works. June 29, 2023.
- Geosyntec, 2023c. CFR Long-Term Remedy Performance Monitoring Report #2. Chemours Fayetteville Works. September 29, 2023.
- Geosyntec, 2023d. CFR Long-Term Remedy Performance Monitoring Report #3. Chemours Fayetteville Works. December 22, 2023.
- Geosyntec, 2024a. Cape Fear River PFAS Mass Loading Assessment Third Quarter 2023 Report. Chemours Fayetteville Works. March 29, 2024.
- USEPA, 2009. USEPA Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. USEPA-540-R-08-005. OSWER 9200.1-85. Office of Solid Waste and Emergency Response, United States Environmental Protection Agency. January 13, 2009.

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

Tables

Table 1-1 Summary of Sampling and Monitoring Activities Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works Fayetteville, North Carolina

Remedy Component	Sampling and Monitoring Activities in Reporting Period (Oct-Dec)
In-Situ Seep Flow- Through Cells (FTCs)	 During prolonged no-flow conditions, the FTCs were generally operated in batch mode (closed to flow) and thus there is no process flow to sample. The FTCs were opened to flow as needed to manage accumulated water in the impoundments. When open to flow, 24-hour composite samples were collected for performance monitoring; water quality was monitored and sampled in the same 24-hour period as the performance monitoring interval; and weekly grab samples for breakthrough monitoring were collected. See Section 2.1.5 for discussion on batch mode operations. No wet weather samples were collected in this reporting period as either FTCs were closed for batch mode processing or flow through the cell was hindered due to river flooding.
Ex-Situ Seeps and Weeps Capture	 Flow rates and totalized flow every 15 minutes from each capture system
Groundwater Extraction	 Extraction Well Operational Data (flow, pressure, motor speed, and water level) every 15 minutes
004 Treatment Plant	 Weekly grab sampling of Effluent for PFAS indicator compounds HFPO-DA, PFMOAA, and PMPA Monthly grab sampling of Influent and Effluent for Table 3+ Quarterly grab sampling of Influent and Effluent for Table 3+ and EPA Method 537 MOD Various other parameters required per the NPDES permit and reported in the eDMR, but not reproduced here
Performance Evaluation	 Monthly water level gauging (October 30, November 28, and December 20, 2023) Monthly surface water PFAS sampling at four transects of the Cape Fear River (October 12, November 15, and December 6, 2023) Quarterly PFAS sampling of Willis Creek (WC) stations WC-1, 2, 3 (November 23, 2023) PFAS sampling of downgradient monitoring wells under the Mass Loading Model (MLM) quarterly sampling program (November 2 to 13, 2023)

Notes:

1 - Additional sampling details (e.g., Sample IDs, composite periods, etc.) are provided in subsequent tables.

PFAS - per- and polyfluoroalkyl substances PFMOAA - perfluoro-2-methoxyacetic acid EPA - Environmental Protection Agency eDMR - electronic Discharge Monitoring Report HFPO-DA - hexafluoropropylene oxide-dimer acid PMPA - perfluoro-2-methoxypropionic acid NPDES - National Pollutant Discharge Elimination System

Table 2-1A FTC Operations and Maintenance Summary - Seep A Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville, North Carolina

			Sa	mpling Perform	ed	Operation	nal Mode				
		Bypass				Arrival	Depa	arture			
	Days Since	Spillway	Breakthrough	Performance	Wet Weather				Transducers		
Date	Startup	Flow?	Monitoring	Monitoring	Monitoring	FB1 FB2	FB1	FB2	Downloaded	Maintenance Activities Completed	Notes
10/02/2023	888	No				Batch Mode	Batch Mode		Х	N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/03/2023	889	No				Batch Mode	Batch	n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/04/2023	890	No				Batch Mode	Batch	n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/05/2023	891	No				Batch Mode		n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/07/2023	893	No				Batch Mode	Batch	n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/09/2023	895	No				Batch Mode	Batch	n Mode	Х	N/A	24 inches of freeboard. Cell is closed.
10/11/2023	897	No				Batch Mode	Batch	n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/12/2023	898	No				Batch Mode	Batch	n Mode		N/A	22.5 inches of freeboard. Cell is closed, no flow observed. Rain gauge reading of 0.6 inches.
10/13/2023	899	No				Batch Mode	Batch	n Mode		N/A	22 inches of freeboard. Cell is closed, no flow observed.
10/16/2023	902	No				Batch Mode	Batch	n Mode	Х	N/A	22 inches of freeboard. Cell is closed.
10/17/2023	903	No				Batch Mode	Batch	n Mode		N/A	22.5 inches of freeboard. Cell is closed.
10/18/2023	904	No				Batch Mode	Batch	n Mode		N/A	22.5 inches of freeboard. Cell is closed, no flow observed.
10/19/2023	905	No				Batch Mode	Batch	n Mode		N/A	22.5 inches of freeboard. Cell is closed, no flow observed.
10/20/2023	906	No				Batch Mode	Batch	n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/23/2023	909	No				Batch Mode	Batch	n Mode	Х	N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/24/2023	910	No				Batch Mode	Batch	n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/25/2023	911	No				Batch Mode	Batch	n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/26/2023	912	No				Batch Mode	Batch	n Mode		N/A	23.5 inches of freeboard. Cell is closed, no flow observed.
10/27/2023	913	No				Batch Mode	Batch	n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
10/30/2023	916	No				Batch Mode	Batch	n Mode	Х	N/A	23 inches of freeboard.
10/31/2023	917	-				Batch Mode	Batch	n Mode		N/A	23 inches of freeboard. Cell is closed, no flow observed.
11/01/2023	918	No				Batch Mode	Batch	n Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/02/2023	919	No				Batch Mode	Batch	n Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/03/2023	920	No				Batch Mode	Batch	n Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/06/2023	923	No				Batch Mode	Batch	n Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/07/2023	924	No				Batch Mode	Batch	n Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/08/2023	925	No				Batch Mode	Batch	n Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/09/2023	926	No				Batch Mode	Batch	n Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/10/2023	927	No				Batch Mode	Batch	n Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/13/2023	930	No				Batch Mode	Batch	n Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/14/2023	931	No				Batch Mode	Batch	n Mode		Pumped down FB1 to prepare for GAC changeout.	24 inches of freeboard. Cell is closed, no flow observed.
11/15/2023	932	No				Changeout Batch Mode	Batch	n Mode		GAC changeout at FB1.	24 inches of freeboard. Cell is closed, no flow observed.
11/16/2023	933	No				Batch Mode	Batch	n Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/20/2023	937	No				Batch Mode	Batch	n Mode	Х	Pumped water into FB1 to hydrate GAC.	24 inches of freeboard. Cell is closed, no flow observed.
11/21/2023	938	No				Batch Mode	Batch Mode			N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/22/2023	939	No				Batch Mode	Batch Mode			N/A	23 inches of freeboard. Cell is closed, no flow observed.
11/27/2023	944	No				Batch Mode	Batch Mode		Х	N/A	20 inches of freeboard. Cell is closed, no flow observed.
11/28/2023	945	No				Batch Mode	Batch Mode			N/A	20 inches of freeboard. Cell is closed, no flow observed.
11/29/2023	946	No				Batch Mode	Batch	n Mode		N/A	20 inches of freeboard. Cell is closed, no flow observed.
11/30/2023	947	No				Batch Mode	Batch	n Mode		N/A	20 inches of freeboard. Cell is closed, no flow observed.

Table 2-1A FTC Operations and Maintenance Summary - Seep A Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville, North Carolina

			S	ampling Perforn	ied	Operatio		onal Mode				
		Bypass				Ar	rival	Depa	arture			
	Days Since	Spillway	Breakthrough	Performance	Wet Weather					Transducers		
Date	Startup	Flow?	Monitoring	Monitoring	Monitoring	FB1	FB2	FB1	FB2	Downloaded	Maintenance Activities Completed	Notes
12/01/2023	948	No				Bate	h Mode	Batch	n Mode		N/A	20 inches of freeboard. Cell is closed, no flow observed.
12/04/2023	951	No				Bate	h Mode	Batch	n Mode	Х	N/A	20 inches of freeboard. Cell is closed, no flow observed.
12/05/2023	952	No				Bate	h Mode	Batch	n Mode		N/A	20 inches of freeboard. Cell is closed, no flow observed.
12/06/2023	953	No				Bate	h Mode	Batch	n Mode		N/A	20 inches of freeboard. Cell is closed, no flow observed.
12/07/2023	954	No				Bate	h Mode	Batch	n Mode		N/A	20 inches of freeboard. Cell is closed, no flow observed.
12/08/2023	955	No				Bate	h Mode	Batch	n Mode		N/A	20 inches of freeboard. Cell is closed, no flow observed.
12/11/2023	958	No				Bate	h Mode	Batch	n Mode	Х	N/A	20 inches of freeboard. Cell is closed, no flow observed.
12/12/2023	959	No				Bate	h Mode	Batch	n Mode		N/A	19 inches of freeboard. Cell is closed, no flow observed.
12/13/2023	960	No				Bate	h Mode	Batch	n Mode		N/A	19 inches of freeboard. Cell is closed, no flow observed.
12/14/2023	961	No				Bate	h Mode	Batch	n Mode		N/A	20 inches of freeboard. Cell is closed, no flow observed.
12/15/2023	962	No				Bate	h Mode	Se	ries		Opened inlet and mid valves.	20 inches of freeboard.
12/18/2023	965	Yes	Х	Х		Se	eries	Par	allel	Х	N/A	N/A
12/19/2023	966	No				Pa	rallel	Se	ries		N/A	15 inches of freeboard. No flow observed.
12/20/2023	967					Se	eries	Se	ries		N/A	19 inches of freeboard. No flow observed.
12/21/2023	968	No				Se	eries	Se	ries		N/A	24 inches of freeboard. Observed steady flow.
12/22/2023	969	No				Se	eries	Se	ries		Replaced fabric in FB1.	22 inches of freeboard. Observed steady flow.
12/26/2023	973	No		Х		Se	eries	Se	ries	Х	N/A	20 inches of freeboard. Observed steady flow.
12/27/2023	974	No	Х			S	eries	Se	ries		N/A	Rain gauge reading of 0.8 inches. 15 inches of freeboard. Observed steady flow.
12/28/2023	975	No				Se	eries	Series			Skimmed and fluffed FB2.	13.5 inches of freeboard. Observed steady flow.
12/29/2023	976	No				Se	eries	Se	ries		N/A	19 inches of freeboard. Observed steady flow.

Notes:

1 - Batch Mode indicates the inlet and transfer basin valves were closed and the flow-through cell experienced no flow.

FB1 - Filter Bed 1

FB2 - Filter Bed 2

GAC - granular activated carbon

N/A - Not Applicable

Table 2-1B FTC Operations and Maintenance Summary - Seep B Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville, North Carolina

		D	Sa	ampling Perform	ed	Operatio	nal Mode			
	Days Since	Bypass Spillway	Breakthrough	Performance	Wet Weather	Arrival	Departure	Transducers		
Date	Startup	Flow?	Monitoring	Monitoring	Monitoring	FB1 FB2	FB1 FB2	Downloaded		Notes
10/02/2023	847	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/03/2023	848	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/04/2023	849	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/05/2023	850	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/07/2023	852	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/09/2023	854	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/11/2023	856	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/12/2023	857	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed. Rain gauge reading of 0.6 inches.
10/13/2023	858	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/16/2023	861	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/17/2023	862	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/18/2023	863	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/19/2023	864	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/20/2023	865	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/23/2023	868	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/24/2023	869	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/25/2023	870	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/26/2023	871	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/30/2023	875	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/31/2023	876	-				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/01/2023	877	No				Batch Mode	Batch Mode		Drained FB2 in preparation for changeout.	24 inches of freeboard. Cell is closed, no flow observed.
11/02/2023	878	No				Batch Mode Changeout	Batch Mode		Removed carbon from FB2.	24 inches of freeboard. Cell is closed, no flow observed.
11/03/2023	879	No				Batch Mode	Batch Mode		Placed new carbon in FB2.	24 inches of freeboard. Cell is closed, no flow observed.
11/06/2023	882	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/07/2023	883	No				Batch Mode	Batch Mode		Pumped water into FB2 to hydrate GAC.	24 inches of freeboard. Cell is closed, no flow observed.
11/08/2023	884	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/09/2023	885	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/10/2023	886	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/13/2023	889	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/14/2023	890	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/15/2023	891	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/16/2023	892	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/20/2023	896	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/21/2023	897	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/22/2023	898	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/27/2023	903	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/28/2023	904	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/29/2023	905	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/30/2023	906	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.

Table 2-1BFTC Operations and Maintenance Summary - Seep BQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, North Carolina

		n	Sa	ampling Perform	ied		Operatio	nal Mode				
	Days Since	Bypass Spillway	Breakthrough	Porformanco	Wet Weather	Arr	ival	Depa	rture	Transducers		
Date	Startup	Flow?	Monitoring	Monitoring	Monitoring	FB1	FB2	FB1	FB2	Downloaded	Maintenance Activities Completed	Notes
12/01/2023	907	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
12/04/2023	910	No				Batch	Mode	Batch	Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
12/05/2023	911	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
12/06/2023	912	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
12/07/2023	913	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
12/08/2023	914	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
12/11/2023	917	No				Batch	Mode	Batch	Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
12/13/2023	919	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
12/14/2023	920	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
12/15/2023	921	No				Batch	Mode	Sei	Series		Opened inlet and mid valves.	24 inches of freeboard.
12/18/2023	924	No	Х	Х		Sei	ies	Sei	Series		N/A	Cell may have bypassed overnight. 4 inches of freeboard. Observed steady flow.
12/19/2023	925	No				Sei	ies	Sei	ries		N/A	17 inches of freeboard. No flow observed.
12/20/2023	926	No				Sei	ies	Ser	ries		N/A	20 inches of freeboard. No flow observed. Cell impacted by the height of the river.
12/21/2023	927	No				Sei	ies	Sei	ries		N/A	24 inches of freeboard. Observed steady flow.
12/22/2023	928	No				Sei	ies	Sei	ries		N/A	24 inches of freeboard. Observed steady flow.
12/26/2023	932	No		Х		Sei	ies	Series		Х	N/A	24 inches of freeboard. Observed steady flow.
12/27/2023	933	No	Х			Sei	ies	Series			N/A	21 inches of freeboard. Observed steady flow. Rain gauge reading of 0.8 inches.
12/28/2023	934	No				Sei	ies	Series			N/A	23 inches of freeboard. Observed steady flow.
12/29/2023	935	No				Sei	ies	Series			N/A	22 inches of freeboard. No flow observed.

Notes:

1 - Batch Mode indicates the inlet and transfer basin valves were closed and the flow-through cell experienced no flow.

FB1 - Filter Bed 1

FB2 - Filter Bed 2

GAC - granular activated carbon

N/A - Not Applicable

Table 2-1CFTC Operations and Maintenance Summary - Seep CQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, North Carolina

		P	Sa	ampling Perform	ed		Operation	nal Mode				
	Darra Circas	Bypass	Dueslethueuch	Daufannanaa	Wet Weether	Ar	rival	Depa	rture	Turneducere		
Date	Days Since Startup	Spillway Flow?	Breakthrough Monitoring	Performance Monitoring	Wet Weather Monitoring	FB1	FB2	FB1	FB2	Transducers Downloaded	Maintenance Activities Completed	Notes
10/02/2023	1,021	No				Batch	n Mode	Batch	Mode	Х	N/A	14 inches of freeboard. Cell is closed, no flow observed.
10/03/2023	1,022	No				Batch	Batch Mode Batch		Mode		N/A	14 inches of freeboard. Cell is closed, no flow observed.
10/04/2023	1,023	No				Batch Mode Changeout		Batch	Mode	1 1	GAC changeout at FB2.	14 inches of freeboard. Cell is closed, no flow observed.
10/05/2023	1,024	No				Batch Mode		Batch	Mode		N/A	13.5 inches of freeboard. Cell is closed, no flow observed.
10/07/2023	1,026	No				Batch	n Mode	Batch	Mode		N/A	13 inches of freeboard. Cell is closed, no flow observed.
10/09/2023	1,028	No				Batch	n Mode	Batch	Mode	Х	N/A	13 inches of freeboard. Cell is closed, no flow observed.
10/11/2023	1,030	No				Batch	n Mode	Batch	Mode		N/A	12 inches of freeboard. Cell is closed, no flow observed.
10/12/2023	1,031	No				Batch	n Mode	Batch Mode			N/A	9 inches of freeboard. Rain gauge reading of 0.6 inches. Cell is closed, no flow observed.
10/13/2023	1,032	No				Batch	n Mode	Ser	ries		Opened inlet and mid valves	8.5 inches of freeboard.
10/14/2023	1,033	-		Х		Se	ries	Ser	ries		N/A	N/A
10/16/2023	1,035	No				Se	ries	Batch	Mode	Х	Closed inlet and mid valves.	14 inches of freeboard.
10/17/2023	1,036	No				Batch	n Mode	Batch	Mode	1 1	N/A	13 inches of freeboard. Cell is closed.
10/18/2023	1,037	No				Batch	n Mode	Batch	Mode	1 1	N/A	12 inches of freeboard. Cell is closed, no flow observed.
10/19/2023	1,038	No				Batch	n Mode	Batch	Mode	1 1	N/A	10.5 inches of freeboard. Cell is closed, no flow observed.
10/20/2023	1,039	No				Batch	n Mode	Ser	ries		Opened inlet and mid valves.	9 inches of freeboard. No flow observed.
10/21/2023	1,040	-		Х		Se	ries	Ser	ries		N/A	N/A
10/23/2023	1,042	No				Se	eries	Batch	Mode	Х	Closed inlet and mid valves.	13 inches of freeboard.
10/24/2023	1,043	No				Batch	n Mode	Batch	Mode		N/A	10.5 inches of freeboard. Cell is closed, no flow observed.
10/25/2023	1,044	No				Batch	n Mode	Batch	Mode		N/A	8 inches of freeboard. Cell is closed, no flow observed.
10/26/2023	1,045	-				Batch	n Mode	Batch	Mode		Pumped water into cell.	10.5 inches of freeboard.
10/27/2023	1,046	-				Batch	n Mode	Batch	Mode		Pumped water into cell.	N/A
10/30/2023	1,049	No				Batch	n Mode	Batch	Mode	Х	Pumped water into cell.	6 inches of freeboard.
10/31/2023	1,050	-		Х		Batch	n Mode	Batch	Mode		Pumped water into cell.	N/A
11/01/2023	1,051	No				Batch	n Mode	Batch	Mode		N/A	13 inches of freeboard. Cell is closed, no flow observed.
11/02/2023	1,052	No				Batch	n Mode	Batch	Mode		N/A	14 inches of freeboard. Cell is closed, no flow observed.
11/03/2023	1,053	No				Batch	n Mode	Batch	Mode		Pumped water into cell.	9 inches of freeboard. No flow observed.
11/06/2023	1,056	No				Batch	n Mode	Batch	Mode	Х	Pumped water into cell.	7 inches of freeboard. No flow observed.
11/07/2023	1,057	No				Batch	n Mode	Batch	Mode		Pumped water into cell.	7.5 inches of freeboard. No flow observed.
11/08/2023	1,058	No		Х		Batch	n Mode	Batch	Mode		Pumped water into cell. Skimmed and fluffed FB1.	14 inches of freeboard. No flow observed.
11/09/2023	1,059	No				Batch	n Mode	Batch	Mode		N/A	11 inches of freeboard. Cell is closed, no flow observed.
11/10/2023	1,060	No				Batch	n Mode	Batch	Mode		Pumped water into cell.	8 inches of freeboard. No flow observed.
11/13/2023	1,063	No				Batch	n Mode	Batch	Mode	Х	Pumped water into cell.	10 inches of freeboard. No flow observed.
11/14/2023	1,064	No				Batch	n Mode	Batch	Mode		Pumped water into cell.	13.5 inches of freeboard. No flow observed.
11/15/2023	1,065	No		Х			n Mode	Batch			Pumped water into cell.	24 inches of freeboard.
11/16/2023	1,066	No					n Mode	Batch			N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/17/2024	1,433	-					n Mode	Batch			Pumped water into cell.	N/A
11/20/2023	1,070	No	Х				n Mode	Batch		Х	Pumped water into cell. Skimmed and fluffed FB1.	8 inches of freeboard.
11/21/2023	1,071	No					n Mode	Batch			Pumped water into cell.	13 inches of freeboard.
11/22/2023	1,072	Yes		Х			n Mode	Para			Pumped water into cell. Opened inlet and mid valves.	10 inches of freeboard.
11/24/2024	1,440	No					allel		Mode		Skimmed and fluffed FB1 and FB2. Closed inlet and mid valves.	N/A
11/27/2023	1,077	No	Х				n Mode	Batch		Х	Pumped water into cell.	7.5 inches of freeboard.
11/28/2023	1,078	No					n Mode	Batch		ļ	Pumped water into cell.	8 inches of freeboard. Cell is closed, no flow observed.
11/29/2023	1,079	No					n Mode	Batch		ļ	Pumped water into cell. Backflushed.	10.5 inches of freeboard. Cell is closed, no flow observed.
11/30/2023	1,080	No		Х		Batch	n Mode	Batch	Mode		Pumped water into cell.	24 inches of freeboard. Cell is closed, no flow observed.

Table 2-1CFTC Operations and Maintenance Summary - Seep CQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, North Carolina

		D	Sa	mpling Perform	ed		Operatio	nal Mode				
	Days Since	Bypass Spillway	Breakthrough	Porformanco	Wet Weather	Ar	rival	Depa	rture	Transducers		
Date	Startup	Flow?	Monitoring	Monitoring	Monitoring	FB1	FB2	FB1	FB2	Downloaded	Maintenance Activities Completed	Notes
12/01/2023	1,081	No				Bate	n Mode	Sei	ries		Pumped water into cell. Opened inlet and mid valves.	24 inches of freeboard.
12/04/2023	1,084	No	Х			Se	eries	Batch	Mode	Х	Closed inlet and mid valves.	24 inches of freeboard.
12/05/2023	1,085	No				Bate	n Mode	Batch	Mode		Pumped water into cell.	24 inches of freeboard. Cell is closed, no flow observed.
12/06/2023	1,086	No				Bate	n Mode	Batch	Mode		Pumped water into cell.	24 inches of freeboard.
12/07/2023	1,087	No		Х		Bate	n Mode	Batch	Mode		Pumped water into cell.	24 inches of freeboard.
12/08/2023	1,088	No				Bate	n Mode	Sei	ries		Pumped water into cell. Backflushed FB1. Opened inlet and mid valves.	24 inches of freeboard.
12/11/2023	1,091	No	Х			S	eries	Batch	Mode	Х	Closed cell.	24 inches of freeboard. No flow observed.
12/12/2023	1,092					Bate	n Mode	Batch	Mode		Pumped water into cell.	24 inches of freeboard. No flow observed.
12/13/2023	1,093	No				Bate	n Mode	Batch	Mode		Pumped water into cell.	24 inches of freeboard. No flow observed.
12/14/2023	1,094	No		Х		Bate	n Mode	Batch	Mode		Pumped water into cell.	24 inches of freeboard. No flow observed.
12/15/2023	1,095	No				Bate	n Mode	Sei	ries		Pumped water into cell. Opened inlet and mid valves.	24 inches of freeboard. No flow observed.
12/18/2023	1,098	Yes	Х	Х		S	eries	Para	allel	Х	N/A	Observed steady flow.
12/19/2023	1,099	No				Pa	rallel	Sei	ries		N/A	13 inches of freeboard. No flow observed.
12/20/2023	1,100	No				S	eries	Sei	ries		N/A	8 inches of freeboard. No flow observed. Cell is impacted by the height o the river.
12/21/2023	1,101	No				S	eries	Sei	ries		N/A	5 inches of freeboard. Observed steady flow.
12/22/2023	1,102	No				S	eries	Sei	ries		Skimmed and fluffed FB1.	7.5 inches of freeboard. Observed steady flow.
12/26/2023	1,106	No		X		S	eries	Sei	ries	Х	N/A	14 inches of freeboard. Observed steady flow.
12/27/2023	1,107	Yes	Х			S	eries	Parallel			N/A	Rain gauge reading of 0.8 inches. 2 inches of freeboard by end of day. Observed steady flow.
12/28/2023	1,108	No				Pa	rallel	Series			N/A	13.5 inches of freeboard. Observed steady flow.
12/29/2023	1,109	No				S	eries	Sei	ries		N/A	12 inches of freeboard. Observed steady flow.

Notes:

1 - Batch Mode indicates the inlet and transfer basin valves were closed and the flow-through cell experienced no flow.

FB1 - Filter Bed 1

FB2 - Filter Bed 2

GAC - granular activated carbon

N/A - Not Applicable

Table 2-1DFTC Operations and Maintenance Summary - Seep DQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, North Carolina

		D	Sa	ampling Performed		Operatio	onal Mode			
	Days Since	Bypass Spillway	Breakthrough	Performance	Wet Weather	Arrival	Departure	Transducers		
Date	Startup	Flow?	Monitoring	Monitoring	Monitoring	FB1 FB2	FB1 FB2	Downloaded	Maintenance Activities Completed	Notes
10/02/2023	831	No				Batch Mode	Batch Mode	Х	N/A	23.5 inches of freeboard. Cell is closed, no flow observed.
10/03/2023	832	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/04/2023	833	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/05/2023	834	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/06/2023	835	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/09/2023	838	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/11/2023	840	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/12/2023	841	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed. Rain gauge reading of 0.6 inches.
10/13/2023	842	No				Batch Mode	Batch Mode	1	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/16/2023	845	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/17/2023	846	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/18/2023	847	No				Batch Mode	Batch Mode	1 1	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/19/2023	848	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/20/2023	849	No				Batch Mode	Batch Mode	1 1	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/23/2023	852	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/24/2023	853	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/25/2023	854	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/26/2023	855	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/30/2023	859	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
10/31/2023	860	-				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/01/2023	861	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/02/2023	862	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/03/2023	863	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/06/2023	866	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/07/2023	867	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/08/2023	868	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/09/2023	869	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/10/2023	870	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/13/2023	873	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/14/2023	874	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/15/2023	875	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/16/2023	876	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/20/2023	880	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/21/2023	881	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/22/2023	882	No				Batch Mode	Batch Mode		N/A	22 inches of freeboard. Cell is closed, no flow observed.
11/27/2023	887	No				Batch Mode	Batch Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/28/2023	888	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/29/2023	889	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.
11/30/2023	890	No				Batch Mode	Batch Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.

Table 2-1DFTC Operations and Maintenance Summary - Seep DQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, North Carolina

		n	Sa	ampling Performed	l	Operational Mode							
	Days Since	Bypass Spillway	Breakthrough	Performance	Wet Weather	Arr	ival	Depa	irture	Transducers			
Date	Startup	Flow?	Monitoring	Monitoring	Monitoring	FB1	FB2	FB1	FB1 FB2		Maintenance Activities Completed	Notes	
12/01/2023	891	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/04/2023	894	No				Batch	Mode	Batch	Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/05/2023	895	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/06/2023	896	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/07/2023	897	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/08/2023	898	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/11/2023	901	No				Batch	Mode	Batch	Mode	Х	N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/12/2023	902					Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/13/2023	903	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/14/2023	904	No				Batch	Mode	Batch	Mode		N/A	24 inches of freeboard. Cell is closed, no flow observed.	
12/15/2023	905	No				Batch	Mode	Sei	ries		Opened inlet and mid valves.	24 inches of freeboard. No flow observed.	
12/18/2023	908	No	Х	Х		Sei	ies	Sei	ries	Х	N/A	19 inches of freeboard. Observed steady flow.	
12/19/2023	909	No				Sei	ies	Sei	ries		N/A	22 inches of freeboard. No flow observed.	
12/20/2023	910	No				Ser	ies	Ser	ries		N/A	20 inches of freeboard. No flow observed. Cell is impacted by height of the river.	
12/21/2023	911	No				Sei	ries	Sei	ries		N/A	22 inches of freeboard. Observed steady flow.	
12/22/2023	912	No				Sei	ries	Sei	ries		N/A	20 inches of freeboard. Observed steady flow.	
12/26/2023	916	No		Х		Sei	ries	Sei	ries	Х	N/A	22 inches of freeboard. Observed steady flow.	
12/27/2023	917	No	Х			Sei	ies	Ser	ries		N/A	20 inches of freeboard. Observed steady flow. Rain gauge reading of 0.8 inches.	
12/28/2023	918	No				Sei	ries	Sei	ries		N/A	21 inches of freeboard. Observed steady flow.	
12/29/2023	919	No				Sei	ries	Ser	ries		N/A	21 inches of freeboard. Observed steady flow.	

Notes:

1 - Batch Mode indicates the inlet and transfer basin valves were closed and the flow-through cell experienced no flow.

FB1 - Filter Bed 1

FB2 - Filter Bed 2

GAC - granular activated carbon

N/A - Not Applicable

Table 2-2 Cape Fear River Elevation and Local Precipitation Statistics Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works Fayetteville, NC

	# of Days of	Percent of Operation Over Lifetime of System ^[2]									
Seep	# of Days of Operation on Record	River Above FTC Wall Elevation	River Above Bypass Spillway Elevation	River Above GAC Elevation	River Above Discharge Pipe Invert Elevation						
С	1,111	1.5%	2.0%	3.6%	9.3%						
А	978	0.6%	0.7%	1.5%	4.9%						
В	937	0.5%	0.6%	1.1%	3.4%						
D	921	0.6%	0.7%	1.7%	5.3%						
Historical Annual Ave	erage (2007-2020) ^[3,4]	1.7%	2.2%	3.7%	9.6%						

Precipitation (inches)	
Current Reporting Period (October - December 2023)	7.53
Current Reporting Period Historical Average (October - December 2004-2020) ^[5]	10.73
2023 Year-to-Date	42.63
Historical Year-to-Date Average (2004-2020) ^[5]	43.44
Historical Annual Average (2004-2020) ^[5]	43.44

Notes:

1- River elevation and precipitation data obtained from the USGS gauge #02105500 at the William O. Huske Lock and Dam.

2 - Operational period for river flooding statistics includes the entire lifetime of the system for each seep.

3 - Seeps A and D are approximately 1 foot lower in elevation than Seeps B and C.

4- For clarity of presentation, historical river flooding averages based on Seep C elevations only.

5 - The historical average was calculated using available data when the Huske rain gauge was operable.

Table 2-3AFTC Sampling Summary - Seep AQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, North Carolina

Performance Monitoring Composite Samples

Sample ID	Composite Period	Sample Date
SEEP-A-INFLUENT-24-121823 SEEP-A-EFFLUENT-24-121823	December 18, 2023	December 18, 2023
SEEP-A-INFLUENT-24-122623 SEEP-A-EFFLUENT-24-122623	December 26, 2023	December 26, 2023

- 1 Sample Identification Label Key: "Seep [A, B, C, or D] [Sample Location Inside FTC] [# of Aliquots in Composite Sample] [MMDDYY]"
- 2 The FTC was operating under batch mode in October, November, and part of December 2023. Performance samples were not collected while the FTC was closed. The FTC was opened on December 15 in anticipation of heavy rains. Performance montioring samples were collected on December 18 and 26, 2023 and were comprised of 24 aliquots.
- 3 No wet weather samples were collected in October, November, or December 2023, as either cells were closed for batch mode processing or flow through the cell was hindered due to river flooding.

Table 2-3BFTC Sampling Summary - Seep BQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, North Carolina

Performance Monitoring Composite Samples

Sample ID	Composite Period	Sample Date			
SEEP-B-INFLUENT-24-121823 SEEP-B-EFFLUENT-24-121823	December 18, 2023	December 18, 2023			
SEEP-B-INFLUENT-24-122623 SEEP-B-EFFLUENT-24-122723	December 26 and 27, 2023	December 26 and 27, 2023			

- 1 Sample Identification Label Key: "Seep [A, B, C, or D] [Sample Location Inside FTC] [# of Aliquots in Composite Sample] [MMDDYY]"
- 2 The FTC was operating under batch mode in October, November, and part of December 2023. Performance samples were not collected while the FTC was closed. The FTC was opened on December 15 in anticipation of heavy rains. Performance montioring samples were collected on December 18 and 26, 2023 and were comprised of 24 aliquots.
- 3 The ISCO autosampler at Seep B effluent had a delay in initiating sample collection, causing a lag in the 24-hour compositing duration for the December 26 performance sample.
- 4 No wet weather samples were collected in October, November, or December 2023, as either cells were closed for batch mode processing or flow through the cell was hindered due to river flooding.

Table 2-3CFTC Sampling Summary - Seep CQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, North Carolina

Performance Monitoring Composite Samples

Sample ID	Composite Period	Sample Date
SEEP-C-INFLUENT-24-101423 SEEP-C-EFFLUENT-24-101423	October 14, 2023	October 14, 2023
SEEP-C-INFLUENT-24-102123 SEEP-C-EFFLUENT-24-102123	October 21, 2023	October 21, 2023
SEEP-C-INFLUENT-24-103123 SEEP-C-EFFLUENT-24-103123	October 31, 2023	October 31, 2023
SEEP-C-INFLUENT-24-110823 SEEP-C-EFFLUENT-24-110823	November 8, 2023	November 8, 2023
SEEP-C-INFLUENT-24-111523 SEEP-C-EFFLUENT-24-111523	November 15, 2023	November 15, 2023
SEEP-C-INFLUENT-24-112223 SEEP-C-EFFLUENT-24-112223	November 22, 2023	November 22, 2023
SEEP-C-INFLUENT-24-113023 SEEP-C-EFFLUENT-24-113023	November 30, 2023	November 30, 2023
SEEP-C-INFLUENT-24-120723 SEEP-C-EFFLUENT-24-120723	December 7, 2023	December 7, 2023
SEEP-C-INFLUENT-24-121423 SEEP-C-EFFLUENT-24-121423	December 14, 2023	December 14, 2023
SEEP-C-INFLUENT-24-121823 SEEP-C-EFFLUENT-24-121823	December 18 2023	December 18, 2023
SEEP-C-INFLUENT-24-122623 SEEP-C-EFFLUENT-24-122623	December 26, 2023	December 26, 2023

- 1 Sample Identification Label Key: "Seep [A, B, C, or D] [Sample Location Inside FTC] [# of Aliquots in Composite Sample] [MMDDYY]"
- 2 The FTC was operating under batch mode for the majority of October and November and opened for a short duration to treat accumulated water in the pond. During batch mode operation, water was occasionally pumped from the impoundment through a manifold equipped with a flowmeter into the FTC. During these occurrences of pumping, four 6-hour sub composite performance samples were collected at Seep C. At the end of the fourth sub composite sample, each sample was composited as a 24 aliquot performance sample.
- 3 The FTC was opened on December 15 in anticipation of heavy rains. Performance monitoring samples were collected on December 18 and December 26, 2023 and were comprised of 24 aliquots.
- 4 No wet weather samples were collected in October, November, or December 2023, as either cells were closed for batch mode processing or flow through the cell was hindered due to river flooding.

Table 2-3DFTC Sampling Summary - Seep DQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, North Carolina

Performance Monitoring Composite Samples

Sample ID	Composite Period	Sample Date			
SEEP-D-INFLUENT-24-121823 SEEP-D-EFFLUENT-24-121823	December 18, 2023	December 18, 2023			
SEEP-D-INFLUENT-24-122623 SEEP-D-EFFLUENT-24-122723	December 26 and 27, 2023	December 26 and 27, 2023			

- 1 Sample Identification Label Key: "Seep [A, B, C, or D] [Sample Location Inside FTC] [# of Aliquots in Composite Sample] [MMDDYY]"
- 2 The FTC was operating under batch mode in October, November, and part of December 2023. Performance samples were not collected while the FTC was closed. The FTC was opened on December 15 in anticipation of heavy rains. Performance montioring samples were collected on December 18 and 26, 2023 and were comprised of 24 aliquots.
- 3 The ISCO autosampler at Seep D effluent had a delay in initiating sample collection, causing a lag in the 24-hour compositing duration for the December 26 performance sample.
- 4 No wet weather samples were collected in October, November, or December 2023, as either cells were closed for batch mode processing or flow through the cell was hindered due to river flooding.

Table 2-4A FTC Performance Monitoring Analytical Results - Seep A Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville,	NC

Table 3 + SOP (ng/L)	SEEP-A-INFLUENT 24-121823 Sample Date: 18-Dec-23	SEEP-A-EFFLUENT- 24-121823 Sample Date: 18-Dec-23	Percent Removal	SEEP-A-INFLUENT 24-122623 Sample Date: 26-Dec-23	SEEP-A-EFFLUENT- 24-122623 Sample Date: 26-Dec-23	Percent Removal
Hfpo Dimer Acid	4,100	100	97.6%	7,200	98	98.6%
PFMOAA	13,000	290	97.8%	24,000	480	98.0%
PFO2HxA	9,900	220	97.8%	14,000	200	98.6%
PFO3OA	3,300	75	97.7%	3,700	51	98.6%
PFO4DA	1,700	39	97.7%	1,600	21	98.7%
PFO5DA	970	20	97.9%	640	12	98.1%
PMPA	3,100	75	97.6%	7,300	150	97.9%
PEPA	920	21	97.7%	2,400	36	98.5%
PS Acid	190	4.3	97.7%	22	<2.0	>99.9%
Hydro-PS Acid	230	5.3	97.7%	220	3.3	98.5%
R-PSDA	980 J	14 J	98.6%	540 J	7.5 J	98.6%
Hydrolyzed PSDA	2,100 J	36 J	98.3%	1,500 J	24 J	98.4%
R-PSDCA	<17	<2.0	>99.9%	<17	<2.0	>99.9%
NVHOS, Acid Form	190	3.3	98.3%	280	4.1	98.5%
EVE Acid	88	2	97.7%	<17	<2.0	>99.9%
Hydro-EVE Acid	250	5.7	97.7%	220	3.3	98.5%
R-EVE	170 J	3.6 J	97.9%	260 J	3.4 J	98.7%
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7	<2.0	>99.9%	<6.7	<2.0	>99.9%
PFECA B	<27	<2.0	>99.9%	<27	<2.0	>99.9%
PFECA-G	<48	<2.0	>99.9%	<48	<2.0	>99.9%
Total Table 3+ (17 compounds) ^{1,2}	38,000	860	97.7%	62,000	1,100	98.2%

Notes:

1 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to two significant figures.

2 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA and R-EVE.

3 - Sample Identification Label Key: "Seep - [A, B, C, or D] - [Sample Location Inside FTC] - [# of Aliquots in Composite Sample] - [MMDDYY]"

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

ng/L - nanograms per liter

SOP - standard operating procedure

< - Analyte not detected above associated reporting limit.

March 2024

Table 2-4B FTC Performance Monitoring Analytical Results - Seep B Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville, NC

Table 3 + SOP (ng/L)	SEEP-B-INFLUENT- 24-121823 Sample Date: 18-Dec-23	SEEP-B-EFFLUENT- 24-121823 Sample Date: 18-Dec-23	Percent Removal	SEEP-B-INFLUENT- 24-122623 Sample Date: 26-Dec-23	SEEP-B-EFFLUENT- 24-122723 Sample Date: 27-Dec-23	Percent Removal
Hfpo Dimer Acid	12,000	4.1	>99.9%	8,900	2.6	>99.9%
PFMOAA	8,400	87	99.0%	13,000	62	99.5%
PFO2HxA	6,300	13	99.8%	7,000	11	99.8%
PFO3OA	1,300	<2.0	>99.9%	1,500	<2.0	>99.9%
PFO4DA	420	<2.0	>99.9%	490	<2.0	>99.9%
PFO5DA	160	<2.0	>99.9%	160	<2.0	>99.9%
PMPA	10,000	24	99.8%	11,000	16	99.9%
PEPA	5,500	<20	>99.9%	4,800	<20	>99.9%
PS Acid	960	<2.0	>99.9%	540	<2.0	>99.9%
Hydro-PS Acid	410	<2.0	>99.9%	310	<2.0	>99.9%
R-PSDA	1,500 J	<2.0	>99.9%	940 J	<2.0	>99.9%
Hydrolyzed PSDA	7,800 J	<2.0	>99.9%	4,800 J	<2.0	>99.9%
R-PSDCA	22	<2.0	>99.9%	<17	<2.0	>99.9%
NVHOS, Acid Form	840	<2.0	>99.9%	550	<2.0	>99.9%
EVE Acid	1,100	<2.0	>99.9%	590	<2.0	>99.9%
Hydro-EVE Acid	820	<2.0	>99.9%	620	<2.0	[4]
R-EVE	970 J	<2.0	>99.9%	610 J	<2.0	>99.9%
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7	<2.0	>99.9%	<6.7	<2.0	>99.9%
PFECA B	<27	<2.0	>99.9%	<27	<2.0	>99.9%
PFECA-G	<48	<2.0	>99.9%	<48	<2.0	>99.9%
Total Table 3+ (17 compounds) ^{1,2}	48,000	130	99.7%	49,000	92	99.8%

Notes:

1 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to two significant figures.

2 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA and R-EVE.

3 - Sample Identification Label Key: "Seep - [A, B, C, or D] - [Sample Location Inside FTC] - [# of Aliquots in Composite Sample] - [MMDDYY]"

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

ng/L - nanograms per liter

SOP - standard operating procedure

< - Analyte not detected above associated reporting limit.

March 2024

Table 2-4C FTC Performance Monitoring Analytical Results - Seep C Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville,	NC
I dyette ville,	110

Table 3 + SOP (ng/L)	SEEP-C-INFLUENT 24-101423 Sample Date: 14-Oct-23	SEEP-C-EFFLUENT- 24-101423 Sample Date: 14-Oct-23	Percent Removal	SEEP-C-INFLUENT- 24-102123 Sample Date: 21-Oct-23	SEEP-C-EFFLUENT- 24-102123 Sample Date: 21-Oct-23	Percent Removal	SEEP-C-INFLUENT- 24-103123 Sample Date: 31-Oct-23	SEEP-C-EFFLUENT- 24-103123 Sample Date: 31-Oct-23	Percent Removal	SEEP-C-INFLUENT- 24-110823 Sample Date: 8-Nov-23	SEEP-C-EFFLUENT- 24-110823 Sample Date: 8-Nov-23	Percent Removal
Hfpo Dimer Acid	3,500	3.7	99.9%	2,700	<81	>99.9%	3,200	<2.0	>99.9%	2,200	<2.0	>99.9%
PFMOAA	9,100	4.9	>99.9%	10,000	<80	>99.9%	10,000	<2.0	>99.9%	9,100	<2.0	>99.9%
PFO2HxA	3,900	4	99.9%	4,600	<27	>99.9%	4,400	<2.0	>99.9%	3,700	<2.0	>99.9%
PFO3OA	1,500	<2.0	>99.9%	1,400	<39	>99.9%	1,400	<2.0	>99.9%	1,100	<2.0	>99.9%
PFO4DA	460	<2.0	>99.9%	630	<59	>99.9%	570	<2.0	>99.9%	580	<2.0	>99.9%
PFO5DA	<78	<2.0	>99.9%	120	<78	>99.9%	<78	<2.0	>99.9%	<78	<2.0	>99.9%
PMPA	1,600	<10	>99.9%	1,600	<620	>99.9%	1,500	<10	>99.9%	1,300	<10	>99.9%
PEPA	590	<20	>99.9%	510	<20	>99.9%	510	<20	>99.9%	440	<20	>99.9%
PS Acid	<20	<2.0	>99.9%	<20	<20	>99.9%	<20	<2.0	>99.9%	<20	<2.0	>99.9%
Hydro-PS Acid	160	<2.0	>99.9%	180	<6.1	>99.9%	210	<2.0	>99.9%	180	<2.0	>99.9%
R-PSDA	220 J	<2.0	>99.9%	190 J	<71	>99.9%	190 J	<2.0	>99.9%	210 J	<2.0	>99.9%
Hydrolyzed PSDA	80 J	<2.0	>99.9%	80 J	<38	>99.9%	69 J	<2.0	>99.9%	130 J	<2.0	>99.9%
R-PSDCA	<17	<2.0	>99.9%	<17	<17	>99.9%	<17	<2.0	>99.9%	<17	<2.0	>99.9%
NVHOS, Acid Form	120	<2.0	>99.9%	140	<15	>99.9%	120	<2.0	>99.9%	120	<2.0	>99.9%
EVE Acid	<17	<2.0	>99.9%	<17	<17	>99.9%	<17	<2.0	>99.9%	<17	<2.0	>99.9%
Hydro-EVE Acid	160	<2.0	>99.9%	150	<14	>99.9%	150	<2.0	>99.9%	140	<2.0	>99.9%
R-EVE	140 J	<2.0	>99.9%	160 J	<72	>99.9%	140 J	<2.0	>99.9%	160 J	<2.0	>99.9%
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7	<2.0	>99.9%	<6.7	<6.7	>99.9%	<6.7	<2.0	>99.9%	<6.7	<2.0	>99.9%
PFECA B	<27	<2.0	>99.9%	<27	<27	>99.9%	<27	<2.0	>99.9%	<27	<2.0	>99.9%
PFECA-G	<48	<2.0	>99.9%	<48	<48	>99.9%	<48	<2.0	>99.9%	<48	<2.0	>99.9%
Total Table 3+ (17 compounds) ^{1,2}	21,000	13	99.9%	22,000	ND	>99.9%	22,000	ND	>99.9%	19,000	ND	>99.9%

Notes:

1 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to two significant figures.

2 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA and R-EVE.

3 - Sample Identification Label Key: "Seep - [A, B, C, or D] - [Sample Location Inside FTC] - [# of Aliquots in Composite Sample] - [MMDDYY]"

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

UJ - Analyte not detected. Reporting limit may not be accurate or precise.

ND - non-detect

ng/L - nanograms per liter

SOP - standard operating procedure

< - Analyte not detected above associated reporting limit.

Table 2-4C FTC Performance Monitoring Analytical Results - Seep C Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville, NC	
1 a jouro i mo, 1 . c	

Table 3 + SOP (ng/L)	SEEP-C-INFLUENT- 24-111523 Sample Date: 15-Nov-23	SEEP-C-EFFLUENT- 24-111523 Sample Date: 15-Nov-23	Percent Removal	SEEP-C-INFLUENT 24-112223 Sample Date: 22-Nov-23	SEEP-C-EFFLUENT- 24-112223 Sample Date: 22-Nov-23	Percent Removal	SEEP-C-INFLUENT- 24-113023 Sample Date: 30-Nov-23	SEEP-C-EFFLUENT 24-113023 Sample Date: 30-Nov-23	Percent Removal	SEEP-C-INFLUENT 24-120723 Sample Date: 7-Dec-23	-SEEP-C-EFFLUENT- 24-120723 Sample Date: 7-Dec-23	Percent Removal
Hfpo Dimer Acid	2,100	<2.0	>99.9%	1,700	3.5	99.8%	1,200	<2.0	>99.9%	1,100 J	<2.0	>99.9%
PFMOAA	6,200	<2.0	>99.9%	6,100	5.9	99.9%	3,400	<2.0	>99.9%	6,000 J	<2.0	>99.9%
PFO2HxA	2,700	<2.0	>99.9%	2,600	5.8	99.8%	1,600	<2.0	>99.9%	2,700 J	<2.0	>99.9%
PFO3OA	850	<2.0	>99.9%	740	<2.0	>99.9%	580	<2.0	>99.9%	740 J	<2.0	>99.9%
PFO4DA	400 J	<2.0	>99.9%	400	<2.0	>99.9%	170	<2.0	>99.9%	280 J	<2.0	>99.9%
PFO5DA	<78	<2.0	>99.9%	59	<2.0	>99.9%	31	<2.0	>99.9%	<78 UJ	<2.0	>99.9%
PMPA	1,000	<10	>99.9%	890	<10	>99.9%	550	<10	>99.9%	1,100 J	<10	>99.9%
PEPA	360	<20	>99.9%	300	<20	>99.9%	130	<20	>99.9%	260 J	<20	>99.9%
PS Acid	<20	<2.0	>99.9%	<3.9	<2.0	>99.9%	<2.0	<2.0	>99.9%	<20 UJ	<2.0	>99.9%
Hydro-PS Acid	110	<2.0	>99.9%	84	<2.0	>99.9%	46	<2.0	>99.9%	71 J	<2.0	>99.9%
R-PSDA	110 J	<2.0	>99.9%	130 J	<2.0	>99.9%	110 J	<2.0	>99.9%	170 J	<2.0	>99.9%
Hydrolyzed PSDA	46 J	<2.0	>99.9%	41 J	<2.0	>99.9%	30 J	<2.0	>99.9%	130 J	<2.0	>99.9%
R-PSDCA	<17	<2.0	>99.9%	<3.5	<2.0	>99.9%	<2.0	<2.0	>99.9%	<17 UJ	<2.0	>99.9%
NVHOS, Acid Form	98	<2.0	>99.9%	69	<2.0	>99.9%	36	<2.0	>99.9%	190 J	<2.0	>99.9%
EVE Acid	<17	<2.0	>99.9%	<3.5	<2.0	>99.9%	3.6	<2.0	>99.9%	<17 UJ	<2.0	>99.9%
Hydro-EVE Acid	92	<2.0	>99.9%	91	<2.0	>99.9%	44	<2.0	>99.9%	94 J	<2.0	>99.9%
R-EVE	85 J	<2.0	>99.9%	77 J	<2.0	>99.9%	74 J	<2.0	>99.9%	140 J	<2.0	>99.9%
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7	<2.0	>99.9%	<2.0	<2.0	>99.9%	<2.0	<2.0	>99.9%	<6.7 UJ	<2.0	>99.9%
PFECA B	<27	<2.0	>99.9%	<5.3	<2.0	>99.9%	<2.0	<2.0	>99.9%	<27 UJ	<2.0	>99.9%
PFECA-G	<48	<2.0	>99.9%	<9.6	<2.0	>99.9%	<2.4	<2.0	>99.9%	<48 UJ	<2.0	>99.9%
Total Table 3+ (17 compounds) ^{1,2}	14,000	ND	>99.9%	13,000	15	99.9%	7,800	ND	>99.9%	13,000	ND	>99.9%

Notes:

1 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to two significant figures.

2 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA and R-EVE.

3 - Sample Identification Label Key: "Seep - [A, B, C, or D] - [Sample Location Inside FTC] - [# of Aliquots in Composite Sample] - [MMDDYY]"

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

UJ - Analyte not detected. Reporting limit may not be accurate or precise.

ND - non-detect

ng/L - nanograms per liter

SOP - standard operating procedure

< - Analyte not detected above associated reporting limit.

Table 2-4C FTC Performance Monitoring Analytical Results - Seep C Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville, NC

Table 3 + SOP (ng/ L)	SEEP-C-INFLUENT- 24-121423 Sample Date: 14-Dec-23	SEEP-C-EFFLUENT- 24-121423 Sample Date: 14-Dec-23	Percent Removal	SEEP-C-INFLUENT- 24-121823 Sample Date: 18-Dec-23	SEEP-C-EFFLUENT- 24-121823 Sample Date: 18-Dec-23	Percent Removal	SEEP-C-INFLUENT- 24-122623 Sample Date: 26-Dec-23	SEEP-C-EFFLUENT- 24-122623 Sample Date: 26-Dec-23	Percent Removal
Hfpo Dimer Acid	1,100 J	<2.0	>99.9%	3,000	10	99.7%	7,200	<2.0	>99.9%
PFMOAA	6,200 J	<2.0	>99.9%	8,600	20	99.8%	14,000	6.8	>99.9%
PFO2HxA	2,800 J	<2.0	>99.9%	4,300	10	99.8%	8,800	3.3	>99.9%
PFO3OA	750 J	<2.0	>99.9%	1,300	3	99.8%	3,000	<2.0	>99.9%
PFO4DA	310 J	<2.0	>99.9%	570	<2.0	>99.9%	1,200	<2.0	>99.9%
PFO5DA	<78 UJ	<2.0	>99.9%	<78	<2.0	>99.9%	<78	<2.0	>99.9%
PMPA	860 J	<10	>99.9%	1,700	<10	>99.9%	3,600	<10	>99.9%
PEPA	220 J	<20	>99.9%	460	<20	>99.9%	1,200	<20	>99.9%
PS Acid	<20 UJ	<2.0	>99.9%	<20	<2.0	>99.9%	<20	<2.0	>99.9%
Hydro-PS Acid	75 J	<2.0	>99.9%	110	<2.0	>99.9%	170	<2.0	>99.9%
R-PSDA	98 J	<2.0	>99.9%	140 J	<2.0	>99.9%	250 J	<2.0	>99.9%
Hydrolyzed PSDA	<38 UJ	<2.0	>99.9%	<38	<2.0	>99.9%	<38	<2.0	>99.9%
R-PSDCA	<17 UJ	<2.0	>99.9%	<17	<2.0	>99.9%	<17	<2.0	>99.9%
NVHOS, Acid Form	65 J	<2.0	>99.9%	110	<2.0	>99.9%	240	<2.0	>99.9%
EVE Acid	<17 UJ	<2.0	>99.9%	<17	<2.0	>99.9%	<17	<2.0	>99.9%
Hydro-EVE Acid	76 J	<2.0	>99.9%	270	<2.0	>99.9%	580	<2.0	>99.9%
R-EVE	<72 UJ	<2.0	>99.9%	110 J	<2.0	>99.9%	270 J	<2.0	>99.9%
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7 UJ	<2.0	>99.9%	<6.7	<2.0	>99.9%	<6.7	<2.0	>99.9%
PFECA B	<27 UJ	<2.0	>99.9%	<27	<2.0	>99.9%	<27	<2.0	>99.9%
PFECA-G	<48 UJ	<2.0	>99.9%	<48	<2.0	>99.9%	<48	<2.0	>99.9%
Total Table 3+ (17 compounds) ^{1,2}	12,000	ND	>99.9%	20,000	43	99.8%	40,000	10	>99.9%

Notes:

1 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to two significant figures.

2 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA and R-EVE.

3 - Sample Identification Label Key: "Seep - [A, B, C, or D] - [Sample Location Inside FTC] - [# of Aliquots in Composite Sample] - [MMDDYY]"

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

UJ - Analyte not detected. Reporting limit may not be accurate or precise.

ND - non-detect

ng/L - nanograms per liter

SOP - standard operating procedure

< - Analyte not detected above associated reporting limit.

Table 2-4D FTC Performance Monitoring Analytical Results - Seep D Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville,	NC
1 0 0000 0 0000,	

Table 3 + SOP (ng/L)	SEEP-D-INFLUENT 24-121823 Sample Date: 18-Dec-23	SEEP-D-EFFLUENT- 24-121823 Sample Date: 18-Dec-23	Percent Removal	SEEP-D-INFLUENT 24-122623 Sample Date: 26-Dec-23	SEEP-D-EFFLUENT- 24-122723 Sample Date: 27-Dec-23	Percent Removal
Hfpo Dimer Acid	5,000	21	99.6%	3,300	3.1	99.9%
PFMOAA	19,000	280	98.5%	19,000	89	99.5%
PFO2HxA	12,000	78	99.4%	6,900	10	99.9%
PFO3OA	2,100	6.5	99.7%	1,700	<2.0	>99.9%
PFO4DA	510	<2.0	>99.9%	560	<2.0	>99.9%
PFO5DA	<78	<2.0	>99.9%	<78	<2.0	>99.9%
PMPA	2,300	21	99.1%	2,300	<10	>99.9%
PEPA	910	<20	>99.9%	700	<20	>99.9%
PS Acid	<20	<2.0	>99.9%	<20	<2.0	>99.9%
Hydro-PS Acid	77	<2.0	>99.9%	80	<2.0	>99.9%
R-PSDA	360 J	<2.0	>99.9%	180 J	<2.0	>99.9%
Hydrolyzed PSDA	550 J	<2.0	>99.9%	260 J	<2.0	>99.9%
R-PSDCA	<17	<2.0	>99.9%	<17	<2.0	>99.9%
NVHOS, Acid Form	380	<2.0	>99.9%	160	<2.0	>99.9%
EVE Acid	<17	<2.0	>99.9%	<17	<2.0	>99.9%
Hydro-EVE Acid	220	<2.0	>99.9%	200	<2.0	>99.9%
R-EVE	310 J	<2.0	>99.9%	160 J	<2.0	>99.9%
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7	<2.0	>99.9%	<6.7	<2.0	>99.9%
PFECA B	<27	<2.0	>99.9%	<27	<2.0	>99.9%
PFECA-G	<48	<2.0	>99.9%	<48	<2.0	>99.9%
Total Table 3+ (17 compounds) ^{1,2}	42,000	410	99.0%	35,000	100	99.7%

Notes:

1 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to two significant figures.

2 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA and R-EVE.

3 - Sample Identification Label Key: "Seep - [A, B, C, or D] - [Sample Location Inside FTC] - [# of Aliquots in Composite Sample] - [MMDDYY]"

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

ng/L - nanograms per liter

SOP - standard operating procedure

< - Analyte not detected above associated reporting limit.

March 2024

Table 2-5AFTC Water Quality Data - Seep AQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville WorksFayetteville, North Carolina

Date		DO (mg/L)			pH (SU)		Sp	ecific Condu (μS/cm)	ctance		Temperatu (°C)	re		Turbidity (NTU)	7		TSS ^[1] (mg/L)	
	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference ^[2]
12/18/2023	7.27	8.43	1.16	6.98	6.28	-0.70	275.72	220.65	-55.07	15.64	13.54	-2.10	180.06	64.54	-115.52	120 J	36 J	-84
12/26/2023	7.57	6.89	-0.68	6.1	7.2	1.1	407.83	309.96	-97.87	18.73	16.85	-1.88	27.19	0	-27	70	<1.0	-70
Average	7.42	7.66	0.24	6.5	6.7	0.2	341.78	265.31	-76.47	17.19	15.20	-1.99	103.63	32	-71	95	18	-77
Median	7.42	7.66	0.24	6.5	6.7	0.2	341.78	265.31	-76.47	17.19	15.20	-1.99	103.63	32	-71	95	18	-77

Notes:

1 - TSS was measured by laboratory method SM 2540 D from grab samples collected concurrent with the performance samples.

2 - Non-detect influent and effluent TSS sample results were assigned a value of zero for statistical calculations.

DO - dissolved oxygen

mg/L - milligrams per liter

SU - standard units

NTU - nephelometric turbidity units

 μ S/cm - microSiemens per centimeter

Table 2-5BFTC Water Quality Data - Seep BQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville WorksFayetteville, North Carolina

Date		DO (mg/L)			pH (SU)		Sp	oecific Condu (μS/cm)	ctance		Temperatu (°C)	re		Turbidity (NTU)	7		TSS ^[1] (mg/L)	
	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference ^[2]
12/18/2023	8.21	7.54	-0.67	6.68	7.72	1.04	151.82	140.99	-10.83	14.97	14.44	-0.53	99.25	82.81	-16.44	49 J	14 J	-35
12/26/2023	7.29	7.26	-0.03	7.42	8.38	0.96	242.77	217.99	-24.78	17.12	16.66	-0.46	75.5	23.38	-52.1	56	1.0 J	-55
Average	7.75	7.40	-0.35	7.05	8.05	1.00	197.30	179.49	-17.81	16.05	15.55	-0.50	87.4	53.10	-34.3	53	7.5	-45
Median	7.75	7.40	-0.35	7.05	8.05	1.00	197.30	179.49	-17.81	16.05	15.55	-0.50	87.4	53.10	-34.3	53	7.5	-45

Notes:

1 - TSS was measured by laboratory method SM 2540 D from grab samples collected concurrent with the performance samples.

2 - Non-detect influent and effluent TSS sample results were assigned a value of zero for statistical calculations.

J - Analyte detected. Reported value may not be accurate or precise.

DO - dissolved oxygen

mg/L - milligrams per liter

SU - standard units

NTU - nephelometric turbidity units

 μ S/cm - microSiemens per centimeter

Table 2-5CFTC Water Quality Data - Seep CQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville WorksFayetteville, North Carolina

Date		DO (mg/L)			pH (SU)		Sp	ecific Condu (μS/cm)	ctance		Temperatu (°C)	re		Turbidity (NTU)	7		TSS ^[1] (mg/L)	
	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference ^[2]
10/14/2023	6.24	6.14	-0.10	7.7	8.04	0.34	395.37	347.29	-48.08	18.83	18.98	0.15	26.94	0	-27	3.2 J	<1.1	-3.2
10/21/2023	6.83	6.46	-0.37	7.55	8.05	0.50	389.35	362.78	-26.57	20.25	19.72	-0.53	26.51	1.01	-25.50	12	<1.1	-12
10/31/2023	7.52	7.5	0.0	7.85	8.2	0.4	318.23	234.49	-83.74	18.2	17.74	-0.5	9.25	5.3	-4.0	2.4 J	<1.1	-2.4
11/8/2023	2.67	3.17	0.50	7.39	8.13	0.74	125.29	89.72	-35.57	18.6	17.66	-0.9	12.57	13.25	0.68	4.0	3.2 J	-0.8
11/16/2023	3.56	4.6	1.0	7.7	8.59	0.9	1,334.97	1,101.26	-233.71	18.62	17.74	-0.88	11.24	5.59	-5.65	5.6	1.6 J	-4.0
11/27/2023	3.31	6.92	3.61	7.56	8.18	0.62	426.85	368.17	-58.68	16.28	15.39	-0.89	70.17	54.02	-16.15	17	6.8	-10
12/1/2023	7.04	6.8	-0.24	8.13	7.77	-0.36	309.12	292.33	-16.79	11.01	8.84	-2.17	32.87	90.11	57.24	11	13	2
12/7/2023	7.26	6.28	-0.98	7.12	8.1	0.98	390	280	-110	16.08	15.64	-0.44	35	7.87	-27	5.2	<1.1	-5.2
12/14/2023	9.33	9.59	0.26	7.98	8.32	0.34	353.48	249.64	-103.84	9.42	8.95	-0.47	29.38	15.97	-13.41	<1.1	2.8 J	2.8
12/18/2023	8.31	8.1	-0.2	7.42	7.58	0.16	278.03	168.18	-109.85	15.44	14.86	-0.58	105.97	49.89	-56.08	36 J	9.5 J	-26.5
12/26/2023	7.37	7.51	0.14	7.95	7.66	-0.29	219.92	214.34	-5.58	17.31	17.1	-0.2	224.01	75.03	-148.98	62	24	-38
Average	6.31	6.6	0.3	7.7	8.1	0.4	413	337	-76	16.4	15.7	-0.7	53	29	-24	14	6	-9
Median	7.04	6.8	-0.2	7.7	8.1	0.4	353	280	-74	17.3	17.1	-0.2	29	13	-16	6	3	-3

Notes:

1 - TSS was measured by laboratory method SM 2540 D from grab samples collected concurrent with the performance samples.

2 - Non-detect influent and effluent TSS sample results were assigned a value of zero for statistical calculations.

3 - Specific conductance recorded on 12/7/24 was inadvertenly recorded in mS/cm and has been converted to μ S/cm.

J - Analyte detected. Reported value may not be accurate or precise.

DO - dissolved oxygen

mg/L - milligrams per liter

SU - standard units

NTU - nephelometric turbidity units

mS/cm - milliSiemens per centimeter

 μ S/cm - microSiemens per centimeter

Table 2-5DFTC Water Quality Data - Seep DQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville WorksFayetteville, North Carolina

Date		DO (mg/L)			pH (SU)		Sp	oecific Condu (μS/cm)	ctance		Temperatu (°C)	re		Turbidity (NTU)	y		TSS ^[1] (mg/L)	
	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference	Influent	Effluent	Difference ^[2]
12/18/2023	8.34	6.61	-1.73	7.62	7.58	-0.04	250.85	225.82	-25.03	14.83	13.63	-1.20	74.79	0	-75	39 J	<1.0 UJ	-39
12/26/2023	7.36	7.51	0.15	7.53	7.52	-0.01	231.59	268.37	36.78	16.91	15.47	-1.44	49.16	3.91	-45.25	1.7 J	16	14
Average	7.85	7.06	-0.79	7.58	7.55	-0.03	241.22	247.10	5.88	15.87	14.55	-1.32	61.98	2	-60	20	8	-12
Median	7.85	7.06	-0.79	7.58	7.55	-0.03	241.22	247.10	5.88	15.87	14.55	-1.32	61.98	2	-60	20	8	-12

Notes:

1 - TSS was measured by laboratory method SM 2540 D from grab samples collected concurrent with the performance samples.

2 - Non-detect influent and effluent TSS sample results were assigned a value of zero for statistical calculations.

J - Analyte detected. Reported value may not be accurate or precise.

UJ - Analyte not detected. Reporting limit may not be accurate or precise.

DO - dissolved oxygen

mg/L - milligrams per liter

SU - standard units

NTU - nephelometric turbidity units

µS/cm - microSiemens per centimeter

Table 3-1 Ex-Situ Seeps and Weeps Flow Data Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works Fayetteville Works Fayetteville, North Carolina

		Flow Totalizer Data fro	m Seeps and Weeps Ca	pture Systems Operated by C	GEOServices (gallons)		Surge Pond Flow to 004 (GWTP Operated by Veolia
Date	Seep A Totalizer (Cumulative)	Seep A Tributary Totalizer (Cumulative)	Seep B Totalizer (Cumulative)	Willis Creek Tributary Totalizer (Cumulative)	Weep 3 Totalizer (Cumulative)	Cumulative Volume Calculated from Capture System Totalizers	Daily Volume Conveyed from Surge Pond to 004 Treatment Plant (gallons)	Cumulative Volume Conveyed from Surge Pond to 004 Treatment Plant (gallons)
Prior Total	4,107,032	886,356	2,214,305	387,183	305,590	7,900,466	8,16	9,553
10/1/2023	4,107,032	886,356	2,214,308	388,539	347,116	7,943,351	29,805	8,199,358
10/2/2023	4,107,032	886,356	2,214,373	388,540	352,836	7,949,137	43	8,199,402
10/3/2023	4,143,110	886,356	2,214,383	391,183	352,884	7,987,916	1,129	8,200,531
10/4/2023	4,143,110	886,356	2,214,387	392,243	352,904	7,989,000	28,391	8,228,921
10/5/2023	4,143,110	886,356	2,214,390	393,272	352,924	7,990,052	2	8,228,923
10/6/2023	4,178,288	886,356	2,214,396	394,317	352,951	8,026,308	21,072	8,249,995
10/7/2023	4,178,288	886,356	2,214,399	395,394	352,970	8,027,407	6,693	8,256,689
10/8/2023	4,214,124	886,356	2,214,405	396,428	352,996	8,064,309	0	8,256,689
10/9/2023	4,214,124	886,356	2,214,408	397,455	353,015	8,065,358	25,831	8,282,520
10/10/2023	4,214,124	886,356	2,214,411	398,483	353,035	8,066,409	5	8,282,525
10/11/2023	4,214,124	886,356	2,214,413	399,510	353,054	8,067,457	12,211	8,294,736
10/12/2023	4,249,555	886,356	2,268,743	402,623	353,115	8,160,392	80,957	8,375,693
10/13/2023	4,285,237	886,356	2,268,743	403,809	353,136	8,197,281	62,618	8,438,310
10/14/2023	4,285,237	886,356	2,268,744	406,045	353,167	8,199,549	5,270	8,443,580
10/15/2023	4,320,273	886,356	2,268,745	407,126	353,870	8,236,370	0	8,443,580
10/16/2023	4,320,273	886,356	2,322,083	408,194	353,920	8,290,826	55,175	8,498,755
10/17/2023	4,320,332	886,356	2,322,084	409,230	353,970	8,291,972	24,266	8,523,021
10/18/2023	4,355,671	921,216	2,322,084	409,230	353,972	8,362,173	18,207	8,541,228
10/19/2023	4,355,671	921,216	2,322,084	410,424	353,973	8,363,368	41,962	8,583,189
10/20/2023	4,355,671	921,216	2,322,084	410,424	353,998	8,363,393	1,196	8,584,385
10/21/2023	4,355,671	921,216	2,322,084	410,424	354,023	8,363,418	0	8,584,385
10/22/2023	4,355,671	921,216	2,322,084	410,424	354,023	8,363,418	0	8,584,385
10/23/2023	4,355,671	921,216	2,322,084	410,424	354,023	8,363,418	0	8,584,385
10/24/2023	4,355,759	921,216	2,322,085	416,558	354,025	8,369,643	1	8,584,386
10/25/2023	4,456,403	931,477	2,361,227	417,562	354,038	8,520,707	7,750	8,592,136
10/26/2023	4,469,316	931,477	2,371,197	418,220	354,042	8,544,252	67,589	8,659,725
10/27/2023	4,482,602	931,477	2,374,624	419,504	354,047	8,562,254	75,576	8,735,301
10/28/2023	4,496,741	933,602	2,378,497	420,458	354,075	8,583,373	25,092	8,760,394
10/29/2023	4,509,922	934,761	2,381,382	421,548	354,079	8,601,692	13,726	8,774,119
10/30/2023	4,523,917	935,678	2,385,779	422,621	354,083	8,622,078	11,592	8,785,711
10/31/2023	4,535,952	936,899	2,388,421	423,694	354,086	8,639,052	13,365	8,799,076
October Total	428,920	50,543	174,116	36,511	48,496	738,586	629	9,523

Table 3-1 Ex-Situ Seeps and Weeps Flow Data Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works Fayetteville Works Fayetteville, North Carolina

		Flow Totalizer Data fro	m Seeps and Weeps Ca	pture Systems Operated by C	GEOServices (gallons)		Surge Pond Flow to 004 (GWTP Operated by Veolia
Date	Seep A Totalizer (Cumulative)	Seep A Tributary Totalizer (Cumulative)	Seep B Totalizer (Cumulative)	Willis Creek Tributary Totalizer (Cumulative)	Weep 3 Totalizer (Cumulative)	Cumulative Volume Calculated from Capture System Totalizers	Daily Volume Conveyed from Surge Pond to 004 Treatment Plant (gallons)	Cumulative Volume Conveyed from Surge Pond to 004 Treatment Plant (gallons)
11/1/2023	4,550,400	937,512	2,392,399	424,724	354,086	8,659,121	8,960	8,808,037
11/2/2023	4,562,550	938,248	2,394,899	424,724	354,092	8,674,513	11,013	8,819,049
11/3/2023	4,576,888	939,156	2,398,681	426,692	354,095	8,695,512	8,409	8,827,459
11/4/2023	4,589,338	940,211	2,401,113	427,595	354,097	8,712,354	12,058	8,839,517
11/5/2023	4,604,011	940,931	2,404,686	429,672	354,101	8,733,401	9,929	8,849,446
11/6/2023	4,616,777	942,017	2,407,397	429,672	354,103	8,749,966	12,999	8,862,445
11/7/2023	4,631,386	942,966	2,411,278	430,721	354,105	8,770,456	9,830	8,872,275
11/8/2023	4,644,363	944,000	2,413,858	431,764	354,107	8,788,092	12,488	8,884,763
11/9/2023	4,659,255	944,858	2,417,655	432,611	354,110	8,808,489	10,917	8,895,680
11/10/2023	4,671,874	946,178	2,420,089	433,654	354,112	8,825,907	13,350	8,909,031
11/11/2023	4,682,915	947,278	2,424,009	434,684	354,114	8,843,000	9,703	8,918,733
11/12/2023	4,700,934	950,784	2,431,984	435,614	354,139	8,873,455	25,409	8,944,142
11/13/2023	4,712,780	952,102	2,441,882	437,501	354,142	8,898,407	30,332	8,974,475
11/14/2023	4,727,374	953,204	2,445,460	438,595	354,144	8,918,777	21,300	8,995,774
11/15/2023	4,740,826	954,441	2,450,254	439,448	354,146	8,939,115	35,642	9,031,416
11/16/2023	4,755,150	955,925	2,453,267	440,507	354,148	8,958,997	24,913	9,056,329
11/17/2023	4,768,181	957,543	2,458,181	441,562	354,150	8,979,617	17,634	9,073,964
11/18/2023	4,783,118	958,600	2,461,260	442,275	354,152	8,999,405	15,939	9,089,903
11/19/2023	4,795,515	959,966	2,465,752	443,310	354,154	9,018,697	12,829	9,102,732
11/20/2023	4,808,754	960,786	2,468,568	444,332	354,155	9,036,595	10,740	9,113,471
11/21/2023	4,821,925	964,944	2,472,381	445,152	354,181	9,058,583	10,146	9,123,618
11/22/2023	4,967,979	986,946	2,543,415	452,320	360,267	9,310,927	78,331	9,201,949
11/23/2023	4,985,956	988,899	2,593,872	457,934	360,799	9,387,460	129,120	9,331,069
11/24/2023	5,000,366	990,553	2,600,534	459,530	360,991	9,411,974	128,901	9,459,970
11/25/2023	5,013,061	991,869	2,611,150	460,998	361,080	9,438,158	127,808	9,587,778
11/26/2023	5,027,219	993,304	2,615,669	462,302	361,167	9,459,661	82,535	9,670,313
11/27/2023	5,040,394	995,127	2,625,106	463,659	361,251	9,485,537	27,077	9,697,390
11/28/2023	5,055,135	996,505	2,632,595	465,000	361,334	9,510,569	21,407	9,718,796
11/29/2023	5,066,899	997,704	2,638,144	466,261	361,397	9,530,405	19,080	9,737,877
11/30/2023	5,081,867	998,859	2,642,802	467,346	361,449	9,552,323	12,944	9,750,821
November Total	545,915	61,960	254,381	43.652	7,363	913,271	,	.745

Table 3-1 Ex-Situ Seeps and Weeps Flow Data Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works Fayetteville Works Fayetteville, North Carolina

		Flow Totalizer Data fro	m Seeps and Weeps Ca	pture Systems Operated by G	GEOServices (gallons)		Surge Pond Flow to 004 (GWTP Operated by Veolia
Date	Seep A Totalizer (Cumulative)	Seep A Tributary Totalizer (Cumulative)	Seep B Totalizer (Cumulative)	Willis Creek Tributary Totalizer (Cumulative)	Weep 3 Totalizer (Cumulative)	Cumulative Volume Calculated from Capture System Totalizers	Daily Volume Conveyed from Surge Pond to 004 Treatment Plant (gallons)	Cumulative Volume Conveyed from Surge Pond to 004 Treatment Plant (gallons)
12/1/2023	5,093,969	1,000,245	2,649,314	468,590	361,493	9,573,611	12,944	9,763,766
12/2/2023	5,108,238	1,001,462	2,653,941	469,837	361,505	9,594,983	17,839	9,781,605
12/3/2023	5,121,561	1,002,968	2,661,359	471,099	361,543	9,618,530	20,826	9,802,430
12/4/2023	5,136,130	1,004,203	2,666,687	472,345	361,574	9,640,939	19,345	9,821,776
12/5/2023	5,148,843	1,005,461	2,672,818	473,603	361,586	9,662,311	17,128	9,838,904
12/6/2023	5,161,294	1,006,543	2,677,909	474,594	361,618	9,681,958	14,605	9,853,509
12/7/2023	5,176,109	1,007,404	2,681,571	475,844	361,624	9,702,552	11,416	9,864,925
12/8/2023	5,188,153	1,008,722	2,687,194	476,311	361,655	9,722,035	0	9,864,925
12/9/2023	5,201,929	1,009,574	2,691,828	477,288	361,662	9,742,281	0	9,864,925
12/10/2023	5,215,188	1,010,927	2,696,608	478,233	361,696	9,762,652	0	9,864,925
12/11/2023	5,241,610	1.016.857	2,717,298	480,790	361,740	9,818,295	0	9,864,925
12/12/2023	5,253,194	1.017.940	2,728,498	481,797	361,787	9,843,216	0	9,864,925
12/13/2023	5,266,676	1,020,113	2,734,009	482,760	361,839	9,865,397	0	9,864,925
12/14/2023	5,278,771	1,021,554	2,740,718	483,612	361,896	9,886,551	0	9,864,925
12/15/2023	5,293,828	1,022,761	2,745,141	484,550	361,958	9,908,238	0	9,864,925
12/16/2023	5,305,637	1,024,258	2,750,983	485,487	362,018	9,928,383	142,506	10,007,432
12/17/2023	5,460,301	1,077,642	2,789,405	486,434	387,042	10,200,824	134,381	10,141,812
12/18/2023	5,614,965	1,131,027	2,976,629	494,992	390,631	10,608,244	155,781	10,297,593
12/19/2023	5,681,405	1,167,968	3,049,554	499,508	392,180	10,790,615	156,312	10,453,905
12/20/2023	5,697,157	1,173,860	3,076,378	501,833	393,043	10,842,271	156,548	10,610,454
12/21/2023	5,714,475	1,178,391	3,102,648	504,143	393,782	10,893,439	156,108	10,766,562
12/22/2023	5,729,316	1,182,383	3,122,683	506,201	394,365	10,934,948	156,154	10,922,716
12/23/2023	5,745,646	1,186,022	3,141,962	508,177	394,911	10,976,718	155,827	11,078,542
12/24/2023	5,758,801	1,189,029	3,157,333	509,918	395,372	11,010,453	155,629	11,234,171
12/25/2023	5,774,176	1,192,333	3,173,744	511,420	395,796	11,047,469	135,129	11,369,300
12/26/2023	5,787,839	1,195,385	3,186,763	513,112	397,289	11,080,388	129,079	11,498,379
12/27/2023	5,897,202	1,213,665	3,274,575	519,807	401,797	11,307,046	130,145	11,628,524
12/28/2023	5,918,562	1,218,012	3,305,299	522,760	402,607	11,367,240	132,755	11,761,279
12/29/2023	5,934,327	1,221,930	3,327,830	524,984	403,204	11,412,275	134,348	11,895,626
12/30/2023	5,949,668	1,224,885	3,344,544	526,906	403,681	11,449,684	98,410	11,994,036
12/31/2023	5,964,450	1,228,013	3,361,104	528,576	404,083	11,486,226	35,447	12,029,484
December Total	882,583	229,154	718,302	61,230	42,634	1,933,903	,	8,663
Reporting Period Total	1,857,418	341.657	1,146,799	141,393	98,493	3,585,760	3.85	9,931

Notes:

1 - Flow data from the Surge Pond through the 004 ground water treatment plant (GWTP) is collected and managed by Veolia.

2 - The daily volume conveyed from surge pond to 004 Treatment Plant is recorded on a 24-hour basis, ending daily at 1 pm. For simplicity, the volume totaled through 1 pm is shown as the daily total in this table.

Chemours Fayetteville Works Fayetteville, North Carolina

WELL ID	TARGET AQUIFER	NORTHING (FT, NAD83)	EASTING (FT, NAD83)	TOP OF CASING ELEVATION (FT, NAVD88)	WELL DIAMETER (INCHES)	WELL DEPTH (FT, BGS)	WELL SCREEN INTERVAL (FT, BGS)
BCA-01	Black Creek Aquifer	399779.96	2050662.48	146.25	2	101	91-101
BCA-02	Black Creek Aquifer	396242.02	2051062.07	148.37	2	102	92-102
EW-01	Black Creek Aquifer	401683.69	2049951.04	92.04	6	85	60-80
EW-02	Black Creek Aquifer	401683.61	2050289.26	87.97	6	65	40-60
EW-03	Black Creek Aquifer	401723.50	2050594.78	84.67	6	72	57-67
EW-04	Black Creek Aquifer	401714.92	2050848.03	80.00	6	65	50-60
EW-05	Black Creek Aquifer	401654.63	2051059.46	82.93	6	78	63-73
EW-06	Black Creek Aquifer	401489.44	2051117.72	83.58	6	75	50-70
EW-07	Black Creek Aquifer	401350.61	2051160.78	86.45	6	68	53-63
EW-08	Black Creek Aquifer	401184.55	2051164.30	89.05	6	73	58-68
EW-09	Black Creek Aquifer	401008.87	2051129.57	81.08	6	65	40-60
EW-10	Black Creek Aquifer	400870.94	2051128.67	74.12	6	55	30-50
EW-11	Black Creek Aquifer	400683.82	2051280.71	93.12	6	75	60-70
EW-12	Black Creek Aquifer	400591.86	2051415.21	92.10	6	75	50-70
EW-13	Black Creek Aquifer	400527.75	2051513.14	87.95	6	79	54-74
EW-14	Black Creek Aquifer	400375.11	2051570.80	82.23	6	62	47-57
EW-15	Black Creek Aquifer	400223.63	2051556.86	77.23	6	53	38-48
EW-16	Black Creek Aquifer	400042.92	2051489.09	88.11	6	65	50-60
EW-17	Black Creek Aquifer	399975.22	2051517.08	87.84	6	65	40-60
EW-18	Surficial Aquifer	399828.16	2051586.65	74.56	6	30	15-25
EW-19	Black Creek Aquifer	399819.25	2051590.67	74.65	6	51	36-46
EW-20	Surficial Aquifer	399696.08	2051667.78	78.48	6	30	15-25
EW-21	Black Creek Aquifer	399549.59	2051687.61	84.66	6	62	47-57
EW-22	Surficial Aquifer	399298.40	2051754.69	82.54	6	37	22-32
EW-23	Black Creek Aquifer	399289.65	2051759.07	83.05	6	70	45-65
EW-24	Surficial Aquifer	399105.96	2051845.20	83.63	6	31	16-26
EW-25	Black Creek Aquifer	399097.14	2051848.27	83.44	6	75	60-70
EW-26S	Surficial Aquifer	398992.13	2051869.73	83.50	6	30	15-25
EW-27	Surficial Aquifer	398883.14	2051881.19	85.81	6	33	18-28
EW-28	Black Creek Aquifer	398873.71	2051882.01	85.83	6	55	40-50
EW-29	Surficial Aquifer	398743.82	2051874.08	80.62	6	34	19-29
EW-30	Black Creek Aquifer	398733.15	2051872.90	82.01	6	80	55-75
EW-31	Surficial Aquifer	398619.06	2051860.80	80.84	6	33	18-28
EW-32	Black Creek Aquifer	398606.76	2051858.39	81.55	6	53	38-48
EW-33	Surficial Aquifer	398413.39	2051843.45	78.32	6	25	10-20
EW-34	Black Creek Aquifer	398403.44	2051844.29	77.11	6	75	40-70
EW-35	Surficial Aquifer	398342.37	2051862.99	74.44	6	18	8-13
EW-36	Black Creek Aquifer	398333.72	2051867.55	73.98	6	73	38-48, 58-68
EW-37	Surficial Aquifer	398234.57	2051923.02	74.03	6	54	39-49
EW-38	Black Creek Aquifer	398229.45	2051926.24	74.19	6	80	55-75
EW-39	Surficial Aquifer	398113.89	2051992.69	77.19	6	21	6-16
EW-40	Black Creek Aquifer	398104.84	2051997.57	77.00	6	85	60-80

Chemours Fayetteville Works Fayetteville, North Carolina

WELL ID	TARGET AQUIFER	NORTHING (FT, NAD83)	EASTING (FT, NAD83)	TOP OF CASING ELEVATION (FT, NAVD88)	WELL DIAMETER (INCHES)	WELL DEPTH (FT, BGS)	WELL SCREEN INTERVAL (FT, BGS)
EW-41	Black Creek Aquifer	397944.33	2052019.70	84.99	6	75	50-70
EW-42	Black Creek Aquifer	397792.20	2052011.87	81.93	6	74	49-69
EW-43	Black Creek Aquifer	397657.42	2052005.16	81.80	6	76	51-71
EW-44	Surficial Aquifer	397520.77	2051997.72	75.22	6	18	8-13
EW-45	Black Creek Aquifer	397511.10	2051997.30	75.33	6	71	46-66
EW-46	Surficial Aquifer	397374.10	2051993.17	74.94	6	32	17-27
EW-47	Black Creek Aquifer	397364.92	2051992.87	75.02	6	68	43-63
EW-48	Surficial Aquifer	397290.64	2052028.52	79.87	6	31	16-26
EW-49	Black Creek Aquifer	397282.27	2052032.79	79.65	6	79	54-74
EW-50	Surficial Aquifer	397105.59	2052107.53	77.80	6	30	15-25
EW-51	Black Creek Aquifer	397096.10	2052109.76	78.36	6	70	45-65
EW-52	Black Creek Aquifer	396902.85	2052151.05	75.84	6	70	45-65
EW-53	Black Creek Aquifer	396713.03	2052190.03	76.33	6	67	42-62
EW-54	Black Creek Aquifer	396559.35	2052223.00	75.31	6	65	40-60
EW-55	Black Creek Aquifer	396358.87	2052225.92	86.59	6	80	55-75
EW-56	Black Creek Aquifer	396173.96	2052249.38	79.69	6	71	46-66
EW-57	Black Creek Aquifer	395992.47	2052247.52	84.92	6	70	45-65
EW-58	Black Creek Aquifer	395810.15	2052290.53	74.69	6	65	40-60
EW-60	Black Creek Aquifer	395425.21	2052313.29	77.65	6	68	43-63
EW-61	Black Creek Aquifer	395283.80	2052271.16	78.46	6	75	50-70
EW-62	Black Creek Aquifer	395170.54	2052195.07	83.12	6	65	40-60
EW-63	Black Creek Aquifer	395055.17	2052033.12	122.53	6	103	88-98
EW-64	Black Creek Aquifer	394924.16	2051976.78	121.67	6	85	60-80
EW-65	Black Creek Aquifer	394819.93	2051918.54	116.36	6	75	50-70
EW-66	Black Creek Aquifer	394823.51	2051780.19	115.77	6	101	76-96
EW-67	Black Creek Aquifer	394780.57	2051655.69	103.22	6	98	73-93
EW-68	Black Creek Aquifer	394728.65	2051563.34	96.82	6	92	67-87
EW-69	Black Creek Aquifer	394649.04	2051478.42	87.55	6	85	60-80
LTW-02	Black Creek Aquifer	398847.57	2052355.48	51.39	2	38	28-38
LTW-03	Floodplain Deposits	398114.45	2052558.35	51.75	2	30	15-30
LTW-05	Black Creek Aquifer	396430.31	2052740.40	50.94	2	44	29-44
NAF-11B	Surficial Aquifer	398911.13	2050995.88	140.74	2	44	33.5-43.5
OW-02	Black Creek Aquifer	398572.28	2051801.62	84.37	2	73	63-73
OW-03	Black Creek Aquifer	398601.08	2051812.32	84.64	2	73	63-73
OW-04	Black Creek Aquifer	395049.16	2052210.81	80.85	2	57	47-57
OW-04R	Black Creek Aquifer	394990.53	2052236.29	80.03	2	61	51-61
OW-07	Black Creek Aquifer	397180.06	2052052.69	81.45	2	67	57-67
OW-08	Black Creek Aquifer	397202.33	2052041.98	82.30	2	67	57-67
OW-09	Black Creek Aquifer	395075.14	2052211.07	79.78	2	64	54-64
OW-09R	Black Creek Aquifer	395001.93	2052252.38	78.53	2	65	55-65
OW-11	Black Creek Aquifer	401683.39	2049913.61	94.92	1	84	74-84
OW-12	Black Creek Aquifer	401731.33	2050721.09	83.65	1	60	50-60
OW-13	Black Creek Aquifer	400769.33	2051210.62	85.12	1	60	50-60
OW-14	Black Creek Aquifer	400311.42	2051608.03	80.67	1	56	46-56
OW-15	Black Creek Aquifer	399719.91	2051608.62	87.86	1	44	34-44

Chemours Fayetteville Works Fayetteville, North Carolina

WELL ID	TARGET AQUIFER	NORTHING (FT, NAD83)	EASTING (FT, NAD83)	TOP OF CASING ELEVATION (FT, NAVD88)	WELL DIAMETER (INCHES)	WELL DEPTH (FT, BGS)	WELL SCREEN INTERVAL (FT, BGS)
OW-16	Black Creek Aquifer	399828.66	2051993.25	52.94	1	25	15-25
OW-17	Black Creek Aquifer	399433.03	2051661.47	89.67	1	68	58-68
OW-18	Black Creek Aquifer	398846.69	2051836.19	90.88	1	55	45-55
OW-19	Black Creek Aquifer	398067.23	2051976.50	86.68	1	80	70-80
OW-20	Black Creek Aquifer	398229.85	2052080.86	69.59	1	58	48-58
OW-21	Black Creek Aquifer	397521.83	2051950.75	80.85	1	67	57-67
OW-22	Black Creek Aquifer	397325.34	2052218.74	66.63	1	53	43-53
OW-23	Black Creek Aquifer	396776.73	2052355.66	67.83	1	55	45-55
OW-24	Black Creek Aquifer	396677.42	2052158.17	78.67	1	60	50-60
OW-25	Black Creek Aquifer	396182.38	2052428.46	70.91	1	55	45-55
OW-26	Black Creek Aquifer	395503.74	2052268.81	80.85	1	60	50-60
OW-27	Black Creek Aquifer	395555.17	2052622.16	55.6	1	43	33-43
OW-28	Black Creek Aquifer	395570.57	2052838.21	48.49	2	30	20-30
OW-29	Black Creek Aquifer	395193.45	2052143.81	85.67	1	52	42-52
OW-30	Black Creek Aquifer	394988.72	2052537.53	70.92	2	59	49-59
OW-31	Black Creek Aquifer	394812.07	2051595.90	106.1	1	95	85-95
OW-32	Black Creek Aquifer	394563.76	2051792.16	85.05	2	72	62-72
OW-33	Black Creek Aquifer	395116.90	2052806.54	48.59	2	29	19-29
OW-34	Surficial Aquifer	398593.54	2051813.31	83.76	1	33	23-33
OW-35	Surficial Aquifer	398060.78	2051977.75	87.45	1	30	20-30
OW-36	Surficial Aquifer	397257.46	2051997.45	80.61	1	21	11-21
OW-37	Surficial Aquifer	396154.99	2052264.10	77.82	2	35	25-35
OW-38	Black Creek Aquifer	394885.22	2051883.97	123.7	1	70	60-70
OW-39	Black Creek Aquifer	394728.70	2052105.68	92.07	2	78	68-78
OW-40	Black Creek Aquifer	394588.05	2052521.39	72.88	2	59	49-59
OW-41	Black Creek Aquifer	401683.74	2050119.92	93.66	1	92	82-92
OW-42	Black Creek Aquifer	401696.05	2050448.24	87.37	1	68	58-68
OW-43	Black Creek Aquifer	400937.73	2051116.17	76.94	1	50	40-50
OW-44	Black Creek Aquifer	399741.48	2051736.45	73.18	1	44	34-44
OW-45	Black Creek Aquifer	398836.07	2051955.99	77.1	1	60	50-60
OW-46	Black Creek Aquifer	398164.94	2052050.69	72.05	1	69	59-69
OW-47	Black Creek Aquifer	397243.89	2052136.32	71.47	1	59	49-59
OW-48	Black Creek Aquifer	396698.39	2052275.93	69.54	1	52	42-52
OW-49	Black Creek Aquifer	396180.56	2052348.51	79.56	1	63	53-63
OW-50	Black Creek Aquifer	395529.59	2052379.97	71.53	1	53	43-53
OW-51	Black Creek Aquifer	396166.08	2052262.14	77.72	2	66	56-66
OW-52	Black Creek Aquifer	397562.30	2052151.03	60.66	2	47	37-47
OW-53	Black Creek Aquifer	397530.83	2052055.05	75.16	2	68	56-66
OW-54	Black Creek Aquifer	401068.86	2051275.96	47.42	2	12	7-12
OW-55	Black Creek Aquifer	401761.92	2050875.02	75.45	2	58	43-58
OW-56	Black Creek Aquifer	401983.45	2050634.71	44.69	2	12	7-12
OW-57	Black Creek Aquifer	401781.20	2050174.65	68.87	2	43	33-43
PIW-10DR	Black Creek Aquifer	395093.99	2052297.30	75.91	2	58	53-58
PIW-11	Black Creek Aquifer	401911.03	2050416.29	67.02	2	57	47-57
PIW-12	Black Creek Aquifer	401703.10	2051025.77	83.78	2	74	64-74

Chemours Fayetteville Works Fayetteville, North Carolina

WELL ID	TARGET AQUIFER	NORTHING (FT, NAD83)	EASTING (FT, NAD83)	TOP OF CASING ELEVATION (FT, NAVD88)	WELL DIAMETER (INCHES)	WELL DEPTH (FT, BGS)	WELL SCREEN INTERVAL (FT, BGS)
PIW-13	Black Creek Aquifer	401464.29	2051122.60	83.18	2	64	54-64
PIW-14	Black Creek Aquifer	401163.98	2051186.57	87.43	2	66	56-66
PIW-15	Black Creek Aquifer	400706.51	2051532.80	67.85	2	44	34-44
PIW-1D	Black Creek Aquifer	400548.00	2051801.28	52.16	2	30	24.5-29.5
PIW-2D	Black Creek Aquifer	399925.40	2051315.80	96.19	2	50	40-50
PIW-3D	Black Creek Aquifer	399711.25	2052086.94	53.42	2	24	19-24
PIW-4D	Black Creek Aquifer	398816.52	2052101.94	52.85	2	37	32.3-37.3
PIW-5S	Surficial Aquifer	398519.70	2051950.49	75.02	2	19.8	9.8-19.8
PIW-5SR	Surficial Aquifer	398545.03	2051977.42	79.60	2	25	15-25
PIW-7D	Black Creek Aquifer	396787.77	2052595.65	48.93	2	34	29-34
PIW-7S	Floodplain Deposits	396786.97	2052589.10	47.97	2	17	7-17
PW-02	Surficial Aquifer	399779.06	2050649.47	146.43	2	60	50-60
PW-03	Surficial Aquifer	397339.81	2050765.32	147.97	2	45	35-45
PW-04	Surficial Aquifer	394659.55	2050940.66	97.75	2	27	17-27
PW-10R	Black Creek Aquifer	398516.12	2051936.59	75.90	2	67	57-67
PW-10RR	Black Creek Aquifer	398532.53	2051965.93	79.97	2	71	61-71
PW-11	Black Creek Aquifer	394354.36	2052226.72	73.26	2	64	53-63
PW-14	Black Creek Aquifer	397325.65	2050766.36	147.97	2	146	136-146
PW-15R	Black Creek Aquifer	398900.88	2051011.75	136.14	2	120	110-120
PZ-22	Black Creek Aquifer	397271.94	2052585.34	50.70	1	48	42.5-47.5
SMW-03B	Black Creek Aquifer	399785.75	2049421.54	150.43	2	82	72-82
SMW-09	Surficial Aquifer	401076.89	2050017.41	141.43	2	62	52-62
SMW-12	Black Creek Aquifer	401314.20	2051007.22	118.22	2	98	88-98

Notes:

1 - This table provides well construction details for the wells included under the Performance Monitoring Plan (PMP). It is not comprehensive to the entire well network at the Site.

2 - At one drilling location, EW-59, Black Creek aquifer material was not encountered, therefore there was not a suitable interval to install the well screen. This borehole was abandoned prior to well installation.

BGS - below ground surface

EW - extraction well

NAD83 - North American Datum of 1983

NAVD88 - North American Vertical Datum of 1988

OW - observation well

Table 4-2Summary of GWEC Flow DataQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, North Carolina

Date	Average Extraction Flow Rate (gpm)	Cumulative Volume Extracted (gallons)		
Prior Total	N/A	144,689,291		
10/1/2023	344	145,187,691		
10/2/2023	344	145,686,043		
10/3/2023	344	146,184,187		
10/4/2023	345	146,682,283		
10/5/2023	337	147,169,035		
10/6/2023	339	147,665,339		
10/7/2023	342	148,161,211		
10/8/2023	339	148,651,691		
10/9/2023	338	149,140,859		
10/10/2023	337	149,629,195		
10/11/2023	336	150,122,443		
10/12/2023	340	150,615,483		
10/13/2023	338	151,104,843		
10/14/2023	340	151,598,219		
10/15/2023	334	152,083,195		
10/16/2023	333	152,563,611		
10/17/2023	336	153,051,787		
10/18/2023	338	153,542,811		
10/19/2023	344	154,037,659		
10/20/2023	347	154,539,035		
10/21/2023	343	155,037,307		
10/22/2023	341	155,531,515		
10/23/2023	329	156,007,819		
10/24/2023	308	156,453,371		
10/25/2023	319	156,915,435		
10/26/2023	Not Available	157,387,148		
10/27/2023	277	157,760,267		
10/28/2023	307	158,203,691		
10/29/2023	321	158,668,619		
10/30/2023	327	159,141,147		
10/31/2023	325	159,612,459		
October Total	N/A	14,923,168		

Table 4-2Summary of GWEC Flow DataQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, North Carolina

Date	Average Extraction Flow Rate (gpm)	Cumulative Volume Extracted (gallons)
11/1/2023	326	160,083,339
11/2/2023	332	160,562,235
11/3/2023	339	161,051,211
11/4/2023	340	161,544,507
11/5/2023	339	162,055,611
11/6/2023	337	162,543,163
11/7/2023	336	163,028,507
11/8/2023	326	163,501,771
11/9/2023	329	163,978,763
11/10/2023	328	164,453,515
11/11/2023	326	164,924,987
11/12/2023	326	165,397,195
11/13/2023	324	165,747,867
11/14/2023	312	166,205,259
11/15/2023	315	166,661,035
11/16/2023	279	167,067,035
11/17/2023	308	167,511,915
11/18/2023	321	167,976,571
11/19/2023	316	168,433,083
11/20/2023	327	168,906,235
11/21/2023	337	169,397,947
11/22/2023	340	169,891,771
11/23/2023	333	170,373,307
11/24/2023	331	170,853,995
11/25/2023	332	171,334,395
11/26/2023	343	171,829,547
11/27/2023	338	172,318,187
11/28/2023	333	172,800,443
11/29/2023	332	173,288,619
11/30/2023	337	173,774,635
November Total	N/A	14,162,176

Table 4-2Summary of GWEC Flow DataQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, North Carolina

Date	Average Extraction Flow Rate (gpm)	Cumulative Volume Extracted (gallons)
12/1/2023	335	174,259,115
12/2/2023	333	174,741,467
12/3/2023	333	175,224,635
12/4/2023	330	175,702,859
12/5/2023	326	176,176,939
12/6/2023	317	176,635,963
12/7/2023	325	177,106,139
12/8/2023	330	177,586,283
12/9/2023	331	178,068,171
12/10/2023	335	178,552,971
12/11/2023	328	179,027,611
12/12/2023	322	179,493,259
12/13/2023	307	179,943,547
12/14/2023	332	180,432,011
12/15/2023	341	180,922,619
12/16/2023	341	181,415,947
12/17/2023	346	181,917,547
12/18/2023	332	182,398,619
12/19/2023	334	182,883,835
12/20/2023	339	183,374,971
12/21/2023	345	183,875,083
12/22/2023	347	184,376,459
12/23/2023	345	184,875,515
12/24/2023	343	185,372,747
12/25/2023	344	185,869,867
12/26/2023	343	186,364,843
12/27/2023	341	186,859,371
12/28/2023	343	187,355,867
12/29/2023	344	187,854,347
12/30/2023	345	188,353,611
12/31/2023	345	188,853,643
December Total	N/A	15,079,008
Reporting Period Total	N/A	44,164,352

Notes:

1 - Flow rate measurements are collected by the manifold flow meter every 15 minutes.

2 - The cumulative volume extracted is recorded by the GWEC system flow totalizer.

3 - The monthly and reporting period totals are not applicable (N/A) for flow rate values.

4 - The flow data for October 26 is not available due to communication failure in the telemetry network. The cumulative volume extracted for this date is calculated by using the daily flow data provided by Veolia about the volume conveyed from the GWEC system to the 004 groundwater treatment plant.

GWEC - Groundwater Extraction and Conveyance

gpm - gallons per minute

Table 4-3 Extraction Well Flow Data

Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works

Fayetteville, North Carolina

	Averag	ge Extraction Flow Rat	te (gpm)	Total Volume (gal)			
Well ID	October	November	December	October	November	December	Total Reporting Period
Willis Creek (Northern A	lignment)			-			
EW-01	12.79	12.37	12.82	571,015	534,297	572,289	1,677,600
EW-02	5.92	5.72	5.91	264,068	247,011	263,961	775,041
EW-03	1.28	1.35	1.79	57,106	58,408	79,874	195,387
EW-04	0.46	0.52	0.55	20,526	22,514	24,422	67,462
EW-05	13.79	13.35	13.79	615,658	576,711 326,665	615,587	1,807,955
EW-06 EW-07	7.89	7.56	7.58	352,317 56,113	50.868	338,490 57,078	1,017,472 164,058
EW-07 EW-08	0.37	0.45	1.28	16,534	19,626	85,539	121,700
EW-08	0.00	0.00	0.00	0	0	0	0
EW-10	0.00	0.00	0.10	0	0	4,571	4,571
EW-11	0.00	0.00	0.00	0	0	84	84
EW-12	0.00	0.00	0.14	94	0	6,170	6,263
EW-13	0.54	0.49	0.53	24,159	21,176	23,758	69,094
EW-14	2.12	4.17	4.16	94,810	180,014	185,635	460,459
EW-15	0.00	0.00	0.00	0	0	0	0
Average Northern Alignment EW	3.09	3.14	3.37	N/A	N/A	N/A	N/A
Barrier Wall (Southern A	lignment)						
EW-16	2.92	0.66	0.00	130,566	28,528	0	159,094
EW-17	1.80	0.76	0.18	80,286	32,895	8,106	121,287
EW-18	1.03	1.01	1.00	45,950	43,626	44,428	134,003
EW-19	0.00	0.00	0.00	0	0	0	0
EW-20	0.29	0.32	0.31	12,949	13,725	13,982	40,656
EW-21	0.00	0.00	0.00	0	0	0	0
EW-22 EW-23	6.91	6.81	6.90	308,462	294,322	307,943	910,726
EW-23 EW-24	0.00 2.27	0.00 2.75	0.00 2.96	0 101,246	0 119,001	20 131,969	20 352,216
EW-24 EW-25	2.19	2.65	1.71	97,612	119,001	76,470	288,632
EW-26S	2.88	1.30	0.53	128,464	56,344	23,443	208,251
EW-205	4.80	4.87	4.95	214,341	210,223	220,785	645,349
EW-28	0.71	0.72	0.74	31,715	31,247	32,981	95,943
EW-29	4.29	4.40	4.45	191,688	190,012	198,702	580,401
EW-30	3.82	3.91	3.94	170,671	168,908	175,878	515,457
EW-31	7.66	7.82	7.90	341,772	337,771	352,668	1,032,212
EW-32	1.06	1.27	0.82	47,328	54,829	36,637	138,793
EW-33	1.59	1.64	1.63	70,871	71,022	72,541	214,434
EW-34	5.78	5.83	5.92	257,849	251,743	264,219	773,811
EW-35	0.00	0.00	0.00	0	0	0	0
EW-36 EW-37	7.72	7.84	7.91	344,538	338,724	352,926	1,036,188
EW-37 EW-38	0.26	1.15	2.94 16.80	11,390	49,563 629,388	131,143 749,999	192,096 2,107,789
EW-38 EW-39	16.32 1.44	14.57 1.28	1.30	728,402 64,278	55,460	58,001	177,739
EW-39 EW-40	1.44	1.28	1.30	882,461	846,156	882,412	2,611,028
EW-41	5.89	5.88	5.91	262,861	254,059	263,991	780,912
EW-42	5.48	3.92	3.95	244,503	169,279	176,388	590,170
EW-43	4.80	4.91	4.92	214,263	211,963	219,802	646,027
EW-44	0.00	0.00	0.00	0	0	0	0
EW-45	4.04	2.86	2.84	180,549	123,569	126,798	430,916
EW-46	0.00	0.00	0.00	0	0	0	0
EW-47	5.93	5.90	5.91	264,650	254,688	264,010	783,348
EW-48	0.50	0.48	0.55	22,149	20,786	24,672	67,607
EW-49	5.93	5.92	5.53	264,644	255,857	246,680	767,181
EW-50	1.97	1.97	1.97	88,144	85,063	88,094	261,301
EW-51 EW-52	3.95 5.71	3.95 5.90	3.95 5.93	176,376 255,073	170,524 254,753	176,260 264,885	523,161 774,710
EW-52 EW-53	2.22	3.66	4.41	255,073 98,946	254,753	264,885	453,887
EW-55 EW-54	1.82	2.52	2.85	98,946 81,168	108,983	196,825	317,232
EW-54 EW-55	3.95	3.93	3.93	176,421	169,749	175,518	521,688
EW-55 EW-56	5.85	5.92	5.93	261,106	255,844	264,933	781,884
EW-50 EW-57	0.00	0.00	0.00	0	0	0	0
EW-58	1.72	1.73	1.57	76,724	74,889	70,059	221,671
EW-60	0.35	0.05	0.26	15,571	2,042	11,631	29,244

Table 4-3Extraction Well Flow DataQuarterly Report #4 (Oct - Dec 2023)

Chemours Fayetteville Works

Fayetteville, North Carolina

	Averag	ge Extraction Flow Ra	Total Volume (gal)				
Well ID	October	November	December	October	November	December	Total Reporting Period
EW-61	2.16	2.30	2.05	96,392	99,411	91,418	287,220
EW-62	2.83	1.91	1.68	126,500	82,351	74,790	283,641
EW-63	10.87	10.79	10.88	485,385	466,169	485,692	1,437,246
EW-64	0.00	0.00	0.00	0	0	0	0
EW-65	0.71	0.70	0.89	31,820	30,100	39,583	101,503
EW-66	13.05	11.76	11.83	582,589	508,237	528,059	1,618,885
EW-67	31.57	31.36	31.53	1,409,350	1,354,775	1,407,692	4,171,817
EW-68	27.63	27.43	27.58	1,233,604	1,184,988	1,231,201	3,649,793
EW-69	27.60	27.35	27.60	1,232,258	1,181,703	1,231,989	3,645,950
Average Southern Alignment EW	5.13	4.99	5.04	N/A	N/A	N/A	N/A

Notes:

1 - Each well's flowmeter records flow rate every 15 minutes, including instances of no flow for pumps that are cycling as opposed to operating continuously. The calculated monthly average accounts for these instances of no flow. The values above are therefore not necessarily representative of the target flow rate setpoint for each well. gpm - gallons per minute

gal - gallons

Table 5-1004 Treatment Plant Flow DataQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, North Carolina

Date	Average Discharge Flow Rate (gpm)	Daily Volume Treated and Discharged (gallons)	Cumulative Volume Treated and Discharged (gallons)
Prior Total	N/A	151	,598,377
10/2/2023	326	468,880	152,067,257
10/3/2023	327	470,866	152,538,123
10/4/2023	346	498,607	153,036,730
10/5/2023	321	462,938	153,499,668
10/6/2023	327	470,258	153,969,926
10/7/2023	336	483,355	154,453,281
10/8/2023	319	459,575	154,912,856
10/9/2023	335	482,430	155,395,286
10/10/2023	320	460,659	155,855,945
10/11/2023	323	464,583	156,320,528
10/12/2023	383	551,937	156,872,465
10/13/2023	361	519,200	157,391,665
10/14/2023	324	466,493	157,858,158
10/15/2023	319	458,831	158,316,989
10/16/2023	349	502,437	158,819,426
10/17/2023	341	490,749	159,310,175
10/18/2023	331	476,463	159,786,638
10/19/2023	359	517,644	160,304,282
10/20/2023	325	468,523	160,772,805
10/21/2023	329	473,778	161,246,583
10/22/2023	328	472,897	161,719,480
10/23/2023	316	454,869	162,174,349
10/24/2023	293	422,550	162,596,899
10/25/2023	292	420,499	163,017,398
10/26/2023	353	509,019	163,526,417
10/27/2023	305	439,551	163,965,968
10/28/2023	314	451,523	164,417,491
10/29/2023	313	450,272	164,867,763
10/30/2023	313	451.323	165,319,086
10/31/2023	309	444,744	165,763,830
October Total	N/A	,	165,453

Table 5-1004 Treatment Plant Flow DataQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, North Carolina

Date	Average Discharge Flow Rate (gpm)	Daily Volume Treated and Discharged (gallons)	Cumulative Volume Treated and Discharged (gallons)
11/1/2023	314	452,383	166,216,213
11/2/2023	320	460,196	166,676,409
11/3/2023	323	465,133	167,141,542
11/4/2023	333	479,956	167,621,498
11/5/2023	338	486,633	168,108,131
11/6/2023	350	504,597	168,612,728
11/7/2023	324	465,927	169,078,655
11/8/2023	317	456,348	169,535,003
11/9/2023	322	464,045	169,999,048
11/10/2023	330	474,868	170,473,916
11/11/2023	318	457,820	170,931,736
11/12/2023	326	468,870	171,400,606
11/13/2023	317	455,795	171,856,401
11/14/2023	302	435,221	172,291,622
11/15/2023	320	460,511	172,752,133
11/16/2023	311	448,535	173,200,668
11/17/2023	289	416,406	173,617,074
11/18/2023	314	452,856	174,069,930
11/19/2023	315	454,125	174,524,055
11/20/2023	313	450,525	174,974,580
11/21/2023	336	484,056	175,458,636
11/22/2023	378	544,837	176,003,473
11/23/2023	397	571,435	176,574,908
11/24/2023	404	581,795	177,156,703
11/25/2023	406	584,857	177,741,560
11/26/2023	378	543,617	178,285,177
11/27/2023	340	489,986	178,775,163
11/28/2023	330	474,645	179,249,808
11/29/2023	338	486,909	179,736,717
11/30/2023	330	474,734	180,211,451
November Total	N/A	14,	447,621

Table 5-1004 Treatment Plant Flow DataQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, North Carolina

Date	Average Discharge Flow Rate (gpm)	Daily Volume Treated and Discharged (gallons)	Cumulative Volume Treated and Discharged (gallons)
12/1/2023	330	474,734	180,686,185
12/2/2023	358	516,194	181,202,379
12/3/2023	335	482,734	181,685,113
12/4/2023	326	469,785	182,154,898
12/5/2023	328	472,522	182,627,420
12/6/2023	317	456,550	183,083,970
12/7/2023	308	443,074	183,527,044
12/8/2023	313	451,344	183,978,388
12/9/2023	318	457,568	184,435,956
12/10/2023	317	456,380	184,892,336
12/11/2023	326	469,957	185,362,293
12/12/2023	301	433,196	185,795,489
12/13/2023	280	403,812	186,199,301
12/14/2023	318	458,151	186,657,452
12/15/2023	312	449,503	187,106,955
12/16/2023	421	606,697	187,713,652
12/17/2023	415	597,596	188,311,248
12/18/2023	432	621,401	188,932,649
12/19/2023	419	602,686	189,535,335
12/20/2023	430	618,775	190,154,110
12/21/2023	426	613,337	190,767,447
12/22/2023	437	628,600	191,396,047
12/23/2023	438	630,187	192,026,234
12/24/2023	429	617,065	192,643,299
12/25/2023	420	604,659	193,247,958
12/26/2023	411	592,334	193,840,292
12/27/2023	409	589,203	194,429,495
12/28/2023	417	600,614	195,030,109
12/29/2023	395	568,463	195,598,572
12/30/2023	400	575,666	196,174,238
12/31/2023	359	516,495	196,690,733
1/1/2024	353	508,195	197,198,928
December Total	N/A	,	987,477
Reporting Period Total	N/A		600,551

Notes:

1 - The 004 Treatment Plant operational data is collected and managed by Veolia.

2 - The monthly and reporting period totals are not applicable (N/A) for flow rate values.

3 - The daily volume treated and discharged is recorded on a 24-hour basis, ending daily at 1 pm. For simplicity, the volume totaled through 1 pm is shown as the daily total in this table.

Table 5-2004 Treatment Plant PFAS Analytical ResultsQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, NC

Table 3+ SOP (ng/L)	004 Influent 004-INF-1023-2 Sample Date: 3-Oct-23	004 Effluent 004-EFF-1023-2 Sample Date: 3-Oct-23	004 Influent 004-INF-1023-3 Sample Date: 10-Oct-23	004 Effluent 004-EFF-1023-3 Sample Date: 10-Oct-23	004 Influent 004-INF-1023-4 Sample Date: 17-Oct-23	004 Effluent 004-EFF-1023-4 Sample Date: 17-Oct-23	004 Influent 004-INF-1023-5 Sample Date: 24-Oct-23	004 Effluent 004-EFF-1023-5 Sample Date: 24-Oct-23	004 Influent 004-INF-1023 Sample Date: 31-Oct-23	004 Effluent 004-EFF-1023 Sample Date: 31-Oct-23
Hfpo Dimer Acid	14,000	<2.0	11,000	<2.0	19,000	<2.0	14,000 J	<2.0	13,000	<2.0
PFMOAA	76,000	<2.0	66,000	<2.0	69,000	<2.0	59,000 J	<2.0 UJ	67,000	<2.0
PFO2HxA	30,000	<2.0		-						
PFO3OA	7,500	<2.0								
PFO4DA	2,000	<2.0								
PFO5DA	490	<2.0								
РМРА	11,000	<10	9,100	<10	11,000	<10	9,100 J	<10	12,000	<10
PEPA	3,000	<20								
PS Acid	660	<2.0								
Hydro-PS Acid	460	<2.0								
R-PSDA	1,300 J	<2.0								
Hydrolyzed PSDA	13,000 J	<2.0								
R-PSDCA	17	<2.0								
NVHOS, Acid Form	1,000	<2.0								
EVE Acid	73	<2.0								
Hydro-EVE Acid	780	<2.0								
R-EVE	690 J	<2.0								
Perfluoro(2-ethoxyethane)sulfonic Acid	140	<2.0								
PFECA B	<27	<2.0								
PFECA-G	<48	<2.0								
Total Table 3+ (17 compounds) ^{1,2,3}	150,000	ND								

Notes:

1 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to two significant figures.

2 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA and R-EVE.

3 - Total Table 3+ (17 Compounds) is not applicable for the weekly sampling for only PFAS indicator compounds (HFPO-DA, PFMOAA, and PMPA).

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

UJ – Analyte not detected. Reporting limit may not be accurate or precise.

ng/L - nanograms per liter

SOP - standard operating procedure

-- - No data reported

< - Analyte not detected above associated reporting limit.

ND - No Table 3+ compounds were detected above their associated reporting limits.

Table 5-2004 Treatment Plant PFAS Analytical ResultsQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, NC

Table 3+ SOP (ng/L)	004 Influent 004-INF-1123 Sample Date: 6-Nov-23	004 Effluent 004-EFF-1123 Sample Date: 6-Nov-23	004 Influent 004-INF-1123-2 Sample Date: 13-Nov-23	004 Effluent 004-EFF-1123-2 Sample Date: 13-Nov-23	004 Influent 004-INF-1123-3 Sample Date: 20-Nov-23	004 Effluent 004-EFF-1123-3 Sample Date: 20-Nov-23	004 Influent 004-INF-1123-4 Sample Date: 27-Nov-23	004 Effluent 004-EFF-1123-4 Sample Date: 27-Nov-23
Hfpo Dimer Acid	12,000	<2.0	12,000	<2.0	13,000	<2.0	15,000	<2.0
PFMOAA	62,000	<2.0	72,000	<2.0	70,000	<2.0 UJ	54,000	<2.0 UJ
PFO2HxA	-		24,000	<2.0				-
PFO3OA	-		6,200	<2.0				-
PFO4DA	-		1,900	<2.0				
PFO5DA			540	<2.0				
РМРА	8,700	<10	10,000	<10	9,400	<10	8,800	<10
PEPA			3,000	<20				
PS Acid			610	<2.0				
Hydro-PS Acid			460	<2.0				
R-PSDA			1,200 J	<2.0				
Hydrolyzed PSDA			11,000 J	<2.0				
R-PSDCA			18	<2.0				
NVHOS, Acid Form			950	<2.0				
EVE Acid			57	<2.0				
Hydro-EVE Acid			850	<2.0				
R-EVE			620 J	<2.0				
Perfluoro(2-ethoxyethane)sulfonic Acid			3.4	<2.0				
PFECA B			<13	<2.0				
PFECA-G			<24	<2.0				
Total Table 3+ (17 compounds) ^{1,2,3}			130,000	ND				

Notes:

1 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to two significant figures.

2 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA and R-EVE.

3 - Total Table 3+ (17 Compounds) is not applicable for the weekly sampling for only PFAS indicator compounds (HFPO-DA, PFMOAA, and PMPA).

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

UJ - Analyte not detected. Reporting limit may not be accurate or precise.

ng/L - nanograms per liter

SOP - standard operating procedure

-- - No data reported

< - Analyte not detected above associated reporting limit.

ND - No Table 3+ compounds were detected above their associated reporting limits.

Table 5-2004 Treatment Plant PFAS Analytical ResultsQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville Works

Fayetteville, NC

Table 3+ SOP (ng/L)	004 Influent 004-INF-1223 Sample Date: 4-Dec-23	004 Effluent 004-EFF-1223 Sample Date: 4-Dec-23	004 Influent 004-INF-1223-2 Sample Date: 11-Dec-23	004 Effluent 004-EFF-1223-2 Sample Date: 11-Dec-23	004 Influent 004-INF-1223-3 Sample Date: 18-Dec-23	004 Effluent 004-EFF-1223-3 Sample Date: 18-Dec-23	004 Influent 004-INF-1223-4 Sample Date: 27-Dec-23	004 Effluent 004-EFF-1223-4 Sample Date: 27-Dec-23
Hfpo Dimer Acid	13,000	<2.0	11,000	<2.0	11,000	<2.0	13,000	<2.0
PFMOAA	71,000	<2.0	65,000	<2.0	49,000	<2.0 UJ	62,000	<2.0
PFO2HxA	-		25,000	<2.0				
PFO3OA			7,400	<2.0				
PFO4DA			2,000	<2.0				
PFO5DA			580	<2.0				
PMPA	10,000	<10	8,500	<10 UJ	7,300	<10 UJ	11,000	<10
PEPA			2,600	<20				
PS Acid			670	<2.0				
Hydro-PS Acid			410	<2.0				
R-PSDA			1,100 J	<2.0				
Hydrolyzed PSDA			9,200 J	<2.0				
R-PSDCA			<17	<2.0				
NVHOS, Acid Form			830	<2.0				
EVE Acid			62	<2.0				
Hydro-EVE Acid			730	<2.0				
R-EVE			490 J	<2.0				
Perfluoro(2-ethoxyethane)sulfonic Acid			<6.7	<2.0				
PFECA B			<27	<2.0				
PFECA-G			<48	<2.0				
Total Table 3+ (17 compounds) ^{1,2,3}			120,000	ND				

Notes:

1 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to two significant figures.

2 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA and R-EVE.

3 - Total Table 3+ (17 Compounds) is not applicable for the weekly sampling for only PFAS indicator compounds (HFPO-DA, PFMOAA, and PMPA).

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

UJ - Analyte not detected. Reporting limit may not be accurate or precise.

ng/L - nanograms per liter

SOP - standard operating procedure

-- - No data reported

< - Analyte not detected above associated reporting limit.

ND - No Table 3+ compounds were detected above their associated reporting limits.

Table 5-2004 Treatment Plant PFAS Analytical ResultsQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, NC

METHOD 537 MOD SOP COMPOUNDs LIST ^{1,2} (ng/L)	004 Influent 004-INF-1123-2 Sample Date: 13-Nov-23	004 Effluent 004-EFF-1123-2 Sample Date: 13-Nov-23
10:2 Fluorotelomer sulfonate	<2.0	<2.0
11Cl-PF3OUdS	<2.0	<2.0
1H,1H,2H,2H-perfluorodecanesulfonate (8:2 FTS)	<2.0	<2.0
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<2.0	<2.0
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<2.0	<2.0
2-(N-methyl perfluoro-1-octanesulfonamido)-ethanol	<4.0	<4.0
6:2 Fluorotelomer sulfonate	<5.0	<5.0
9C1-PF3ONS	<2.0	<2.0
DONA	<2.0	<2.0
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0
N-ethylperfluoro-1-octanesulfonamide	<2.0	<2.0
N-methyl perfluoro-1-octanesulfonamide	<2.0	<2.0
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0
Perfluorobutane Sulfonic Acid	<2.0	<2.0
Perfluorobutanoic Acid	170	<5.0
Perfluorodecane Sulfonic Acid	<2.0	<2.0
Perfluorodecanoic Acid	<2.0	<2.0
Perfluorododecane Sulfonic Acid (PFDoS)	<2.0	<2.0
Perfluorododecanoic Acid	<2.0	<2.0
Perfluoroheptane Sulfonic Acid (PFHpS)	<2.0	<2.0
Perfluoroheptanoic Acid	87	<2.0
Perfluorohexadecanoic Acid (PFHxDA)	<2.0	<2.0
Perfluorohexane Sulfonic Acid	<2.0	<2.0
Perfluorohexanoic Acid	33	<2.0
Perfluorononanesulfonic Acid	<2.0	<2.0
Perfluorononanoic Acid	4.5	<2.0
Perfluorooctadecanoic Acid	<2.0	<2.0
Perfluorooctane Sulfonamide	<2.0	<2.0
Perfluoropentane Sulfonic Acid (PFPeS)	<2.0	<2.0
Perfluoropentanoic Acid	640	<2.0
Perfluorotetradecanoic Acid	<2.0	<2.0
Perfluorotridecanoic Acid	<2.0	<2.0
Perfluoroundecanoic Acid	<2.0	<2.0
PFOA	19	<2.0
PFOS	<2.0	<2.0

Notes:

1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds.

2 - Sample analysis under EPA Method 537 MOD SOP is required one time per quarter.

Bold - Analyte detected above associated reporting limit.

ng/L - nanograms per liter

SOP - standard operating procedure

< - Analyte not detected above associated reporting limit.

March 2024

Table 6-1Summary of Groundwater Level InformationQuarterly Report #4 (Oct- Dec. 2023)Chemours Fayetteville WorksFayetteville, North Carolina

		Aug 1 (0.00)	Aug 14 (0.41)	Jan 27 (0.00)	Feb 25 (0.07)	Mar 26 (0.45)	April 17 (0.00)	May 20 (0.00)	Jun 18 (0.00)
Anteced	lent Daily Total Rainfall (inches):	Aug 2 (0.00)	Aug 15 (0.09)	Jan 28 (0.00)	Feb 26 (0.00)	Mar 27 (0.63)	Apr 18 (0.00)	May 21 (0.00)	Jun 19 (0.16)
		Aug 3 (0.00)	Aug 16 (0.00)	Jan 29 (0.08)	Feb 27 (0.00)	Mar 28 (0.28)	Apr 19 (0.00)	May 22 (0.00)	Jun 20 (1.11)
			0 ()		ndwater Elevation from Water L		· · · ·		
Well ID	Aquifer		Baseline		Mid-Commissioning	Post-Startup	Monthly O&M	Monthly O&M	Monthly O&M
		August 4, 2022	August 17, 2022	January 30, 2023	February 28, 2023	March 29, 2023	April 20, 2023	May 23, 2023	June 21, 2023
fillis Creak Observation Wel	lls (Northern Alignment): 18 Wells	August 4, 2022	August 17, 2022	January 50, 2025	February 28, 2023	March 29, 2023	April 20, 2025	Way 25, 2025	June 21, 2025
OW-11	Black Creek Aquifer	49.63	49.57	49.02	48.39	46.58	46.62	48.25	46.16
OW-11 OW-12	Black Creek Aquifer	34.08	34.08	34.81	31.61	29.71	30.26	29.32	29.15
OW-12 OW-13	Black Creek Aquifer	34.10	34.08	34.42	33.63	32.32	33.61	32.02	31.43
OW-13 OW-14	Black Creek Aquifer	33.62	33.47	34.67	34.09	33.11	36.60	32.97	32.08
OW-14 OW-41	Black Creek Aquifer	49.13	49.12	48.33	47.66	46.46	46.51	46.11	45.97
OW-41 OW-42	Black Creek Aquifer	47.89	47.86	47.42	46.81	45.90	45.94	45.52	45.47
OW-42 OW-43	Black Creek Aquifer	34.49	34.42	34.62	33.64	32.04	33.09	31.76	31.20
OW-43 OW-54	Black Creek Aquifer		January 24, 2023	35.87	35.00	33.45	35.90	36.19	Dry
OW-54 OW-55	Black Creek Aquifer		January 18, 2023	34.77	32.06	28.43	29.75	28.30	28.07
OW-55 OW-56	Black Creek Aquifer		January 24, 2023	36.92	36.50	36.63	37.17	35.99	36.18
OW-50 OW-57	Black Creek Aquifer		January 17, 2023	45.75	45.24	44.58	44.62	44.27	44.22
PIW-1D	Black Creek Aquifer	32.59	32.47	33.95	33.15	32.25	35.09	31.96	31.25
PIW-11	Black Creek Aquifer	43.28	43.24	43.89	43.62	43.14	43.65	42.87	42.61
PIW-12	Black Creek Aquifer	33.74	33.69	34.39	31.90	26.64	28.38	26.68	26.43
PIW-12	Black Creek Aquifer	33.66	33.60	34.20	30.68	24.95	28.16	25.74	25.00
PIW-14	Black Creek Aquifer	34.05	34.00	34.44	32.47	29.90	31.36	29.80	29.20
PIW-15	Black Creek Aquifer	32.74	32.65	33.54	32.88	32.00	33.87	31.69	31.10
SMW-12	Black Creek Aquifer	33.03	33.03	33.52	31.19	29.17	30.17	28.82	28.23
	Creek Aquifer wells)	34.07	34.03	34.72	33.64	32.29	34.48	31.99	31.25
	gradient of Barrier Wall: 19 Wells	54.07	54.05	57.72	55.04	52.2)	54.40	51.99	51.25
OW-02	Black Creek Aquifer	48.82	48.72	48.79	44.34	39.18	42.55	34.58	32.97
OW-03	Black Creek Aquifer	49.52	49.44	49.60	44.06	38.43	42.24	34.14	32.57
OW-07	Black Creek Aquifer	44.87	44.75	45.36	41.10	37.61	35.00	29.91	27.90
OW-08	Black Creek Aquifer	44.12	43.98	44.60	40.37	36.86	34.14	29.09	27.05
OW-15	Black Creek Aquifer		eptember 22, 2022	56.91	56.50	57.53	57.66	57.21	57.16
OW-17	Black Creek Aquifer	44.87	44.82	43.53	39.81	34.88	32.77	32.96	32.87
OW-18	Black Creek Aquifer	47.17	47.37	48.61	48.79	47.95	46.93	46.58	46.44
OW-19	Black Creek Aquifer	46.36	46.23	46.68	41.42	37.73	38.50	30.38	28.05
OW-21	Black Creek Aquifer	45.13	45.00	45.51	41.70	37.87	35.40	30.65	28.15
OW-24	Black Creek Aquifer	43.17	43.15	43.73	38.94	36.23	34.77	30.02	28.27
OW-26	Black Creek Aquifer	55.22	55.16	54.84	53.79	45.67	44.05	42.50	40.15
OW-29	Black Creek Aquifer	59.58	59.54	59.14	58.57	51.34	49.72	47.54	45.62
OW-31	Black Creek Aquifer	60.44	60.41	60.07	59.43	47.00	50.58	42.85	41.55
OW-34	Surficial Aquifer	62.98	62.81	62.03	64.53	66.36	67.30	67.50	67.41
OW-35	Surficial Aquifer	66.33	66.10	65.67	65.71	65.45	68.18	68.35	68.35
OW-36	Surficial Aquifer	62.72	62.61	62.07	61.85	61.64	61.48	61.51	61.52
OW-37	Surficial Aquifer		· · ·		Well Installed .		Ļ		
OW-38	Black Creek Aquifer	Well Installed S	eptember 22, 2022	61.93	61.94	61.64	61.60	61.45	61.40
OW-51	Black Creek Aquifer		. ,		Well Installed .				
	Creek Aquifer wells)	46.77	46.80	48.70	44.20	38.81	42.40	34.36	32.92
	cial Aquifer wells)	62.98	62.81	62.07	64.53	65.45	67.30	67.50	67.41

Table 6-1 Summary of Groundwater Level Information Quarterly Report #4 (Oct- Dec. 2023) Chemours Fayetteville Works Fayetteville, North Carolina

		Jul 17 (0.00)	Aug. 15 (0.09)	Sep. 18 (0.00)	Oct. 27 (0.00)	Nov. 25 (0.00)	Dec. 17 (3.34)		
Antece	dent Daily Total Rainfall (inches):	Jul 18 (0.00)	Aug. 16 (0.00)	Sept. 19 (0.00)	Oct 28. (0.00)	Nov. 26 (0.06)	Dec. 18 (0.04)	Most Recent Calculated Head	
		Jul 19 (0.00)	Aug. 17 (0.00)	Sept. 20 (0.00)	Oct. 29 (0.00)	Nov. 27 (0.03)	Dec. 19 (0.00)	Differential	Change in Magnitude of Head
				Indwater Elevation from Water I				(feet, positive value indicates	Differential
Well ID	Aquifer	Monthly O&M	Monthly O&M	Monthly O&M	Monthly O&M	Monthly O&M	Monthly O&M	drawdown)	
wentib		July 20, 2023	August 18, 2023	September 21, 2023	October 30, 2023	November 28, 2023	December 20, 2023	December 20 vs. January 30, 2023	December 20 vs November 28, 2023
Villis Creek Observation Wel	ls (Northern Alignment): 18 Wells	oury 20, 2025	Mugust 10, 2020	September 21, 2023	000001 50, 2025	100000000000000000000000000000000000000	Detember 20, 2025	Detember 20 vs. Sandary 50, 2025	
OW-11	Black Creek Aquifer	45.98	45.89	45.82	45.80	45.63	46.82	2.20	1.19
OW-12	Black Creek Aquifer	29.08	28.95	29.39	29.10	29.19	31.32	3.49	2.13
OW-13	Black Creek Aquifer	31.50	31.20	31.54	31.32	31.04	32.25	2.17	1.21
OW-14	Black Creek Aquifer	32.76	32.05	32.22	31.59	31.36	32.42	2.25	1.06
OW-41	Black Creek Aquifer	45.78	45.69	45.64	45.66	45.45	45.59	2.74	0.14
OW-42	Black Creek Aquifer	45.27	45.15	45.16	45.12	44.95	45.17	2.25	0.22
OW-43	Black Creek Aquifer	31.13	31.14	31.49	31.55	31.44	31.69	2.93	0.25
OW-54	Black Creek Aquifer	Dry	Dry	Dry	Dry	Dry	Dry	N/A	N/A
OW-55	Black Creek Aquifer	27.97	27.80	28.60	28.05	28.20	28.12	6.65	0.08
OW-56	Black Creek Aquifer	35.89	35.74	36.01	35.89	36.09	Not Gauged	N/A	N/A
OW-57	Black Creek Aquifer	44.07	43.92	43.95	43.92	43.78	44.12	1.63	0.34
PIW-1D	Black Creek Aquifer	32.06	31.27	31.51	30.96	30.75	32.07	1.88	1.32
PIW-11	Black Creek Aquifer	43.10	42.70	42.96	42.57	42.61	43.34	0.55	0.73
PIW-12	Black Creek Aquifer	26.36	26.17	27.27	26.54	26.73	28.96	5.43	2.23
PIW-13	Black Creek Aquifer	25.21	25.38	26.70	26.48	26.70	27.26	6.94	0.56
PIW-14	Black Creek Aquifer	28.98	29.45	30.02	29.98	29.93	30.10	4.34	0.17
PIW-15	Black Creek Aquifer	31.50	31.01	31.29	30.85	30.59	32.85	0.69	2.26
SMW-12	Black Creek Aquifer	27.97	Not Gauged	Not Gauged	28.42	28.64	28.70	4.82	0.06
Median (Black	Creek Aquifer wells)	31.50	31.24	31.53	31.32	31.04	32.16	2.50	0.64
Dbservation Wells <200 ft Upg	gradient of Barrier Wall: 19 Wells		•			•		·	
OW-02	Black Creek Aquifer	32.29	33.10	33.95	34.55	34.62	34.25	14.54	0.37
OW-03	Black Creek Aquifer	32.56	32.79	33.62	34.29	34.34	33.94	15.66	0.40
OW-07	Black Creek Aquifer	25.40	25.73	28.39	29.50	29.80	29.90	15.46	0.10
OW-08	Black Creek Aquifer	25.50	24.85	27.61	28.75	29.06	29.14	15.46	0.08
OW-15	Black Creek Aquifer	57.14	57.23	57.21	57.31	57.28	57.06	-0.15	0.22
OW-17	Black Creek Aquifer	32.90	32.87	32.90	33.17	32.82	32.72	10.81	0.10
OW-18	Black Creek Aquifer	46.42	46.44	46.56	46.43	46.25	46.71	1.90	0.46
OW-19	Black Creek Aquifer	26.48	25.83	28.36	29.53	29.78	29.67	17.01	0.11
OW-21	Black Creek Aquifer	26.50	25.75	28.68	30.08	30.43	30.51	15.00	0.08
OW-24	Black Creek Aquifer	26.97	26.15	27.54	28.27	28.43	28.54	15.19	0.11
OW-26	Black Creek Aquifer	39.08	40.15	41.05	42.33	42.07	41.99	12.85	0.08
OW-29	Black Creek Aquifer	44.64	43.90	43.68	44.69	44.43	44.27	14.87	0.16
OW-31	Black Creek Aquifer	40.60	39.98	40.08	40.55	40.02	39.79	20.28	0.23
OW-34	Surficial Aquifer	67.45	67.36	67.57	67.82	67.64	67.53	-5.50	0.11
OW-35	Surficial Aquifer	68.73	68.55	68.58	68.40	68.32	68.34	-2.67	0.02
OW-36	Surficial Aquifer	61.51	61.71	61.66	62.01	61.91	62.01	0.06	0.10
OW-37	Surficial Aquifer	57.38	57.27	57.30	57.02	56.61	56.79	N/A	0.18
OW-38	Black Creek Aquifer	61.22	61.28	61.45	61.82	61.89	61.90	0.03	0.01
OW-51	Black Creek Aquifer	26.21	25.17	26.36	27.14	27.45	27.61	N/A	0.16
Median (Black	Creek Aquifer wells)	32.56	32.87	33.62	34.29	34.34	33.94	14.94	0.11
Median (Surfi	icial Aquifer wells)	64.48	64.54	64.62	64.92	64.78	64.77	-2.67	0.10

Table 6-1Summary of Groundwater Level InformationQuarterly Report #4 (Oct- Dec. 2023)Chemours Fayetteville WorksFayetteville, North Carolina

		Aug 1 (0.00)	Aug 14 (0.41)	Jan 27 (0.00)	Feb 25 (0.07)	Mar 26 (0.45)	April 17 (0.00)	May 20 (0.00)	Jun 18 (0.00)
Antecea	lent Daily Total Rainfall (inches):	Aug 2 (0.00)	Aug 15 (0.09)	Jan 28 (0.00)	Feb 26 (0.00)	Mar 27 (0.63)	Apr 18 (0.00)	May 21 (0.00)	Jun 19 (0.16)
		Aug 3 (0.00)	Aug 16 (0.00)	Jan 29 (0.08)	Feb 27 (0.00)	Mar 28 (0.28)	Apr 19 (0.00)	May 22 (0.00)	Jun 20 (1.11)
				Grou	ndwater Elevation from Water	Level Gauging Events (feet, NAV	· · · ·		
Well ID	Aquifer		Baseline		Mid-Commissioning	Post-Startup	Monthly O&M	Monthly O&M	Monthly O&M
		August 4, 2022	August 17, 2022	January 30, 2023	February 28, 2023	March 29, 2023	April 20, 2023	May 23, 2023	June 21, 2023
rvation Walls < 200 ft Da	wngradient of Barrier Wall: 21 Well	0	rugust 17, 2022	oundury 00, 2020	1 cortairy 20, 2020	March 29, 2020	ripin 20, 2020	1111y 20, 2020	oune 21, 2020
OW-04/04R	Black Creek Aquifer	59.45	59.42			Well Abandoned; Replacemen	t Well Installed July 31, 2023		
OW-09/09R	Black Creek Aquifer	59.61	59.57			Well Abandoned; Replacement			
OW-20	Black Creek Aquifer	46.34	46.24	46.53	41.54	39.35	37.91	38.39	38.49
OW-22	Black Creek Aquifer	43.95	43.89	44.50	40.94	37.53	37.36	38.41	38.55
OW-22 OW-23	Black Creek Aquifer	43.27	43.18	43.86	39.75	36.73	35.88	38.31	38.36
OW-25	Black Creek Aquifer	41.95	41.90	42.52	39.00	36.50	35.77	38.62	38.36
OW-32	Black Creek Aquifer					l August 2, 2023			
OW-39	Black Creek Aquifer					l August 1, 2023			
OW-44	Black Creek Aquifer	36.51	36.31	36.28	36.94	36.34	37.41	36.06	35.28
OW-45	Black Creek Aquifer	44.39	44.20	44.78	45.24	40.05	39.93	39.10	38.82
OW-46	Black Creek Aquifer	46.28	46.20	46.59	41.41	38.85	37.88	38.35	38.50
OW-47	Black Creek Aquifer	43.84	43.72	44.33	40.45	36.98	37.05	38.18	38.32
OW-48	Black Creek Aquifer	43.11	43.06	43.69	39.33	36.40	35.29	38.24	38.27
OW-49	Black Creek Aquifer	42.13	42.06	42.67	38.83	36.23	35.42	38.43	38.34
OW-50	Black Creek Aquifer	41.42	41.35	42.01	41.78	35.37	36.17	39.50	39.33
OW-52	Black Creek Aquifer				Well Installed	l August 2, 2023			•
OW-53	Black Creek Aquifer				Well Installed	October 11, 2023			
PIW-4D	Black Creek Aquifer	43.59	43.45	43.90	46.26	39.89	39.88	38.90	38.65
PIW-5S/5SR	Surficial Aquifer	59.70	59.52	58.82	56.31	Replaced on April 12, 2023	54.13	53.15	53.37
PW-10R/10RR	Black Creek Aquifer	47.78	47.62	47.99	42.18	Replaced on April 12, 2023	41.20	38.52	38.39
PIW-10DR	Black Creek Aquifer			Not	Gauged (Interim Remedy Location	on; Pump Removed by August 23, 20	023)	•	•
Median (Black G	Creek Aquifer wells)	43.84	43.72	43.90	40.94	36.86	37.36	38.41	38.39
ervation Wells >200 ft Do	wngradient of Barrier Wall: 14 Well	ls							
LTW-02	Black Creek Aquifer	42.97	42.80	43.50	45.36	40.01	39.97	38.94	38.71
LTW-03	Floodplain	38.05	37.93	39.27	38.48	36.95	37.85	36.70	36.40
LTW-05	Black Creek Aquifer	41.24	41.20	41.93	38.69	36.30	35.71	37.89	37.86
OW-16	Black Creek Aquifer	35.39	35.24	36.69	36.49	35.86	37.27	35.34	34.59
OW-27	Black Creek Aquifer	41.16	41.12	41.70	41.36	36.09	36.80	39.35	39.21
OW-28	Black Creek Aquifer	40.04	40.01	40.63	40.43	38.16	38.86	39.04	39.00
OW-30	Black Creek Aquifer	40.38	40.33	40.98	39.55	36.80	37.91	38.94	38.95
OW-33	Black Creek Aquifer	40.42	40.39	41.07	39.89	37.45	38.32	39.29	39.34
OW-40	Black Creek Aquifer	40.58	40.53	40.66	40.68	40.09	40.86	40.13	40.15
PIW-3D	Black Creek Aquifer	35.39	35.26	36.61	36.39	35.97	37.14	35.36	34.67
PIW-7S	Floodplain	42.28	42.16	43.03	39.55	36.56	35.79	37.74	37.80
PIW-7D	Black Creek Aquifer	43.18	43.10	43.78	39.98	36.96	36.36	38.38	38.45
PW-11	Black Creek Aquifer		1			on; Pump Removed by August 23, 20			•
PZ-22	Black Creek Aquifer	43.24	43.15	43.81	40.36	37.28	36.89	38.21	38.37
Median (Black C	Creek Aquifer wells)	40.58	40.53	41.07	39.98	36.96	37.27	38.94	38.71

Table 6-1 Summary of Groundwater Level Information Quarterly Report #4 (Oct- Dec. 2023) Chemours Fayetteville Works Fayetteville, North Carolina

		Jul 17 (0.00)	Aug. 15 (0.09)	Sep. 18 (0.00)	Oct. 27 (0.00)	Nov. 25 (0.00)	Dec. 17 (3.34)		
Anteced	ent Daily Total Rainfall (inches):	Ju1 18 (0.00)	Aug. 16 (0.00)	Sept. 19 (0.00)	Oct 28. (0.00)	Nov. 26 (0.06)	Dec. 18 (0.04)	Most Recent Calculated Head	
		Jul 19 (0.00)	Aug. 17 (0.00)	Sept. 20 (0.00)	Oct. 29 (0.00)	Nov. 27 (0.03)	Dec. 19 (0.00)	Differential	Change in Magnitude of Head
				ndwater Elevation from Water	Level Gauging Events (feet, NA			 (feet, positive value indicates drawdown) 	Differential
Well ID	Aquifer	Monthly O&M	Monthly O&M	Monthly O&M	Monthly O&M	Monthly O&M	Monthly O&M		
		July 20, 2023	August 18, 2023	September 21, 2023	October 30, 2023	November 28, 2023	December 20, 2023	December 20 vs. January 30, 2023	December 20 vs November 28, 2023
servation Wells <200 ft Dow	ngradient of Barrier Wall: 21 We	,	114gust 10, 2020	september 21, 2020	00000000,2020		200000000000000		
OW-04/04R	Black Creek Aquifer	Replaced July 31, 2023	52.03	40.33	40.27	40.12	40.28	N/A	0.16
OW-09/09R	Black Creek Aquifer	Replaced August 1, 2023	40.33	40.33	40.27	40.12	40.28	N/A	0.16
OW-20	Black Creek Aquifer	39.03	38.44	38.57	38.04	37.75	38.23	8.30	0.48
OW-20	Black Creek Aquifer	39.08	38.58	38.63	38.12	37.83	38.23	6.27	0.40
OW-22 OW-23	Black Creek Aquifer	38.80	38.28	38.33	37.83	37.64	38.19	5.67	0.55
OW-25	Black Creek Aquifer	38.36	37.89	37.99	37.61	37.54	38.47	4.05	0.93
OW-32	Black Creek Aquifer	Replaced August 2, 2023	38.45	38.75	39.03	38.49	38.27	N/A	0.22
OW-32 OW-39	Black Creek Aquifer	Replaced August 1, 2023	40.36	40.42	40.32	40.20	40.35	N/A N/A	0.15
OW-44	Black Creek Aquifer	35.38	34.63	34.18	33.79	33.58	33.69	2.59	0.11
OW-45	Black Creek Aquifer	39.78	38.50	38.85	38.07	38.01	39.10	5.68	1.09
OW-46	Black Creek Aquifer	39.03	38.42	38.55	37.95	37.75	38.22	8.37	0.47
OW-47	Black Creek Aquifer	38.87	38.32	38.38	37.87	37.58	37.99	6.34	0.41
OW-48	Black Creek Aquifer	38.64	38.13	38.17	37.74	37.55	38.12	5.57	0.57
OW-49	Black Creek Aquifer	38.36	37.88	37.99	37.61	37.54	38.43	4.24	0.89
OW-50	Black Creek Aquifer	39.48	39.00	39.13	38.75	38.60	39.20	2.81	0.60
OW-52	Black Creek Aquifer	Replaced August 2, 2023	38.01	38.06	37.56	37.26	37.69	N/A	0.43
OW-53	Black Creek Aquifer		Well Installed October 11, 2023		37.96	37.74	38.08	N/A	0.34
PIW-4D	Black Creek Aquifer	39.64	38.30	38.67	37.85	37.83	38.95	4.95	1.12
PIW-5S/5SR	Surficial Aquifer	53.54	53.25	53.30	Dry	Dry	Dry	N/A	N/A
PW-10R/10RR	Black Creek Aquifer	39.19	38.32	38.52	35.00	37.82	38.57	9.42	0.75
PIW-10DR	Black Creek Aquifer	Not Gauged (Interim Pumping)	41.50	41.31	41.05	40.62	41.31	N/A	0.17
	reek Aquifer wells)	39.03	38.42	38.57	37.96	37.79	38.35	5.67	0.45
	ngradient of Barrier Wall: 14 We		50.12	50.57	57.50	51.17	50.55	5.67	0.15
LTW-02	Black Creek Aquifer	39.67	38.31	38.71	37.89	37.89	39.13	4.37	1.24
LTW-03	Floodplain	36.53	36.05	35.91	35.80	35.55	36.03	3.24	0.48
LTW-05	Black Creek Aquifer	38.02	37.46	37.57	37.22	37.14	38.39	3.54	1.25
OW-16	Black Creek Aquifer	34.94	34.17	33.79	33.41	33.06	33.68	3.01	0.62
OW-27	Black Creek Aquifer	39.32	38.85	38.94	38.62	38.49	39.05	2.65	0.56
OW-28	Black Creek Aquifer	38.99	38.99	38.69	38.32	38.26	39.08	1.55	0.82
OW-30	Black Creek Aquifer	39.17	Not Gauged	38.87	38.64	38.52	Not Gauged	N/A	N/A
OW-33	Black Creek Aquifer	39.44	Not Gauged	39.17	38.97	38.87	Not Gauged	N/A	N/A
OW-40	Black Creek Aquifer	40.23	Not Gauged	40.08	40.00	39.88	Not Gauged	N/A	N/A
PIW-3D	Black Creek Aquifer	35.07	34.32	33.97	33.53	33.25	33.95	2.66	0.70
PIW-7S	Floodplain	38.28	37.61	37.77	37.22	37.10	37.79	5.24	0.69
PIW-7D	Black Creek Aquifer	38.88	38.33	38.42	37.95	37.73	38.31	5.47	0.58
PW-11	Black Creek Aquifer	Not Gauged (In		40.61	40.51	40.37	40.56	N/A	0.19
PZ-22	Black Creek Aquifer	38.85	38.33	38.43	37.85	37.65	38.12	5.69	0.47
	reek Aquifer wells)	38.99	38.32	38.70	38.14	38.08	38.39	3.28	0.62

Table 6-1Summary of Groundwater Level InformationQuarterly Report #4 (Oct- Dec. 2023)Chemours Fayetteville WorksFayetteville, North Carolina

		Aug 1 (0.00)	Aug 14 (0.41)	Jan 27 (0.00)	Feb 25 (0.07)	Mar 26 (0.45)	April 17 (0.00)	May 20 (0.00)	Jun 18 (0.00)			
Antece	dent Daily Total Rainfall (inches):	Aug 2 (0.00)	Aug 15 (0.09)	Jan 28 (0.00)	Feb 26 (0.00)	Mar 27 (0.63)	Apr 18 (0.00)	May 21 (0.00)	Jun 19 (0.16)			
		Aug 3 (0.00)	Aug 16 (0.00)	Jan 29 (0.08)	Feb 27 (0.00)	Mar 28 (0.28)	Apr 19 (0.00)	May 22 (0.00)	Jun 20 (1.11)			
			•	Grou	Indwater Elevation from Water L	evel Gauging Events (feet, NA	VD88)					
Well ID	Aquifer		Baseline		Mid-Commissioning	Post-Startup	Monthly O&M	Monthly O&M	Monthly O&M			
		August 4, 2022	August 17, 2022	January 30, 2023	February 28, 2023	March 29, 2023	April 20, 2023	May 23, 2023	June 21, 2023			
vation Wells >200 ft U	pgradient of Barrier Wall/Willis Cree	k Alignments: 11 Wells										
BCA-01	Black Creek Aquifer			Not	Gauged (Interim Remedy Location	Pump Removed by August 23, 2	2023)					
BCA-02	Black Creek Aquifer		Not Gauged (Interim Remedy Location; Pump Removed by August 23, 2023)									
NAF-11B	Surficial Aquifer			Not	Gauged (Interim Remedy Location	Pump Removed by August 23, 2	2023)					
PIW-2D	Black Creek Aquifer	58.08	57.94	57.64	57.59	57.67	57.74	57.64	57.42			
PW-02	Surficial Aquifer	87.27	87.00	85.32	85.09	84.85	84.73	84.40	83.13			
PW-03	Surficial Aquifer	104.95	104.87	104.39	104.45	104.24	104.33	104.42	104.38			
PW-04	Surficial Aquifer	68.40	68.33	67.49	68.36	68.55	68.55	68.72	68.43			
PW-14	Black Creek Aquifer		·	Not	Gauged (Interim Remedy Location	Pump Removed by August 23, 2	2023)					
PW-15R	Black Creek Aquifer			Not	Gauged (Interim Remedy Location	Pump Removed by August 23, 2	2023)					
SMW-03B	Black Creek Aquifer	89.92	89.71	87.73	87.47	87.19	87.03	86.79	86.60			
SMW-09	Surficial Aquifer	82.14	82.03	80.43	80.26	80.12	79.20	79.71	79.93			
Median (Surf	icial Aquifer wells)	84.71	84.52	82.88	82.68	82.49	81.97	82.06	81.53			
Median (Black	Creek Aquifer wells)	74.00	73.83	72.69	72.53	72.43	72.39	72.22	72.01			

Table 6-1 Summary of Groundwater Level Information Quarterly Report #4 (Oct- Dec. 2023) Chemours Fayetteville Works Fayetteville, North Carolina

		Jul 17 (0.00)	Aug. 15 (0.09)	Sep. 18 (0.00)	Oct. 27 (0.00)	Nov. 25 (0.00)	Dec. 17 (3.34)		
Anteced	ent Daily Total Rainfall (inches):	Ju1 18 (0.00)	Aug. 16 (0.00)	Sept. 19 (0.00)	Oct 28. (0.00)	Nov. 26 (0.06)	Dec. 18 (0.04)	Most Recent Calculated Head	
		Jul 19 (0.00)	Aug. 17 (0.00)	Sept. 20 (0.00)	Oct. 29 (0.00)	Nov. 27 (0.03)	Dec. 19 (0.00)	Differential (feet, positive value indicates	Change in Magnitude of Head Differential
			Grou	undwater Elevation from Water	Level Gauging Events (feet, NA	VD88)		drawdown)	Differential
Well ID	Aquifer	Monthly O&M	Monthly O&M	Monthly O&M	Monthly O&M	Monthly O&M	Monthly O&M	7	
	Γ	July 20, 2023	August 18, 2023	September 21, 2023	October 30, 2023	November 28, 2023	December 20, 2023	December 20 vs. January 30, 2023	December 20 vs November 28, 2023
Observation Wells >200 ft Upg	adient of Barrier Wall/Willis Creek	k Alignments: 11 Wells							
BCA-01	Black Creek Aquifer	Not Gauged (I	nterim Pumping)	80.01	79.65	79.77	79.63	N/A	0.14
BCA-02	Black Creek Aquifer	Not Gauged (I	Not Gauged (Interim Pumping)		70.63	70.35	69.96	N/A	0.39
NAF-11B	Surficial Aquifer	Not Gauged (I	Not Gauged (Interim Pumping)		Dry	Dry	Dry	N/A	N/A
PIW-2D	Black Creek Aquifer	57.34	57.29	57.19	56.94	56.78	57.04	0.60	0.26
PW-02	Surficial Aquifer	83.93	83.71	83.53	83.41	83.38	83.34	1.98	0.04
PW-03	Surficial Aquifer	104.35	102.09	Not Gauged	104.38	104.08	103.66	0.73	0.42
PW-04	Surficial Aquifer	69.13	69.45	70.79	70.10	69.28	68.77	-1.28	0.51
PW-14	Black Creek Aquifer	Not Gauged (I	nterim Pumping)	Not Gauged	81.55	81.42	81.25	N/A	0.17
PW-15R	Black Creek Aquifer	Not Gauged (I	nterim Pumping)	68.92	68.57	68.84	68.76	N/A	0.08
SMW-03B	Black Creek Aquifer	86.35	86.23	86.05	85.90	85.75	85.57	2.16	0.18
SMW-09	Surficial Aquifer	79.75	79.75	79.68	79.45	79.55	79.45	0.98	0.10
Median (Surfic	ial Aquifer wells)	81.84	81.73	79.68	81.43	81.47	81.40	0.86	0.26
Median (Black C	Median (Black Creek Aquifer wells) 71.85			74.47	75.14	75.06	74.80	1.38	0.17

Notes:

1 - As noted above, wells OW-30, OW-33, OW-40, and OW-56 were not gauged in the December 20 event. This was because access to OW-30, OW-33, and OW-40 at the William O. Huske Lock and Dam was not feasible and the OW-56 area was flooded.

2 - For comparison and calculation of head differentials, elevation data for replacement wells (OW-04R, OW-09R, PIW-5SR, and PW-10RR) has been merged with the corresponding original wells. Since the replacement wells were not installed in exactly the same location as the originals, some spatial variation might exist.

							N	lass Loading Model Sam	pling Program (Quarte	rly)						
		LI	W-01			LI	W-02			LT	W-03			LI	rw-04	
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	CAP1Q23-LTW-01- 021623 Sample Date: 16-Feb-23	CAP2Q23-LTW-01- 051723 Sample Date: 17-May-23	CAP3Q23-LTW-01- 071323 Sample Date: 13-Jul-23	CAP4Q23-LTW-01- 110323 Sample Date: 3-Nov-23	CAP1Q23-LTW-02- 021623 Sample Date: 16-Feb-23	CAP2Q23-LTW-02- 051723 Sample Date: 17-May-23	CAP3Q23-LTW-02- 071223 Sample Date: 12-Jul-23	CAP4Q23-LTW-02- 110323 Sample Date: 3-Nov-23	CAP1Q23-LTW-03- 022123 Sample Date: 21-Feb-23	CAP2Q23-LTW-03- 052323 Sample Date: 23-May-23	CAP3Q23-LTW-03- 071223 Sample Date: 12-Jul-23	CAP4Q23-LTW-03- 111323 Sample Date: 13-Nov-23	CAP1Q23-LTW-04- 021723 Sample Date: 17-Feb-23	CAP2Q23-LTW-04- 052323 Sample Date: 23-May-23	CAP3Q23-LTW-04- 071123 Sample Date: 11-Jul-23	CAP4Q23-LTW-04- 110223 Sample Date: 2-Nov-23
Hfpo Dimer Acid	18,000	18,000	8,500	15,000	2,800	7,000	6,800 J	9,800	11,000	10,000	8,600	5,800 J	18,000	19,000	9,800 J	17,000
PFMOAA	23,000	21,000	27,000	24,000	9,300	17,000	31,000	27,000	120,000	120,000	140,000 J	110,000 J	55,000	55,000	57,000 J	61,000
PFO2HxA	23,000	21,000	28,000	25,000	4,800	10,000	22,000	21,000	34,000	41,000	49,000 J	24,000 J	23,000	28,000	29,000	26,000
PFO3OA	5,700	5,300	6,400	5,700	1,100	1,900	3,700	4,100	5,800	6,700	7,600	5,900	4,400	5,200	5,200	5,300
PFO4DA	1,300	1,500	1,600	1,300	86	120	180	160	200	220	230	240	630	620	780	650
PFO5DA	170	170	200	210	<78	<78	<2.0	<100	<78	<78	<2.0	<2.0	<78	<78	26	<100
РМРА	16,000	16,000	19,000	18,000	1,800	5,700	11,000	11,000	14,000	15,000	16,000	18,000	17,000	16,000	20,000	17,000
PEPA	5,900	5,700	7,200	6,200	580	1,800	3,600	3,500	3,400	3,500	3,600	3,700	6,400	6,000	6,900	6,100
PS Acid	<20	<20	<2.0	<40	<20	<20	<2.0	<40	<20	<20	<2.0	<2.0	<20	<20	5	<40
Hydro-PS Acid	310	300	280	280	<6.1	15	17	<44	<6.1	28	26	26	170	210	190	180
R-PSDA	960 J	<71	940 J	790 J	<71	<71	620 J	520 J	1,000 J	950 J	900 J	870 J	2,000 J	1,700 J	1,700 J	1,700 J
Hydrolyzed PSDA	560 J	690 J	760 J	590 J	270 J	<38	1,300 J	1,500 J	7,100 J	5,800 J	5,900 J	6,500 J	4,200 J	2,300 J	3,000 J	3,800 J
R-PSDCA	<17	<17	6.9	<140	<17	<17	<3.0	<140	<17	<17	<3.0	<3.0	<17	<17	12	<140
NVHOS, Acid Form	390	440	320	430	160	300	320	410	1,300	1,300	1,900	1,400	1,300	1,200	1,400	1,100
EVE Acid	<17	<17	<2.0	<40	<17	<17	<2.0	<40	<17	<17	<2.0	<2.0	<17	<17	<2.0	<40
Hydro-EVE Acid	160	140	150	140	<14	38	39	42	71	64	63	56	500	390	540	470
R-EVE	550 J	580 J	560 J	530 J	<72	<72	260 J	410 J	520 J	430 J	150 J	180 J	2,000 J	1,500 J	1,300 J	1,700 J
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7	<6.7	<2.0	<29	<6.7	<6.7	<2.0	<29	<6.7	<6.7	6.1	6	<6.7	<6.7	8.2	<29
PFECA B	<27	<27	<2.0	<62	<27	<27	<2.0	<62	<27	<27	<2.0	<2.0	<27	<27	<2.0	<62
PFECA-G	<48	<48	<2.0	<29	<48	<48	<2.0	<29	<48	<48	<2.0	<2.0	<48	<48	<2.0	<29
PFPrA			14,000	14,000			11,000	13,000			37,000	38,000 J			29,000	30,000
Total Table 3+ (17 compounds) ^{2,3}	93,900	89,600	98,700	96,300	20,600	43,900	78,700	77,000	190,000	198,000	227,000	169,000	126,000	132,000	131,000	135,000
Total Table 3+ (18 compounds) ^{2,4}	-	-	113,000	110,000	-	-	89,700	90,000	-	-	264,000	207,000	-	-	160,000	165,000
Total Table 3+ (21 compounds) ^{2,5}	-		115,000	112,000		-	91,800	92,400	-	-	271,000	215,000			166,000	172,000

Notes:
1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the 3Q 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list.
2 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to three significant figures.
3 - Total Table 3+ (17 compounds) does not include R-PSDA, Hydrolyzed PSDA, R-EVE, and PFPrA.
4 - Total Table 3+ (18 compounds) is the sum of all Table 3+ PFAS compounds.
Bold - Analyte detected above associated reporting limit.
J - Analyte detected. Reported value may not be accurate or precise.
ng/L - nanograms per liter
SOP - standard operating procedure
UJ - Analyte not detected. Reporting limit may not be accurate or precise.
-- No data reported

							М	lass Loading Model Sam	pling Program (Quarte	rly)						
		LI	W-05		1	OV	V-28			OV	V-33			PI	W-1D	
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	CAP1Q23-LTW-05- 021523 Sample Date: 15-Feb-23	CAP2Q23-LTW-05- 052223 Sample Date: 22-May-23	CAP3Q23-LTW-05- 071123 Sample Date: 11-Jul-23	CAP4Q23-LTW-05- 110223 Sample Date: 2-Nov-23	CAP1Q23-OW-28- 022023 Sample Date: 20-Feb-23	CAP2Q23-OW-28- 052523 Sample Date: 25-May-23	CAP3Q23-OW-28- 071123 Sample Date: 11-Jul-23	CAP4Q23-OW-28- 110223 Sample Date: 2-Nov-23	CAP1Q23-OW-33- 021423 Sample Date: 14-Feb-23	CAP2Q23-OW-33- 051823 Sample Date: 18-May-23	CAP3Q23-OW-33- 071223 Sample Date: 12-Jul-23	CAP4Q23-OW-33- 110223 Sample Date: 2-Nov-23	CAP1Q23-PIW-1D- 021623 Sample Date: 16-Feb-23	CAP2Q23-PIW-1D- 052323 Sample Date: 23-May-23	CAP3Q23-PIW-1D- 080223 Sample Date: 2-Aug-23	CAP4Q23-PIW-1D- 110723 Sample Date: 7-Nov-23
Hfpo Dimer Acid	18,000	19,000 J	9,000	18,000	4,800	4,800	4,400	4,400	5,300	5,000	4,000	4,900	9,800	9,900	9,200 J	8,800
PFMOAA	120,000	130,000 J	120,000 J	170,000	1,500	1,900	1,600	1,600	7,900	8,400	11,000	9,800	12,000	12,000	11,000 J	9,900
PFO2HxA	36,000	48,000 J	41,000 J	58,000	2,500	3,500	3,400	3,100	4,700	4,300	6,500	5,900	8,800	11,000	9,900 J	12,000
PFO3OA	8,300	11,000 J	9,500	14,000	510	670	550	680	810	840	1,100	1,100	1,500	1,700	1,600	1,700
PFO4DA	2,100	2,100 J	2,000	1,900	110	83	94	120	<59	<59	71	66	430	440	410	430
PFO5DA	<78	<78 UJ	<2.0	<100	<78	<78	<2.0	<100	<78	<78	<2.0	<100	<78	<78	<100	<100
PMPA	4,000	4,600 J	4,200	5,500	5,000	6,400	5,200	6,000	4,800	5,200	6,100	6,000	7,800	9,000	9,600 J	8,600
PEPA	620	530 J	440	510	1,900	2,500	1,800	2,200	2,000	1,800	2,300	2,200	2,600	3,000	3,200	3,100
PS Acid	<20	<20 UJ	<2.0	<40	<20	<20	<2.0	<40	<20	<20	8	<40	<20	<20	<40	<40
Hydro-PS Acid	190	190 J	200	200	75	74	75	75	29	53	43	<44	87	98	86	76
R-PSDA	490 J	670 J	500 J	950 J	340 J	310 J	250 J	230 J	280 J	<71	290 J	250 J	330 J	380 J	370 J	320 J
Hydrolyzed PSDA	880 J	1,100 J	950 J	1,900 J	<38	<38	2.2 J	<27 UJ	<38	<38	58 J	61 J	<38	<38	<27	<27
R-PSDCA	19	<17 UJ	17	<140	<17	<17	<3.0	<140	<17	<17	<3.0	<140	<17	<17	<140	<140
NVHOS, Acid Form	1,100	1,300 J	1,000	1,500	110	<15	31	<130	170	240	130	140	190	160	150 J	140
EVE Acid	<17	<17 UJ	<2.0	<40	<17	<17	<2.0	<40	<17	<17	<2.0	<40	<17	<17	<40	<40
Hydro-EVE Acid	750	720 J	720	770	<14	<14	5.1	<24	<14	<14	14	<24	31	<14	29	28
R-EVE	610 J	760 J	610 J	1,200 J	190 J	180 J	380 J	140 J	130 J	<72	220 J	170 J	190 J	200 J	280 J	220 J
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7	<6.7 UJ	11	<29	<6.7	<6.7	<2.0	<29	<6.7	<6.7	<2.0	<29	<6.7	<6.7	<29	<29
PFECA B	<27	<27 UJ	<2.0	<62	<27	<27	<2.0	<62	<27	<27	<2.0	<62	<27	<27	<62	<62
PFECA-G	<48	<48 UJ	<2.0	<29	<48	<48	<2.0	<29	<48	<48	<2.0	<29	<48	<48	<29	<29
PFPrA			52,000 J	68,000			3,500	3,500			5,400	6,000			7,800	7,500
otal Table 3+ (17 compounds) ^{2,3}	191,000	217,000	188,000	270,000	16,500	19,900	17,200	18,200	25,700	25,800	31,300	30,100	43,200	47,300	45,200	44,800
otal Table 3+ (18 compounds) ^{2,4}			240,000	338,000			20,700	21,700			36,700	36,100	-		53,000	52,300
otal Table 3+ (21 compounds) ^{2,5}			242,000	342,000			21,300	22,000			37,200	36,600			53,600	52,800

Notes:
1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the 3Q 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list.
2 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to three significant figures.
3 - Total Table 3+ (17 compounds) does not include R-PSDA, Hydrolyzed PSDA, R-EVE, and PFPrA.
4 - Total Table 3+ (18 compounds) is the sum of all Table 3+ PFAS compounds.
Bold - Analyte detected above associated reporting limit.
J - Analyte detected. Reported value may not be accurate or precise.
ng/L - nanograms per liter
SOP - standard operating procedure
UJ - Analyte not detected. Reporting limit may not be accurate or precise.
-- No data reported

							M	lass Loading Model Sam	pling Program (Quarter	rly)						
		PIV	V-1S			PIV	V-3D			PIV	W-7D			PI	W-7S	
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	CAP1Q23-PIW-1S- 021623 Sample Date: 16-Feb-23	Not Sampled in 2Q 2023 (Dry)	Not Sampled in 3Q 2023 (Dry)	Not Sampled in 4Q 2023 (Dry)	CAP1Q23-PIW-3D- 021623 Sample Date: 16-Feb-23	CAP2Q23-PIW-3D- 051723 Sample Date: 17-May-23	CAP3Q23-PIW-3D- 071323 Sample Date: 13-Jul-23	CAP4Q23-PIW-3D- 110323 Sample Date: 3-Nov-23	CAP1Q23-PIW-7D- 021523 Sample Date: 15-Feb-23	CAP2Q23-PIW-7D- 052223 Sample Date: 22-May-23	CAP3Q23-PIW-7D- 071123 Sample Date: 11-Jul-23	CAP4Q23-PIW-7D- 110223 Sample Date: 2-Nov-23	CAP1Q23-PIW-7S- 021523 Sample Date: 15-Feb-23	CAP2Q23-PIW-7S- 052223 Sample Date: 22-May-23	CAP3Q23-PIW-78- 071123 Sample Date: 11-Jul-23	CAP4Q23-PIW-78 110223 Sample Date: 2-Nov-23
Hfpo Dimer Acid	7,400				12,000	12,000	9,700	12,000	17,000	8,800 J	9,600 J	13,000	15,000	12,000 J	8,000	12,000
PFMOAA	2,000				9,400	8,500	13,000	19,000	140,000	130,000 J	140,000 J	150,000	18,000	16,000 J	15,000	17,000
PFO2HxA	4,700				12,000	10,000	16,000	19,000	47,000	37,000 J	42,000 J	43,000	13,000	12,000 J	11,000	12,000
PFO3OA	900				2,200	2,100	3,100	4,000	9,200	5,900 J	6,800	6,100	5,100	3,800 J	2,800	4,300
PFO4DA	440				940	800	890	1,200	1,700	1,100 J	890	1,000	660	440 J	350	420
PFO5DA	<78				130	<78	160	200	<78	<78 UJ	<2.0	<100	<78	<78 UJ	19	<100
PMPA	4,400				9,500	8,800	12,000	13,000	5,100	4,500 J	4,300	5,200	11,000	7,900 J	6,900	9,200
PEPA	1,900				3,700	3,400	4,500	4,700	1,100	950 J	950	1,000	4,500	3,300 J	2,500	3,400
PS Acid	<20				<20	<20	<2.0	<40	<20	<20 UJ	<2.0	<40	<20	<20 UJ	<2.0	<40
Hydro-PS Acid	210				240	200	240	290	180	98 J	110	110	340	270 J	220	250
R-PSDA	<71				520 J	<71	610 J	750 J	710 J	470 J	460 J	510 J	1,200 J	960 J	710 J	910 J
Hydrolyzed PSDA	<38				<38	<38	15 J	300 J	1,200 J	740 J	890 J	1,100 J	<38	63 J	110 J	60 J
R-PSDCA	<17				<17	<17	4.7	<140	<17	<17 UJ	7.3	<140	<17	<17 UJ	5.4	<140
NVHOS, Acid Form	<15				190	290	170	310	1,200	990 J	1,100	1,200	830	630 J	520	690
EVE Acid	<17				<17	<17	<2.0	<40	<17	<17 UJ	<2.0	<40	<17	<17 UJ	<2.0	<40
Hydro-EVE Acid	62				72	70	74	100	610	330 J	360	360	650	460 J	360	430
R-EVE	180 J				220 J	<72	280 J	420 J	870 J	550 J	560 J	680 J	1,400 J	1,000 J	820 J	1,200 J
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7				<6.7	<6.7	<2.0	<29	12	<6.7 UJ	8.5	<29	<6.7	<6.7 UJ	3.3	<29
PFECA B	<27				<27	<27	<2.0	<62	<27	<27 UJ	<2.0	<62	<27	<27 UJ	<2.0	<62
PFECA-G	<48				<48	<48	<2.0	<29	<48	<48 UJ	<2.0	<29	<48	<48 UJ	<2.0	<29
PFPrA							11,000	13,000			49,000 J	52,000			9,700	12,000
Total Table 3+ (17 compounds) ^{2,3}	22,000				50,400	46,200	59,800	73,800	223,000	190,000	206,000	221,000	69,100	56,800	47,700	59,700
Fotal Table 3+ (18 compounds) ^{2,4}				-			70,800	86,800		-	255,000	273,000			57,400	71,700
Total Table 3+ (21 compounds) ^{2,5}							71,700	88,300	-		257,000	275,000			59,000	73,900

Notes:
1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the 3Q 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list.
2 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to three significant figures.
3 - Total Table 3+ (17 compounds) does not include R-PSDA, Hydrolyzed PSDA, R-EVE, and PFPrA.
4 - Total Table 3+ (18 compounds) is the sum of all Table 3+ PFAS compounds.
Bold - Analyte detected above associated reporting limit.
J - Analyte detected. Reported value may not be accurate or precise.
ng/L - nanograms per liter
SOP - standard operating procedure
UJ - Analyte not detected. Reporting limit may not be accurate or precise.
-- No data reported

TR0795C

					М	ass Loading Model Sar	npling Program (Quarter	ly)				
		PW	V-04		[P	Z-22		T	SN	IW-12	
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	CAP1Q23-PW-04- 022323 Sample Date: 23-Feb-23	CAP2Q23-PW-04- 052523 Sample Date: 25-May-23	CAP3Q23-PW-04- 072823 Sample Date: 28-Jul-23	CAP4Q23-PW-04- 110923 Sample Date: 9-Nov-23	CAP1Q23-PZ-22- 022023 Sample Date: 20-Feb-23	CAP2Q23-PZ-22- 052323 Sample Date: 23-May-23	CAP3Q-PZ-22-071123 Sample Date: 11-Jul-23	CAP4Q23-PZ-22- 110223 Sample Date: 2-Nov-23	CAP1Q23-SMW-12- 022323 Sample Date: 23-Feb-23	CAP2Q23-SMW-12- 051723 Sample Date: 17-May-23		CAP4Q23-SMW-12- 110823 Sample Date: 8-Nov-23
Hfpo Dimer Acid	730	980	950	670	13,000	12,000	7,300 J	11,000	1,500	1,900	2,200	1,900
PFMOAA	300	490	380	300	140,000	150,000	140,000	170,000	2,900	5,100	5,800	8,300
PFO2HxA	640	1,100	1,000	930	38,000	49,000	50,000	47,000	1,200	1,900	3,500	4,200
PFO3OA	330	520	520	340	3,600	5,400	4,800	5,400	78	150	230	420
PFO4DA	63	95	120	100	120	270	240	210	<59	<59	<36	<40
PFO5DA	<78	<78	<100	<100	<78	<78	<2.0	<100	<78	<78	<91	<100
PMPA	860	1,200	1,200	950	5,000	6,200	6,100	6,700	2,300	2,900	2,600	1,700
PEPA	330	440	480	320	1,200	1,500	1,600	1,500	460	550	620	340
PS Acid	<20	<20	<40	<40	<20	<20	3.1	<40	<20	<20	<36	<40
Hydro-PS Acid	22	<6.1	<44	<44	28	36	35	<44	<6.1	<6.1	<40	<44
R-PSDA	160 J	150 J	78 J	<28	540 J	560 J	540 J	510 J	150 J	<71	87 J	76 J
Hydrolyzed PSDA	<38	<38	<27	<27	890 J	1,000 J	1,100 J	1,600 J	<38	<38	<25	<27
R-PSDCA	<17	<17	<140	<140	<17	<17	3.2	<140	<17	<17	<130	<140
NVHOS, Acid Form	<15	<15	<130	<130	1,100	1,300	1,500	1,200	48	<15	<120	<130
EVE Acid	<17	<17	<40	<40	<17	<17	<2.0	<40	<17	<17	<36	<40
Hydro-EVE Acid	<14	<14	<24	<24	46	84	79	73	<14	<14	<22	<24
R-EVE	<72	86 J	49 J	66 J	450 J	430 J	220 J	420 J	97 J	<72	69 J	67 J
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7	<6.7	<29	<29	<6.7	<6.7	6.3	<29	<6.7	<6.7	<26	<29
PFECA B	<27	<27	<62	<62	<27	<27	<2.0	<62	<27	<27	<56	<62
PFECA-G	<48	<48	<29	<29	<48	<48	<2.0	<29	<48	<48	<26	<29
PFPrA			900	960			48,000	51,000		-	3,900	4,600
Total Table 3+ (17 compounds) ^{2,3}	3,280	4,830	4,650	3,610	202,000	226,000	212,000	243,000	8,490	12,500	15,000	16,900
Total Table 3+ (18 compounds) ^{2,4}	-		5,550	4,570		-	260,000	294,000			18,900	21,500
Total Table 3+ (21 compounds) ^{2.5}			5,680	4,640		-	262,000	297,000	-		19,000	21,600

Notes:
1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the 3Q 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list.
2 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to three significant figures.
3 - Total Table 3+ (17 compounds) does not include R-PSDA, Hydrolyzed PSDA, R-EVE, and PFPrA.
4 - Total Table 3+ (18 compounds) is the sum of all Table 3+ PFAS compounds.
Bold - Analyte detected above associated reporting limit.
J - Analyte detected. Reported value may not be accurate or precise.
mg/L - anograms per liter
SOP - standard operating procedure
UI - Analyte not detected. Reporting limit may not be accurate or precise.
-- No data reported

-- - No data reported
 -- - Analyte not detected above associated reporting limit.

Page 4 of 16

			Performa	nce Monitoring Plan Sar	npling Program (Semi-A	nnually) ^[4]		
						•/		
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	OW-4R CAP3Q23-OW-4R- 080423 Sample Date: 4-Aug-23	CAP1Q23-OW-30- 021523 Sample Date: 15-Feb-23	V-30 CAP3Q23-OW-30- 071323 Sample Date: 13-Jul-23	OW-32 CAP3Q23-OW-32- 090823 Sample Date: 8-Sep-23	OW-37 CAP3Q23-OW-37- 081023 Sample Date: 10-Aug-23	CAP1Q23-OW-40- 021523 Sample Date: 15-Feb-23	V-40 CAP3Q23-OW-40- 071323 Sample Date: 13-Jul-23	OW-51 CAP3Q23-OW-51- 080323 Sample Date: 3-Aug-23
Hfpo Dimer Acid	11,000	9,500	6,200	580	4,000 J	5,200	3,300	33,000
PFMOAA	42,000	32,000	27,000	1,800	15,000 J	6,900	7,000	140,000
PFO2HxA	17,000	12,000	11,000	790	5,900 J	4,200	4,700	64,000
PF030A	5,400	2,100	1,700	130	2,600 J	1,100	1,400	23,000
PFO4DA	1,800	<59	8.9	<40	3,900 J	130	170	4,800
PFO5DA	<100	<78	<2.0	<100	140 J	<78	<2.0	<100
PMPA	8,600	4,300	4,400	260	2,000 J	4,300	4,400	9,400
PEPA	2,700	1,300	1,300	83	580 J	1,600	1,900	1,900
PS Acid	<40	<20	<2.0	<40	<40 UJ	<20	<2.0	<40
Hydro-PS Acid	290	<6.1	<2.0	<44	370 J	35	44	660
R-PSDA	760 J	460 J	330 J	44 J	1,500 J	<71	200 J	1,900 J
Hydrolyzed PSDA	3,100 J	760 J	570 J	100 J	1,200 J	160 J	130 J	4,300 J
R-PSDCA	<140	<17	<3.0	<140	<140 UJ	<17	<3.0	<140
NVHOS, Acid Form	580	370	220	<130	170 J	130	90	1,800
EVE Acid	<40	<17	<2.0	<40	<40 UJ	<17	<2.0	<40
Hydro-EVE Acid	1,100	24	12	<24	120 J	94	99	2,400
R-EVE	630 J	410 J	290 J	36 J	390 J	170 J	240 J	2,600 J
Perfluoro(2-ethoxyethane)sulfonic Acid	<29	<6.7	<2.0	<29	<29 UJ	<6.7	<2.0	<29
PFECA B	<62	<27	<2.0	<62	<62 UJ	<27	<2.0	<62
PFECA-G	<29	<48	<2.0	<29	<29 UJ	<48	<2.0	<29
PFPrA	17,000		12,000	640	5,200 J		3,700	60,000
Total Table 3+ (17 compounds) ^{2,3}	90,500	61,600	51,800	3,640	34,800	23,700	23,100	281,000
Total Table 3+ (18 compounds) ^{2.4}	107,000		63,800	4,280	40,000	-	26,800	341,000
Total Table 3+ (21 compounds) ^{2,5}	112,000		65,000	4,460	43,100		27,400	350,000

 Notes:

 1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the 3Q 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list.

 2 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to three significant figures.

 3 - Total Table 3+ (17 compounds) does not include R-PSDA, Hydrolyzed PSDA, Re-EVE, and PFPrA.

 4 - Total Table 3+ (21 compounds) does not include R-PSDA, Hydrolyzed PSDA, and R-EVE.

 5 - Total Table 3+ (21 compounds) is the sum of all Table 3+ PFAS compounds.

 6 - Wells OW-4R, OW-32, OW-37, and OW-51 were installed between late June 2023 and August 2023, so were unavailable for sampling before 3Q 2023.

 Bold - Analyte detected. Reported value may not be accurate or precise.

 ng/L - nanograms per liter

 SOP - standard operating procedure

 UI - Analyte not detected. Reporting limit may not be accurate or precise.

 -- No data reported

			Perform	nce Monitoring Plan Sa	mpling Program (Semi-	Annually)		
	OW	V-54	OV	/-55	OW	/-56	OV	/-57
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	CAP1Q23-OW-54- 021623 Sample Date: 16-Feb-23	Not Sampled in 3Q 2023 (Dry)	CAP1Q23-OW-55- 021623 Sample Date: 16-Feb-23	CAP3Q23-OW-55- 072523 Sample Date: 25-Jul-23	CAP1Q23-OW-56- 022123 Sample Date: 21-Feb-23	CAP3Q23-OW-56- 073123 Sample Date: 31-Jul-23	CAP1Q23-OW-57- 021523 Sample Date: 15-Feb-23	CAP3Q23-OW-57- 073123 Sample Date: 31-Jul-23
Hfpo Dimer Acid	4,500		1,800	1,800	4,200	3,300	11,000	11,000
PFMOAA	360		220	300	350	520	130,000	130,000
PFO2HxA	2,600		690	940	1,800	2,100	36,000	37,000
PFO3OA	410		58	<89	200	260	8,600	7,700
PFO4DA	230		<59	<40	<59	<40	1,100	1,000
PFO5DA	<78		<78	<100	<78	<100	<78	<100
РМРА	2,600		2,800	3,800	2,600	2,800	22,000	21,000
PEPA	1,000		740	890	990	1,100	5,100	4,700
PS Acid	<20		<20	<40	<20	<40	770	360
Hydro-PS Acid	120		<6.1	<44	120	150	220	260
R-PSDA	<71		<71	140 J	310 J	150 J	970 J	1,200 J
Hydrolyzed PSDA	<38		<38	<27	<38	<27	16,000 J	14,000 J
R-PSDCA	<17		<17	<140	<17	<140	17	<140
NVHOS, Acid Form	<15		<15	<130	110	<130	2,000	2,400
EVE Acid	<17		<17	<40	<17	<40	<17	<40
Hydro-EVE Acid	<14		<14	<24	<14	<24	200	210
R-EVE	<72		160 J	180 J	190 J	120 J	240 J	180 J
Perfluoro(2-ethoxyethane)sulfonic Acid	<6.7		<6.7	<29	<6.7	<29	<6.7	<29
PFECA B	<27		<27	<62	<27	<62	<27	<62
PFECA-G	<48		<48	<29	<48	<29	<48	<29
PFPrA				1,800		1,400	-	28,000
Total Table 3+ (17 compounds) ^{2,3}	11,800		6,310	7,730	10,400	10,200	217,000	216,000
Total Table 3+ (18 compounds) ^{2,4}	-			9,530		11,600		244,000
Total Table 3+ (21 compounds) ^{2,5}	-			9,850		11,900		259,000

Notes:
1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the 3Q 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list.
2 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to three significant figures.
3 - Total Table 3+ (17 compounds) does not include R-PSDA, Hydrolyzed PSDA, R-EVE, and PFPrA.
4 - Total Table 3+ (18 compounds) is the sum of all Table 3+ PFAS compounds.
Bold - Analyte detected above associated reporting limit.
J - Analyte detected. Reported value may not be accurate or precise.
m/L - Analyte not detected. Reporting limit may not be accurate or precise.
-- No data reported

	Performance Monitoring Plan Sampling Program (Semi-Annually)												
	PIW-4D	PIW-5SR	PIW-68	PIW-8D	PIW-10DR	PIW-10S	PIW-11	PIW-15	PW-10RR	PW-11			
	CAP3Q23-PIW-4D-	CAP3Q23-PIW-5SR-	CAP3Q23-PIW-68-	CAP3Q23-PIW-8D-	CAP3Q23-PIW-10DR-	CAP3Q23-PIW-108-	CAP3Q23-PIW-11-	CAP3Q23-PIW-15-	CAP3Q23-PW-10RR-	CAP3Q23-PW-11-			
METHOD 537 MOD SOP COMPOUNDs LIST ¹	071323 Sample Date:	080423 Sample Date:	071223 Sample Date:	071123 Sample Date:	071423 Sample Date:	071323 Sample Date:	073123 Sample Date:	072523 Sample Date:	080323 Sample Date:	070723 Sample Date:			
(ng/L)	13-Jul-23	4-Aug-23	12-Jul-23	11-Jul-23	14-Jul-23	13-Jul-23	31-Jul-23	25-Jul-23	3-Aug-23	7-Jul-23			
Hfpo Dimer Acid	140	24,000	8,400	12,000 J	6,600	3,800	3,500	7,800	6,700	6,900			
PFMOAA	1,300	44,000	150,000 J	72,000 J	51,000 J	3,700	1,600	8,700	93,000	54,000 J			
PFO2HxA	470	28,000	61,000 J	34,000 J	19,000	4,400	2,600	7,000	26,000	28,000			
PFO3OA	47	7,000	5,500	14,000	5,800	800	420	1,200	1,300	7,300			
PFO4DA	<2.0	2,200	200	2,300	1,500	340	46	65	<40	4,500			
PFO5DA	<2.0	690	<2.0	<2.0	4.0	6.8	<100	<100	<100	1,600			
PMPA	150	32,000	16,000	8,600	6,600	4,500	3,100	8,400	4,400	7,800			
PEPA	37	15,000	3,400	2,500	2,400	2,100	1,000	2,400	590	2,200			
PS Acid	<2.0	40	<2.0	<2.0	<2.0	<2.0	<40	<40	<40	1,400			
Hydro-PS Acid	<2.0	140	25	350	210	67	<44	<44	<44	840			
R-PSDA	8.9 J	1,600 J	820 J	1,000 J	690 J	160 J	240 J	250 J	180 J	850 J			
Hydrolyzed PSDA	25 J	1,700 J	4,100 J	2,600 J	2,700 J	<2.0	1,500 J	<27	220 J	7,900 J			
R-PSDCA	<3.0	<140	<3.0	25	9.9	<3.0	<140	<140	<140	24			
NVHOS, Acid Form	11	640	1,800	1,100	390	62	<130	130	850	850			
EVE Acid	<2.0	<40	<2.0	<2.0	<2.0	<2.0	<40	<40	<40	47			
Hydro-EVE Acid	<2.0	190	54	1,200	910	14	<24	<24	<24	620			
R-EVE	6.2 J	1,300 J	230 J	1,300 J	250 J	230 J	130 J	200 J	240 J	360 J			
Perfluoro(2-ethoxyethane)sulfonic Acid	<2.0	<29	7.1	13	3.9	<2.0	<29	<29	<29	<2.0			
PFECA B	<2.0	<62	<2.0	<2.0	<2.0	<2.0	<62	<62	<62	<2.0			
PFECA-G	<2.0	<29	<2.0	<2.0	<2.0	<2.0	<29	<29	<29	<2.0			
PFPrA	550	29,000	50,000 J	34,000	17,000	3,100	2,000	9,000	39,000	17,000			
Total Table 3+ (17 compounds) ^{2,3}	2,160	154,000	246,000	148,000	94,400	19,800	12,300	35,700	133,000	116,000			
Total Table 3+ (18 compounds) ^{2,4}	2,710	183,000	296,000	182,000	111,000	22,900	14,300	44,700	172,000	133,000			
Fotal Table 3+ (21 compounds) ^{2,5}	2,750	188,000	302,000	187,000	115,000	23,300	16,100	45,100	172,000	142,000			

Notes:
1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the 3Q 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list.
2 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to three significant figures.
3 - Total Table 3+ (17 compounds) does not include R-PSDA, Hydrolyzed PSDA, R-EVE, and PFPrA.
4 - Total Table 3+ (18 compounds) is the sum of all Table 3+ PFAS compounds.
Bold - Analyte detected above associated reporting limit.
J - Analyte detected. Reported value may not be accurate or precise.
mg/L - anograms per liter
SOP - standard operating procedure
UI - Analyte not detected. Reporting limit may not be accurate or precise.
-- No data reported

	Correc	tive Action Plan Sampling Program (A	nnually)
	PIW-12	PIW-13	PIW-14
	CAP3Q23-PIW-12-072423	CAP3Q23-PIW-13-072423	CAP3Q23-PIW-14-072423
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	Sample Date: 24-Jul-23	Sample Date: 24-Jul-23	Sample Date: 24-Jul-23
Hfpo Dimer Acid	1,800	3,100	6,200
PFMOAA	490	520	1,000
PFO2HxA	1,200	2,100	3,800
PFO3OA	190	250	520
PFO4DA	41	<40	160
PFO5DA	<100	<100	<100
PMPA	2,300	4,200	5,000
PEPA	640	1,100	1,600
PS Acid	<40	<40	<40
Hydro-PS Acid	<44	<44	<44
R-PSDA	130 J	260 J	310 J
Hydrolyzed PSDA	<27	<27	<27
R-PSDCA	<140	<140	<140
NVHOS, Acid Form	<130	<130	<130
EVE Acid	<40	<40	<40
Hydro-EVE Acid	<24	<24	<24
R-EVE	130 J	260 J	230 J
Perfluoro(2-ethoxyethane)sulfonic Acid	<29	<29	<29
PFECA B	<62	<62	<62
PFECA-G	<29	<29	<29
PFPrA	1,700	2,800	4,300
Fotal Table 3+ (17 compounds) ^{2,3}	6,660	11,300	18,300
°otal Table 3+ (18 compounds) ^{2,4}	8,360	14,100	22,600
Fotal Table 3+ (21 compounds) ^{2,5}	8,620	14,600	23,100

Notes:
1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the 3Q 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list.
2 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to three significant figures.
3 - Total Table 3+ (17 compounds) does not include R-PSDA, Hydrolyzed PSDA, R-EVE, and PFPrA.
4 - Total Table 3+ (18 compounds) is the sum of all Table 3+ PFAS compounds.
Bold - Analyte detected above associated reporting limit.
J - Analyte detected. Reported value may not be accurate or precise.
ng/L - nanograms per liter
SOP - standard operating procedure
UJ - Analyte not detected. Reporting limit may not be accurate or precise.
--- No data reported

	Mass Loading Model Sampling Program (Quarterly)															
		LT	W-01		1	LT	W-02			LT	W-03		[L	ГW-04	
	CAP1023-LTW-01-	CAP2O23-LTW-01-		CAP4O23-LTW-01-	CAP1023-LTW-02-	CAP2O23-LTW-02-		CAP4O23-LTW-02-	CAP1023-LTW-03-	CAP2O23-LTW-03-		CAP4O23-LTW-03-	CAP1023-LTW-04-	CAP2O23-LTW-04-		CAP4O23-LTW-04-
	021623	051723	071323	110323	021623	051723	071223	110323	022123	052323	071223	111323	021723	052323	071123	110223
METHOD 537 MOD SOP COMPOUNDs LIST ¹	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:
(ng/L)	16-Feb-23	17-May-23	13-Jul-23	3-Nov-23	16-Feb-23	17-May-23	12-Jul-23	3-Nov-23	21-Feb-23	23-May-23	12-Jul-23	13-Nov-23	17-Feb-23	23-May-23	11-Jul-23	2-Nov-23
10:2 Fluorotelomer sulfonate	<2.0	<2.0 UJ	<2.0	<67	<2.0	<2.0 UJ	<2.0	<67	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<67
11Cl-PF3OUdS	<2.0	<2.0 UJ	<2.0	<32	<2.0	<2.0 UJ	<2.0	<32	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<32
1H,1H,2H,2H-perfluorodecanesulfonate (8:2 FTS)	<2.0	<2.0 UJ	<2.0	<46	<2.0	<2.0 UJ	<2.0	<46	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<46
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<2.0	<2.0 UJ	<2.0	<24	<2.0	<2.0 UJ	<2.0	<24	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<24
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<2.0	<2.0 UJ	<2.0	<85	<2.0	<2.0 UJ	<2.0	<85	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<85
2-(N-methyl perfluoro-1-octanesulfonamido)-ethanol	<4.0	<4.0 UJ	<4.0	<140	<4.0	<4.0 UJ	<4.0	<140	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<140
6:2 Fluorotelomer sulfonate	<5.0	<5.0 UJ	<5.0	<250	<5.0	<5.0 UJ	<5.0	<250	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250
9C1-PF3ONS	<2.0	<2.0 UJ	<2.0	<24	<2.0	<2.0 UJ	<2.0	<24	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<24
DONA	<2.0	<2.0 UJ	<2.0	<40	<2.0	<2.0 UJ	<2.0	<40	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<40
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0 UJ	<5.0	<130	<5.0	<5.0 UJ	<5.0	<130	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<130
N-ethylperfluoro-1-octanesulfonamide	<2.0	<2.0 UJ	<2.0	<87	<2.0	<2.0 UJ	<2.0	<87	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<87
N-methyl perfluoro-1-octanesulfonamide	<2.0	<2.0 UJ	<2.0	<43	<2.0	<2.0 UJ	<2.0	<43	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<43
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0 UJ	<5.0	<120	<5.0	<5.0 UJ	<5.0	<120	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<120
Perfluorobutane Sulfonic Acid	4.2	4.7 J	3.6	<20	<2.0	<2.0 UJ	<2.0	<20	<2.0	<2.0	<2.0	<2.0	<2.0	2.2	<2.0	<20
Perfluorobutanoic Acid	170	110 J	120	<240	30	61 J	86	<240	130	120	130	120	310	230	290	330
Perfluorodecane Sulfonic Acid	<2.0	<2.0 UJ	<2.0	<32	<2.0	<2.0 UJ	<2.0	<32	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<32
Perfluorodecanoic Acid	<2.0	<2.0 UJ	<2.0	<31	<2.0	<2.0 UJ	<2.0	<31	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<31
Perfluorododecane Sulfonic Acid (PFDoS)	<2.0	<2.0 UJ	<2.0	<97	<2.0	<2.0 UJ	<2.0	<97	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<97
Perfluorododecanoic Acid	<2.0	<2.0 UJ	<2.0	<55	<2.0	<2.0 UJ	<2.0	<55	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<55
Perfluoroheptane Sulfonic Acid (PFHpS)	<2.0	<2.0 UJ	<2.0	<19	<2.0	<2.0 UJ	<2.0	<19	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<19
Perfluoroheptanoic Acid	46	48 J	44	47 J	4.7	11 J	11	<25	26	28	25	24	66	52	60	60
Perfluorohexadecanoic Acid (PFHxDA)	<2.0	<2.0 UJ	<2.0	<89	<2.0	<2.0 UJ	<2.0	<89	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<89
Perfluorohexane Sulfonic Acid	6	6.3 J	5.2	<57	<2.0	<2.0 UJ	<2.0	<57	<2.0	<2.0	<2.0	<2.0	<2.0	3.3	<2.0	<57
Perfluorohexanoic Acid	22	23 J	23	<58	3.3	8.4 J	11	<58	16	17	16	17	35	33	34	<58
Perfluorononanesulfonic Acid	<2.0	<2.0 UJ	<2.0	<37	<2.0	<2.0 UJ	<2.0	<37	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<37
Perfluorononanoic Acid	<2.0	2.3 J	<2.0	<27	<2.0	<2.0 UJ	<2.0	<27	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.7
Perfluorooctadecanoic Acid	<2.0	<2.0 UJ	<2.0	<94	<2.0	<2.0 UJ	<2.0	<94	<2.0	<2.0	<2.0	<120 UJ	<2.0	<2.0	<2.0	<94
Perfluorooctane Sulfonamide	<2.0	<2.0 UJ	<2.0	<98	<2.0	<2.0 UJ	<2.0	<98	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<98
Perfluoropentane Sulfonic Acid (PFPeS)	<2.0	<2.0 UJ	<2.0	<30	<2.0	<2.0 UJ	<2.0	<30	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<30
Perfluoropentanoic Acid	320	250 J	260	330	99	190 J	250	300	600	690	750	610	1,200	1,100	1.400	1.200
Perfluorotetradecanoic Acid	<2.0	<2.0 UJ	<2.0	<73	<2.0	<2.0 UJ	<2.0	<73	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<73
Perfluorotridecanoic Acid	<2.0	<2.0 UJ	<2.0	<130	<2.0	<2.0 UJ	<2.0	<130	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<130
Perfluoroundecanoic Acid	<2.0	<2.0 UJ	<2.0	<110	<2.0	<2.0 UJ	<2.0	<110	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<110
PFOA	41	49 J	39	<85	<2.0	<2.0 UJ	<2.0	<85	<2.0	<2.0	<2.0	<2.0	10	11	10	<85
PFOS	99.1	22 J	11 J	<54	<2.0	<2.0 UJ	<2.0	<54	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<54

	Mass Loading Model Sampling Program (Quarterly)															
		LT	W-05		[0)	W-28			0	N-33			PIV	W-1D	
	CAP1023-LTW-05-			CAP4Q23-LTW-05-	CAP1023-OW-28-	CAP2Q23-OW-28-	CAP3Q23-OW-28-	CAP4Q23-OW-28-	CAP1023-OW-33-	CAP2Q23-OW-33-	CAP3Q23-OW-33-	CAP4Q23-OW-33-	CAP1Q23-PIW-1D-	CAP2Q23-PIW-1D-	CAP3O23-PIW-1D-	CAP4O23-PIW-1D-
	021523	052223	071123	110223	022023	052523	071123	110223	021423	051823	071223	110223	021623	052323	080223	110723
METHOD 537 MOD SOP COMPOUNDs LIST ¹	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:
(ng/L)	15-Feb-23	22-May-23	11-Jul-23	2-Nov-23	20-Feb-23	25-May-23	11-Jul-23	2-Nov-23	14-Feb-23	18-May-23	12-Jul-23	2-Nov-23	16-Feb-23	23-May-23	2-Aug-23	7-Nov-23
10:2 Fluorotelomer sulfonate	<2.0	<2.0	<2.0	<67	<2.0	<2.0	<2.0	<67	<2.0	<2.0 UJ	<2.0	<67	<2.0	<2.0	<67	<67
11Cl-PF3OUdS	<2.0	<2.0	<2.0	<32	<2.0	<2.0	<2.0	<32	<2.0	<2.0 UJ	<2.0	<32	<2.0	<2.0	<32	<32
1H,1H,2H,2H-perfluorodecanesulfonate (8:2 FTS)	<2.0	<2.0	<2.0	<46	<2.0	<2.0	<2.0	<46	<2.0	<2.0 UJ	<2.0	<46	<2.0	<2.0	<46	<46
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<2.0	<2.0	<2.0	<24	<2.0	<2.0	<2.0	<24	<2.0	<2.0 UJ	<2.0	<24	<2.0	<2.0	<24 UJ	<24
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<2.0	<2.0	<2.0	<85	<2.0	<2.0	<2.0	<85	<2.0	<2.0 UJ	<2.0	<85	<2.0	<2.0	<85	<85
2-(N-methyl perfluoro-1-octanesulfonamido)-ethanol	<4.0	<4.0	<4.0	<140	<4.0	<4.0	<4.0	<140	<4.0	<4.0 UJ	<4.0	<140	<4.0	<4.0	<140	<140
6:2 Fluorotelomer sulfonate	<5.0	<5.0	<5.0	<250	<5.0	<5.0	<5.0	<250	<5.0	<5.0 UJ	<5.0	<250	<5.0	<5.0	<250	<250
9C1-PF3ONS	<2.0	<2.0	<2.0	<24	<2.0	<2.0	<2.0	<24	<2.0	<2.0 UJ	<2.0	<24	<2.0	<2.0	<24	<24
DONA	<2.0	<2.0	<2.0	<40	<2.0	<2.0	<2.0	<40	<2.0	<2.0 UJ	<2.0	<40	<2.0	<2.0	<40	<40
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0	<5.0	<130	<5.0	<5.0	<5.0	<130	<5.0	<5.0 UJ	<5.0	<130	<5.0	<5.0	<130	<130
N-ethylperfluoro-1-octanesulfonamide	<2.0	<2.0	<2.0	<87	<2.0	<2.0	<2.0	<87	<2.0	<2.0 UJ	<2.0	<87	<2.0	<2.0	<87 UJ	<87
N-methyl perfluoro-1-octanesulfonamide	<2.0	<2.0	<2.0	<43	<2.0	<2.0	<2.0	<43	<2.0	<2.0 UJ	<2.0	<43	<2.0	<2.0	<43	<43
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0	<5.0	<120	<5.0	<5.0	<5.0	<120	<5.0	<5.0 UJ	<5.0	<120	<5.0	<5.0	<120	<120
Perfluorobutane Sulfonic Acid	<2.0	<2.0	<2.0	<20	<2.0	2	<2.0	<20	<2.0	<2.0 UJ	<2.0	<20	<2.0	<2.0	<20	<20
Perfluorobutanoic Acid	230	170	170	270	51	51	46	<240	45	60 J	62	<240	83	59	<240	<240
Perfluorodecane Sulfonic Acid	<2.0	<2.0	<2.0	<32	<2.0	<2.0	<2.0	<32	<2.0	<2.0 UJ	<2.0	<32	<2.0	<2.0	<32	<32
Perfluorodecanoic Acid	<2.0	<2.0	<2.0	<31	<2.0	<2.0	<2.0	<31	<2.0	<2.0 UJ	<2.0	<31	<2.0	<2.0	<31	<31
Perfluorododecane Sulfonic Acid (PFDoS)	<2.0	<2.0	<2.0	<97	<2.0	<2.0	<2.0	<97	<2.0	<2.0 UJ	<2.0	<97	<2.0	<2.0	<97	<97
Perfluorododecanoic Acid	<2.0	<2.0	<2.0	<55	<2.0	<2.0	<2.0	<55	<2.0	<2.0 UJ	<2.0	<55	<2.0	<2.0	<55	<55
Perfluoroheptane Sulfonic Acid (PFHpS)	<2.0	<2.0	<2.0	<19	<2.0	<2.0	<2.0	<19	<2.0	<2.0 UJ	<2.0	<19	<2.0	<2.0	<19	<19
Perfluoroheptanoic Acid	210	200	210	250	7.2	7.3	6.5	<25	5.6	7.6 J	7.1	<25	16	19	<25	<25
Perfluorohexadecanoic Acid (PFHxDA)	<2.0	<2.0	<2.0	<89	<2.0	<2.0	<2.0	<89	<2.0	<2.0 UJ	<2.0	<89	<2.0	<2.0	<89	<89
Perfluorohexane Sulfonic Acid	<2.0	<2.0	<2.0	<57	<2.0	<2.0	<2.0	<57	<2.0	<2.0 UJ	<2.0	<57	<2.0	<2.0	<57	<57
Perfluorohexanoic Acid	38	52	43	66	9.9	12	9.1	<58	7.8	10 J	10	<58	9.5	11	<58	<58
Perfluorononanesulfonic Acid	<2.0	<2.0	<2.0	<37	<2.0	<2.0	<2.0	<37	<2.0	<2.0 UJ	<2.0	<37	<2.0	<2.0	<37	<37
Perfluorononanoic Acid	<2.0	<2.0	<2.0	<27	<2.0	<2.0	<2.0	<27	<2.0	<2.0 UJ	<2.0	<27	<2.0	<2.0	<27	<27
Perfluorooctadecanoic Acid	<2.0	<2.0	<2.0	<94	<2.0	<2.0	<2.0	<94	<2.0	<2.0 UJ	<2.0	<94 UJ	<2.0	<2.0	<94	<94
Perfluorooctane Sulfonamide	<2.0	<2.0	<2.0	<98	<2.0	<2.0	<2.0	<98	<2.0	<2.0 UJ	<2.0	<98	<2.0	<2.0	<98	<98
Perfluoropentane Sulfonic Acid (PFPeS)	<2.0	<2.0	<2.0	<30	<2.0	<2.0	<2.0	<30	<2.0	<2.0 UJ	<2.0	<30	<2.0	<2.0	<30	<30
Perfluoropentanoic Acid	1,300	1,700	1,600	2,300	68	75	73	49	93	120 J	130	140	150	140	160	150
Perfluorotetradecanoic Acid	<2.0	<2.0	<2.0	<73	<2.0	<2.0	<2.0	<73	<2.0	<2.0 UJ	<2.0	<73	<2.0	<2.0	<73	<73
Perfluorotridecanoic Acid	<2.0	<2.0	<2.0	<130	<2.0	<2.0	<2.0	<130	<2.0	<2.0 UJ	<2.0	<130	<2.0	<2.0	<130	<130
Perfluoroundecanoic Acid	<2.0	<2.0	<2.0	<110	<2.0	<2.0	<2.0	<110	<2.0	<2.0 UJ	<2.0	<110	<2.0	<2.0	<110	<110
PFOA	4.1	4.1	2.1	<85	4.3	4	3.3	<85	<2.0	2.2 J	<2.0	<85	18	19	<85	<85
PFOS	<2.0	<2.0	<2.0	<54	<2.0	<2.0	<2.0	<54	<2.0	<2.0 UJ	<2.0	<54	<2.0	<2.0	<54	<54

							M	fass Loading Model San	pling Program (Quarter	rly)						
		PIV	V-18		T	PI	W-3D		1	PI	W-7D			PI	W-78	
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	CAP1Q23-PIW-1S- 021623 Sample Date: 16-Feb-23	Not Sampled in 2Q 2023 (Dry)	Not Sampled in 3Q 2023 (Dry)	Not Sampled in 4Q 2023 (Dry)	CAP1Q23-PIW-3D- 021623 Sample Date: 16-Feb-23	CAP2Q23-PIW-3D- 051723 Sample Date: 17-May-23		CAP4Q23-PIW-3D- 110323 Sample Date: 3-Nov-23	CAP1Q23-PIW-7D- 021523 Sample Date: 15-Feb-23	CAP2Q23-PIW-7D- 052223 Sample Date: 22-May-23	CAP3Q23-PIW-7D- 071123 Sample Date: 11-Jul-23	CAP4Q23-PIW-7D- 110223 Sample Date: 2-Nov-23	CAP1Q23-PIW-7S- 021523 Sample Date: 15-Feb-23	CAP2Q23-PIW-7S- 052223 Sample Date: 22-May-23	CAP3Q23-PIW-7S- 071123 Sample Date: 11-Jul-23	CAP4Q23-PIW-7S- 110223 Sample Date: 2-Nov-23
10:2 Fluorotelomer sulfonate	<2.0				<2.0	<2.0 UJ	<2.0	<67	<2.0	<2.0	<2.0	<67	<2.0	<2.0	<2.0	<67
11Cl-PF3OUdS	<2.0				<2.0	<2.0 UJ	<2.0	<32	<2.0	<2.0	<2.0	<32	<2.0	<2.0	<2.0	<32
1H.1H.2H.2H-perfluorodecanesulfonate (8:2 FTS)	<2.0				<2.0	<2.0 UJ	<2.0	<46	<2.0	<2.0	<2.0	<46	<2.0	<2.0	<2.0	<46
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<2.0				<2.0	<2.0 UJ	<2.0	<24	<2.0	<2.0	<2.0	<24	<2.0	<2.0	<2.0	<24
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<2.0				<2.0	<2.0 UJ	<2.0	<85	<2.0	<2.0	<2.0	<85	<2.0	<2.0	<2.0	<85
2-(N-methyl perfluoro-1-octanesulfonamido)-ethanol	<4.0				<4.0	<4.0 UJ	<4.0	<140	<4.0	<4.0	<4.0	<140	<4.0	<4.0	<4.0	<140
6:2 Fluorotelomer sulfonate	<5.0				<5.0	<5.0 UJ	<5.0	<250	<5.0	<5.0	<5.0	<250	<5.0	<5.0	<5.0	<250
9Cl-PF3ONS	<2.0				<2.0	<2.0 UJ	<2.0	<24	<2.0	<2.0	<2.0	<24	<2.0	<2.0	<2.0	<230
DONA	<2.0				<2.0	<2.0 UJ	<2.0	<40	<2.0	<2.0	<2.0	<40	<2.0	<2.0	<2.0	<40
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<5.0				<5.0	<5.0 UJ	<5.0	<130	<5.0	<5.0	<5.0	<130	<5.0	<5.0	<5.0	<130
N-ethylperfluoro-1-octanesulfonamide	<2.0				<2.0	<2.0 UJ	<2.0	<87	<2.0	<2.0	<2.0	<87	<2.0	<2.0	<2.0	<87
N-methyl perfluoro-1-octanesulfonamide	<2.0				<2.0	<2.0 UJ	<2.0	<43	<2.0	<2.0	<2.0	<43	<2.0	<2.0	<2.0	<43
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<5.0				<5.0	<5.0 UJ	<5.0	<120	<5.0	<5.0	<5.0	<120	<5.0	<5.0	<5.0	<120
Perfluorobutane Sulfonic Acid	<2.0				2.2	2.1 J	2.3	<20	<2.0	<2.0	<2.0	<20	3.6	2.8	2.5	<20
Perfluorobutanoic Acid	51				110	73 J	79	<240	290	150	160	<240	210	120	100	<240
Perfluorodecane Sulfonic Acid	<2.0				<2.0	<2.0 UJ	<2.0	<32	<2.0	<2.0	<2.0	<32	<2.0	<2.0	<2.0	<32
Perfluorodecanoic Acid	<2.0				<2.0	<2.0 UJ	<2.0	<31	<2.0	<2.0	<2.0	<31	<2.0	<2.0	<2.0	<31
Perfluorododecano Sulfonic Acid (PFDoS)	<2.0				<2.0	<2.0 UJ	<2.0	<97	<2.0	<2.0	<2.0	<97	<2.0	<2.0	<2.0	<97
Perfluorododecanoic Acid	<2.0			-	<2.0	<2.0 UJ	<2.0	<55	<2.0	<2.0	<2.0	<55	<2.0	<2.0	<2.0	<55
Perfluoroheptane Sulfonic Acid (PFHpS)	<2.0				<2.0	<2.0 UJ	<2.0	<19	<2.0	<2.0	<2.0	<19	<2.0	<2.0	<2.0	<19
Perfluoroheptanoic Acid	18				32	32 J	33	49	140	81	85	97	71	52	41	61
Perfluorohexadecanoic Acid (PFHxDA)	<2.0				<2.0	<2.0 UJ	<2.0	<89	<2.0	<2.0	<2.0	<89	<2.0	<2.0	<2.0	<89
Perfluorohexane Sulfonic Acid	8.6				3.4	3.5 J	3.7	<57	<2.0	<2.0	<2.0	<57	4.1	3.5	3.0	<89
Perfluorohexanoic Acid	7.7				15	3.5 J 14 J	16	<58	49	33	30	<58	4.1	26	19	<58
Perfluorononanesulfonic Acid	<2.0				<2.0	<2.0 UJ	<2.0	<37	<2.0	<2.0	<2.0	<37	<2.0	<2.0	<2.0	<38
Perfluorononanoic Acid	4.1				5.2	4.8 J	5.0	<27	<2.0	<2.0	<2.0	<27	<2.0	<2.0	<2.0	<27
Perfluoronotadecanoic Acid Perfluoronoctadecanoic Acid	4.1				<2.0	4.8 J <2.0 UJ	<2.0	<2/	<2.0	<2.0	<2.0	<2/	<2.0	<2.0	<2.0	<27
Perfluorooctane Sulfonamide	<2.0				<2.0	<2.0 UJ	<2.0	<94	<2.0	<2.0	<2.0	<94	<2.0	<2.0	<2.0	<94
Perfluoropentane Sulfonic Acid (PFPeS)	<2.0				<2.0	<2.0 UJ <2.0 UJ	<2.0	<98	<2.0	<2.0	<2.0	<98	<2.0	<2.0	<2.0	<98
	78				150	150 J	150	190	1,500	1.300	1.400	1,500	630	530	470	620
Perfluoropentanoic Acid Perfluorotetradecanoic Acid	<2.0				<2.0	<2.0 UJ	<2.0	<73	<2.0	<2.0	<2.0	<73	<2.0	<2.0	<2.0	<73
Perfluorotridecanoic Acid	<2.0				<2.0	<2.0 UJ	<2.0	<130	<2.0	<2.0	<2.0	<130	<2.0	<2.0	<2.0	<130
Perfluorourdecanoic Acid Perfluorourdecanoic Acid	<2.0				<2.0	<2.0 UJ <2.0 UJ	<2.0	<130	<2.0	<2.0	<2.0	<130	<2.0	<2.0	<2.0	<130
	<2.0				<2.0 44	<2.0 UJ 43 J		<110	<2.0 4.5	2.9	2.0	<110	<2.0	<2.0	<2.0 9.6	<110
PFOA							42									
PFOS	22				15	14 J	14	<54	<2.0	<2.0	<2.0	<54	6.4 J	5.4 J	<2.0	<54

					М	ass Loading Model Sa	npling Program (Quarterly)				
		PW	/-04			Р	Z-22			SMV	W-12	
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	CAP1Q23-PW-04- 022323 Sample Date: 23-Feb-23	CAP2Q23-PW-04- 052523 Sample Date: 25-May-23	CAP3Q23-PW-04- 072823 Sample Date: 28-Jul-23	CAP4Q23-PW-04- 110923 Sample Date: 9-Nov-23	CAP1Q23-PZ-22- 022023 Sample Date: 20-Feb-23	CAP2Q23-PZ-22- 052323 Sample Date: 23-May-23	CAP3Q-PZ-22-071123 Sample Date: 11-Jul-23	CAP4Q23-PZ-22- 110223 Sample Date: 2-Nov-23	CAP1Q23-SMW-12- 022323 Sample Date: 23-Feb-23	CAP2Q23-SMW-12- 051723 Sample Date: 17-May-23	CAP3Q23-SMW-12- 071823 Sample Date: 18-Jul-23	CAP4Q23-SMW-12- 110823 Sample Date: 8-Nov-23
10:2 Fluorotelomer sulfonate	<2.0	<2.0	<67	<67	<2.0	<2.0	<2.0	<67	<2.0	<2.0 UJ	<61	<67
11Cl-PF3OUdS	<2.0	<2.0	<32	<32	<2.0	<2.0	<2.0	<32	<2.0	<2.0 UJ	<29	<32
1H,1H,2H,2H-perfluorodecanesulfonate (8:2 FTS)	<2.0	<2.0	<46	<46	<2.0	<2.0	<2.0	<46	<2.0	<2.0 UJ	<42	<46
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<2.0	<2.0	<24	<24	<2.0	<2.0	<2.0	<24	<2.0	<2.0 UJ	<22	<24
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<2.0	<2.0	<85	<85	<2.0	<2.0	<2.0	<85	<2.0	<2.0 UJ	<77	<85
2-(N-methyl perfluoro-1-octanesulfonamido)-ethanol	<4.0	<4.0	<140	<140	<4.0	<4.0	<4.0	<140	<4.0	<4.0 UJ	<130	<140
6:2 Fluorotelomer sulfonate	<5.0	<5.0	<250	<250	<5.0	<5.0	<5.0	<250	<5.0	<5.0 UJ	<230	<250
9CI-PF3ONS	<2.0	<2.0	<24	<24	<2.0	<2.0	<2.0	<24	<2.0	<2.0 UJ	<22	<24
DONA	<2.0	<2.0	<40	<40	<2.0	<2.0	<2.0	<40	<2.0	<2.0 UJ	<36	<40
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0	<130	<130	<5.0	<5.0	<5.0	<130	<5.0	<5.0 UJ	<120	<130
N-ethylperfluoro-1-octanesulfonamide	<2.0	<2.0	<87	<87	<2.0	<2.0	<2.0	<87	<2.0	<2.0 UJ	<79	<87
N-methyl perfluoro-1-octanesulfonamide	<2.0	<2.0	<43	<43	<2.0	<2.0	<2.0	<43	<2.0	<2.0 UJ	<39	<43
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0	<120	<120	<5.0	<5.0	<5.0	<120	<5.0	<5.0 UJ	<110	<120
Perfluorobutane Sulfonic Acid	<2.0	<2.0	32	<20	<2.0	<2.0	<2.0	<20	<2.0	<2.0 UJ	<18	<20
Perfluorobutanoic Acid	8.3	10	<240	<240	120	110	120	<240	19	25 J	<220	<240
Perfluorodecane Sulfonic Acid	<2.0	<2.0	<32	<32	<2.0	<2.0	<2.0	<32	<2.0	<2.0 UJ	<29	<32
Perfluorodecanoic Acid	<2.0	<2.0	<31	<31	<2.0	<2.0	<2.0	<31	<2.0	<2.0 UJ	<28	<31
Perfluorododecane Sulfonic Acid (PFDoS)	<2.0	<2.0	<97	<97	<2.0	<2.0	<2.0	<97	<2.0	<2.0 UJ	<88	<97
Perfluorododecanoic Acid	<2.0	<2.0	<55	<55	<2.0	<2.0	<2.0	<55	<2.0	<2.0 UJ	<50	<55
Perfluoroheptane Sulfonic Acid (PFHpS)	<2.0	<2.0	<19	<19	<2.0	<2.0	<2.0	<19	<2.0	<2.0 UJ	<17	<19
Perfluoroheptanoic Acid	6.6	8.8	<25	<25	20	34	30	31	<2.0	<2.0 UJ	<23	<25
Perfluorohexadecanoic Acid (PFHxDA)	<2.0	<2.0	<89	<89	<2.0	<2.0	<2.0	<89	<2.0	<2.0 UJ	<81	<89
Perfluorohexane Sulfonic Acid	<2.0	<2.0	<57	<57	<2.0	<2.0	<2.0	<57	<2.0	<2.0 UJ	<52	<57
Perfluorohexanoic Acid	2.7	3.5	<58	<58	17	19	18	<58	<2.0	2.5 J	<53	<58
Perfluorononanesulfonic Acid	<2.0	<2.0	<37	<37	<2.0	<2.0	<2.0	<37	<2.0	<2.0 UJ	<34	<37
Perfluorononanoic Acid	<2.0	<2.0	<27	<27	<2.0	<2.0	<2.0	<27	<2.0	<2.0 UJ	<25	<27
Perfluorooctadecanoic Acid	<2.0	<2.0	<94	<94	<2.0	<2.0	<2.0	<94	<2.0	<2.0 UJ	<86	<94
Perfluorooctane Sulfonamide	<2.0	<2.0	<98	<98	<2.0	<2.0	<2.0	<98	<2.0	<2.0 UJ	<89	<98
Perfluoropentane Sulfonic Acid (PFPeS)	<2.0	<2.0	<30	<30	<2.0	<2.0	<2.0	<30	<2.0	<2.0 UJ	<27	<30
Perfluoropentanoic Acid	18	21	<49	<49	820	930	1,100	1,100	43	62 J	73	92
Perfluorotetradecanoic Acid	<2.0	<2.0	<73	<73	<2.0	<2.0	<2.0	<73	<2.0	<2.0 UJ	<67	<73
Perfluorotridecanoic Acid	<2.0	<2.0	<130	<130	<2.0	<2.0	<2.0	<130	<2.0	<2.0 UJ	<120	<130
Perfluoroundecanoic Acid	<2.0	<2.0	<110	<110	<2.0	<2.0	<2.0	<110	<2.0	<2.0 UJ	<100	<110
PFOA	<2.0	<2.0	<85	<85	<2.0	<2.0	<2.0	<85	<2.0	<2.0 UJ	<77	<85
PFOS	<2.0	<2.0	<54	<54	<2.0	<2.0	<2.0	<54	<2.0	17 J	<49	<54

			Performa	nce Monitoring Plan Sai	npling Program (Semi-A	nnually) ^[4]		
	OW-4R	OW	V-30	OW-32	OW-37	OV	V-40	OW-51
	CAP3Q23-OW-4R-	CAP1Q23-OW-30-	CAP3Q23-OW-30-	CAP3Q23-OW-32-	CAP3023-OW-37-	CAP1023-OW-40-	CAP3Q23-OW-40-	CAP3Q23-OW-51-
	080423	021523	071323	090823	081023	021523	071323	080323
METHOD 537 MOD SOP COMPOUNDs LIST ¹	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:	Sample Date:
(ng/L)	4-Aug-23	15-Feb-23	13-Jul-23	8-Sep-23	10-Aug-23	15-Feb-23	13-Jul-23	3-Aug-23
10:2 Fluorotelomer sulfonate	<67	<2.0	<2.0	<67	<67 UJ	<2.0	<2.0	<67
11Cl-PF3OUdS	<32	<2.0	<2.0	<32	<32 UJ	<2.0	<2.0	<32
1H,1H,2H,2H-perfluorodecanesulfonate (8:2 FTS)	<46	<2.0	<2.0	<46	<46 UJ	<2.0	<2.0	<46
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<24	<2.0	<2.0	<24	<24 UJ	<2.0	<2.0	<24
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<85	<2.0	<2.0	<85	<85 UJ	<2.0	<2.0	<85
2-(N-methyl perfluoro-1-octanesulfonamido)-ethanol	<140	<4.0	<4.0	<140	<140 UJ	<4.0	<4.0	<140
6:2 Fluorotelomer sulfonate	<250	<5.0	<5.0	<250	<250 UJ	<5.0	<5.0	<250
9CI-PF3ONS	<24	<2.0	<2.0	<24	<24 UJ	<2.0	<2.0	<24
DONA	<40	<2.0	<2.0	<40	<40 UJ	<2.0	<2.0	<40
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<130	<5.0	<5.0	<130	<130 UJ	<5.0	<5.0	<130
N-ethylperfluoro-1-octanesulfonamide	<87	<2.0	<2.0	<87	<87 UJ	<2.0	<2.0	<87
N-methyl perfluoro-1-octanesulfonamide	<43	<2.0	<2.0	<43	<43 UJ	<2.0	<2.0	<43
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<120	<5.0	<5.0	<120	<120 UJ	<5.0	<5.0	<120
Perfluorobutane Sulfonic Acid	<20	<2.0	<2.0	<20	<20 UJ	<2.0	<2.0	<20
Perfluorobutanoic Acid	<240	150	95	<240	<240 UJ	60	43	530
Perfluorodecane Sulfonic Acid	<32	<2.0	<2.0	<32	<32 UJ	<2.0	<2.0	<32
Perfluorodecanoic Acid	<31	<2.0	<2.0	<31	<31 UJ	<2.0	<2.0	<31
Perfluorododecane Sulfonic Acid (PFDoS)	<97	<2.0	<2.0	<97	<97 UJ	<2.0	<2.0	<97
Perfluorododecanoic Acid	<55	<2.0	<2.0	<55	<55 UJ	<2.0	<2.0	<55
Perfluoroheptane Sulfonic Acid (PFHpS)	<19	<2.0	<2.0	<19	<19 UJ	<2.0	<2.0	<19
Perfluoroheptanoic Acid	90	12	7.0	<25	<25 UJ	16	18	400
Perfluorohexadecanoic Acid (PFHxDA)	<89	<2.0	<2.0	<89	<89 UJ	<2.0	<2.0	<89
Perfluorohexane Sulfonic Acid	<57	<2.0	<2.0	<57	<57 UJ	<2.0	<2.0	<57
Perfluorohexanoic Acid	<58	16	13	<58	<58 UJ	11	11	140
Perfluorononanesulfonic Acid	<37	<2.0	<2.0	<37	<37 UJ	<2.0	<2.0	<37
Perfluorononanoic Acid	<27	<2.0	<2.0	<27	<27 UJ	<2.0	<2.0	<27
Perfluorooctadecanoic Acid	<94	<2.0	<2.0	<94	<94 UJ	<2.0	<2.0	<94
Perfluorooctane Sulfonamide	<98	<2.0	<2.0	<98	<98 UJ	<2.0	<2.0	<98
Perfluoropentane Sulfonic Acid (PFPeS)	<30	<2.0	<2.0	<30	<30 UJ	<2.0	<2.0	<30
Perfluoropentanoic Acid	480	530	340	<49	55 J	120	74	2,700
Perfluorotetradecanoic Acid	<73	<2.0	<2.0	<73	<73 UJ	<2.0	<2.0	<73
Perfluorotridecanoic Acid	<130	<2.0	<2.0	<130	<130 UJ	<2.0	<2.0	<130
Perfluoroundecanoic Acid	<110	<2.0	<2.0	<110	<110 UJ	<2.0	<2.0	<110
PFOA	<85	<2.0	<2.0	<85	<85 UJ	2.3	<2.0	<85
PFOS	<54	<2.0	<2.0	<54	<54 UJ	<2.0	<2.0	<54

Notes: 1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the 3Q 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list. 4 - Wells OW-4R, OW-32, OW-37, and OW-51 were installed between late June 2023 and August 2023, so were unavailable for sampling before 3Q 2023. **Bold** - Analyte detected above associated reporting limit. J - Analyte detected. Reported value may not be accurate or precise. ng/L - nanograms per liter SOP - standard operating procedure UJ - Analyte not detected. Reporting limit may not be accurate or precise. -- No data reported

	Performance Monitoring Plan Sampling Program (Semi-Annually)												
	OV	V-54	OV	V-55	OV	V-56	OV	V-57					
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	CAP1Q23-OW-54- 021623 Sample Date: 16-Feb-23	Not Sampled in 3Q 2023 (Dry)	CAP1Q23-OW-55- 021623 Sample Date: 16-Feb-23	CAP3Q23-OW-55- 072523 Sample Date: 25-Jul-23	CAP1Q23-OW-56- 022123 Sample Date: 21-Feb-23	CAP3Q23-OW-56- 073123 Sample Date: 31-Jul-23	CAP1Q23-OW-57- 021523 Sample Date: 15-Feb-23	CAP3Q23-OW-57- 073123 Sample Date: 31-Jul-23					
10:2 Fluorotelomer sulfonate	<2.0		<2.0	<67	<2.0	<67	<2.0	<67					
11Cl-PF3OUdS	<2.0		<2.0	<32	<2.0	<32	<2.0	<32					
1H,1H,2H,2H-perfluorodecanesulfonate (8:2 FTS)	<2.0		<2.0	<46	<2.0	<46	<2.0	<46					
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<2.0		<2.0	<24	<2.0	<24	<2.0	<24					
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<2.0		<2.0	<85	<2.0	<85	<2.0	<85					
2-(N-methyl perfluoro-1-octanesulfonamido)-ethanol	<4.0		<4.0	<140	<4.0	<140	<4.0	<140					
6:2 Fluorotelomer sulfonate	<5.0		<5.0	<250	<5.0	<250	<5.0	<250					
9Cl-PF3ONS	<2.0		<2.0	<24	<2.0	<24	<2.0	<24					
DONA	<2.0		<2.0	<40	<2.0	<40	<2.0	<40					
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<5.0		<5.0	<130	<5.0	<130	<5.0	<130					
N-ethylperfluoro-1-octanesulfonamide	<2.0		<2.0	<87	<2.0	<87	<2.0	<87					
N-methyl perfluoro-1-octanesulfonamide	<2.0		<2.0	<43	<2.0	<43	<2.0	<43					
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<5.0		<5.0	<120	<5.0	<120	<5.0	<120					
Perfluorobutane Sulfonic Acid	2.3		<2.0	<20	2.5	33	4.1	33					
Perfluorobutanoic Acid	23		18	<240	22	<240	140	<240					
Perfluorodecane Sulfonic Acid	<2.0		<2.0	<32	<2.0	<32	<2.0	<32					
Perfluorodecanoic Acid	<2.0		<2.0	<31	<2.0	<31	<2.0	<31					
Perfluorododecane Sulfonic Acid (PFDoS)	<2.0		<2.0	<97	<2.0	<97	<2.0	<97					
Perfluorododecanoic Acid	<2.0		<2.0	<55	<2.0	<55	<2.0	<55					
Perfluoroheptane Sulfonic Acid (PFHpS)	<2.0		<2.0	<19	<2.0	<19	<2.0	<19					
Perfluoroheptanoic Acid	9.3		<2.0	<25	3.5	<25	71	86					
Perfluorohexadecanoic Acid (PFHxDA)	<2.0		<2.0	<89	<2.0	<89	<2.0	<89					
Perfluorohexane Sulfonic Acid	<2.0		<2.0	<57	<2.0	<57	2.3	<57					
Perfluorohexanoic Acid	5.3		2.6	<58	6.7	<58	63	97					
Perfluorononanesulfonic Acid	<2.0		<2.0	<37	<2.0	<37	<2.0	<37					
Perfluorononanoic Acid	<2.0		<2.0	<27	<2.0	<27	<2.0	<27					
Perfluorooctadecanoic Acid	<2.0		<2.0	<94	<2.0	<94	<2.0	<94					
Perfluorooctane Sulfonamide	<2.0		<2.0	<98	<2.0	<98	<2.0	<98					
Perfluoropentane Sulfonic Acid (PFPeS)	<2.0		<2.0	<30	<2.0	<30	<2.0	<30					
Perfluoropentanoic Acid	40		27	<49	44	56	320	380					
Perfluorotetradecanoic Acid	<2.0		<2.0	<73	<2.0	<73	<2.0	<73					
Perfluorotridecanoic Acid	<2.0		<2.0	<130	<2.0	<130	<2.0	<130					
Perfluoroundecanoic Acid	<2.0		<2.0	<110	<2.0	<110	<2.0	<110					
PFOA	17		<2.0	<85	2.7	<85	750	1,000					
PFOS	<2.0		<2.0	<54	<2.0	<54	<2.0	<54					

		Performance Monitoring Plan Sampling Program (Semi-Annually) PIW-4D PIW-6S PIW-8D PIW-10DR PIW-10S PIW-11 PIW-15 PW-10RR PW-11												
	PIW-4D	PIW-5SR	PIW-6S	PIW-8D	PIW-10DR	PIW-10S	PIW-11	PIW-15	PW-10RR	PW-11				
METHOD 537 MOD SOP COMPOUNDs LIST ¹	CAP3Q23-PIW-4D- 071323 Sample Date:	CAP3Q23-PIW-5SR- 080423 Sample Date:	CAP3Q23-PIW-68- 071223 Sample Date:	CAP3Q23-PIW-8D- 071123 Sample Date:	CAP3Q23-PIW-10DR- 071423 Sample Date:	CAP3Q23-PIW-108- 071323 Sample Date:	CAP3Q23-PIW-11- 073123 Sample Date:	CAP3Q23-PIW-15- 072523 Sample Date:	CAP3Q23-PW-10RR- 080323 Sample Date:	CAP3Q23-PW-11- 070723 Sample Date:				
(ng/L)	13-Jul-23	4-Aug-23	12-Jul-23	11-Jul-23	14-Jul-23	13-Jul-23	31-Jul-23	25-Jul-23	3-Aug-23	7-Jul-23				
10:2 Fluorotelomer sulfonate	<2.0	<67	<2.0	<2.0	<2.0	<2.0	<67	<67	<67	<2.0				
11Cl-PF3OUdS	<2.0	<32	<2.0	<2.0	<2.0	<2.0	<32	<32	<32	<2.0				
1H.1H.2H.2H-perfluorodecanesulfonate (8:2 FTS)	<2.0	<46	<2.0	<2.0	<2.0	<2.0	<46	<46	<46	<2.0				
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<2.0	<24	<2.0	<2.0	<2.0	<2.0	<24	<24	<24	<2.0				
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<2.0	<85	<2.0	<2.0	<2.0	<2.0	<85	<85	<85	<2.0				
2-(N-methyl perfluoro-1-octanesulfonamido)-ethanol	<4.0	<140	<4.0	<4.0	<4.0	<4.0	<140	<140	<140	<4.0				
6:2 Fluorotelomer sulfonate	<5.0	<250	<5.0	9.4	<5.0	<5.0	<250	<250	<250	<5.0				
9C1-PF3ONS	<2.0	<24	<2.0	<2.0	<2.0	<2.0	<24	<24	<24	<2.0				
DONA	<2.0	<40	<2.0	<2.0	<2.0	<2.0	<40	<40	<40	<2.0				
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<130	<5.0	<5.0	<5.0	<5.0	<130	<130	<130	<5.0				
N-ethylperfluoro-1-octanesulfonamide	<2.0	<87	<2.0	<2.0	<2.0	<2.0	<87	<87	<87	<2.0				
N-methyl perfluoro-1-octanesulfonamide	<2.0	<43	<2.0	<2.0	<2.0	<2.0	<43	<43	<43	<2.0				
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<120	<5.0	<5.0	<5.0	<5.0	<120	<120	<120	<5.0				
Perfluorobutane Sulfonic Acid	<2.0	<20	<2.0	<2.0	<2.0	<2.0	29	<20	<20	2.1				
Perfluorobutanoic Acid	<5.0	780	150	310	130	47	<240	<240	<240	100				
Perfluorodecane Sulfonic Acid	<2.0	<32	<2.0	<2.0	<2.0	<2.0	<32	<32	<32	<2.0				
Perfluorodecanoic Acid	<2.0	<31	<2.0	<2.0	<2.0	<2.0	<31	<31	<31	<2.0				
Perfluorododecane Sulfonic Acid (PFDoS)	<2.0	<97	<2.0	<2.0	<2.0	<2.0	<97	<97	<97	<2.0				
Perfluorododecanoic Acid	<2.0	<55	<2.0	<2.0	<2.0	<2.0	<55	<55	<55	<2.0				
Perfluoroheptane Sulfonic Acid (PFHpS)	<2.0	<19	<2.0	<2.0	<2.0	<2.0	<19	<19	<19	<2.0				
Perfluoroheptanoic Acid	<2.0	80	23	250	76	11	<25	<25	<25	100				
Perfluorohexadecanoic Acid (PFHxDA)	<2.0	<89	<2.0	<2.0	<2.0	<2.0	<89	<89	<89	<2.0				
Perfluorohexane Sulfonic Acid	<2.0	<57	<2.0	<2.0	<2.0	<2.0	<57	<57	<57	2.8				
Perfluorohexanoic Acid	<2.0	<58	17	75	29	8.6	<58	<58	<58	26				
Perfluorononanesulfonic Acid	<2.0	<37	<2.0	<2.0	<2.0	<2.0	<37	<37	<37	<2.0				
Perfluorononanoic Acid	<2.0	<27	<2.0	<2.0	<2.0	<2.0	<27	<27	<27	22				
Perfluorooctadecanoic Acid	<2.0	<94	<2.0	<2.0	<2.0	<2.0	<94	<94	<94	<2.0				
Perfluorooctane Sulfonamide	<2.0	<98	<2.0	<2.0	<2.0	<2.0	<98	<98	<98	<2.0				
Perfluoropentane Sulfonic Acid (PFPeS)	<2.0	<30	<2.0	<2.0	<2.0	<2.0	<30	<30	<30	<2.0				
Perfluoropentanoic Acid	11	1,100	820	1,700	350	59	63	140	710	420				
Perfluorotetradecanoic Acid	<2.0	<73	<2.0	<2.0	<2.0	<2.0	<73	<73	<73	<2.0				
Perfluorotridecanoic Acid	<2.0	<130	<2.0	<2.0	<2.0	<2.0	<130	<130	<130	<2.0				
Perfluoroundecanoic Acid	<2.0	<110	<2.0	<2.0	<2.0	<2.0	<110	<110	<110	<2.0				
PFOA	<2.0	<85	<2.0	2.5	4.1	9.1	<85	<85	<85	42				
PFOS	<2.0	<54	<2.0	<2.0	<2.0	<2.0	<54	<54	<54	4.7				

	Correct	ive Action Plan Sampling Program (A	nnually)
	PIW-12	PIW-13	PIW-14
	CAP3Q23-PIW-12-072423	CAP3Q23-PIW-13-072423	CAP3Q23-PIW-14-072423
METHOD 537 MOD SOP COMPOUNDs LIST ¹	-		
(ng/L)	Sample Date: 24-Jul-23	Sample Date: 24-Jul-23	Sample Date: 24-Jul-23
	24-Jui-23	24-Jui-23	24-Jui-23
10:2 Fluorotelomer sulfonate	<67	<67	<67
11Cl-PF3OUdS	<32	<32	<32
1H,1H,2H,2H-perfluorodecanesulfonate (8:2 FTS)	<46	<46	<46
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<24	<24	<24
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<85	<85	<85
2-(N-methyl perfluoro-1-octanesulfonamido)-ethanol	<140	<140	<140
6:2 Fluorotelomer sulfonate	<250	<250	<250
9Cl-PF3ONS	<24	<24	<24
DONA	<40	<40	<40
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<130	<130	<130
N-ethylperfluoro-1-octanesulfonamide	<87	<87	<87
N-methyl perfluoro-1-octanesulfonamide	<43	<43	<43
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<120	<120	<120
Perfluorobutane Sulfonic Acid	<20	<20	<20
Perfluorobutanoic Acid	<240	<240	<240
Perfluorodecane Sulfonic Acid	<32	<32	<32
Perfluorodecanoic Acid	<31	<31	<31
Perfluorododecane Sulfonic Acid (PFDoS)	<97	<97	<97
Perfluorododecanoic Acid	<55	<55	<55
Perfluoroheptane Sulfonic Acid (PFHpS)	<19	<19	<19
Perfluoroheptanoic Acid	<25	<25	<25
Perfluorohexadecanoic Acid (PFHxDA)	<89	<89	<89
Perfluorohexane Sulfonic Acid	<57	<57	<57
Perfluorohexanoic Acid	<58	<58	<58
Perfluorononanesulfonic Acid	<37	<37	<37
Perfluorononanoic Acid	<27	<27	<27
Perfluorooctadecanoic Acid	<94	<94	<94
Perfluorooctane Sulfonamide	<98	<98	<98
Perfluoropentane Sulfonic Acid (PFPeS)	<30	<30	<30
Perfluoropentanoic Acid	<49	<49	80
Perfluorotetradecanoic Acid	<73	<73	<73
Perfluorotridecanoic Acid	<130	<130	<130
Perfluoroundecanoic Acid	<110	<110	<110
PFOA	<85	<85	<85
PFOS	<54	<54	<54

Table 6-3 Willis Creek PFAS Analytical Results Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works Fayetteville, NC

	Jul 18 (0.00)	Nov 6 (0.00)	Feb 22 (0.00)	May 9 (0.00)	Jul 24 (0.20)	Nov 20 (0.00)	Jul 18 (0.00)	Nov 6 (0.00)	Feb 22 (0.00)	May 9 (0.00)	Jul 24 (0.20)	Nov 20 (0.00)	Jul 18 (0.00)	Nov 6 (0.00)	Feb 22 (0.00)	May 9 (0.00)	Jul 24 (0.20)	Nov 20 (0.00)
Antecedent Daily Total Rainfall ⁶ (inches):	Jul 19 (0.10)	Nov 7 (0.00)	Feb 23 (0.00)	May 10 (0.00)	Jul 25 (0.00)	Nov 21 (0.41)	Jul 19 (0.10)	Nov 7 (0.00)	Feb 23 (0.00)	May 10 (0.00)	Jul 25 (0.00)	Nov 21 (0.41)	Jul 19 (0.10)	Nov 7 (0.00)	Feb 23 (0.00)	May 10 (0.00)	Jul 25 (0.00)	Nov 21 (0.41)
	Jul 20 (0.47)	Nov 8 (0.00)	Feb 24 (0.01)	May 11 (0.00)	Jul 26 (0.00)	Nov 22 (1.26)	Jul 20 (0.47)	Nov 8 (0.00)	Feb 24 (0.01)	May 11 (0.00)	Jul 26 (0.00)	Nov 22 (1.26)	Jul 20 (0.47)	Nov 8 (0.00)	Feb 24 (0.01)	May 11 (0.00)	Jul 26 (0.00)	Nov 22 (1.26)
			wo	C-1				ľ	w	/C-2		1			w	C-3		
	CAP3Q22-WC-1- 24-072122	CAP4Q22-WC-1- 24-110922	CAP1Q23-WC-1- 24-022523	CAP2Q23-WC-1- 24-051223	CAP3Q23-WC-1- 24-072723	CAP4Q23-WC-1- 112323	CAP3Q22-WC-2- 24-072122	CAP4Q22-WC-2- 22-110922	CAP1Q23-WC-2- 24-022523	CAP2Q23-WC-2- 24-051223	CAP3Q23-WC-2- 24-072723	CAP4Q23-WC-2- 112323	CAP3Q22-WC-3- 24-072122	CAP4Q22-WC-3- 24-110922	CAP1Q23-WC-3- 24-022523	CAP2Q23-WC-3- 24-051223	CAP3Q23-WC-3- 24-072723	- CAP4Q23-WC-3- 112323
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	Sample Date: 21-Jul-22	Sample Date: 9-Nov-22	Sample Date: 25-Feb-23	Sample Date: 12-May-23	Sample Date: 27-Jul-23	Sample Date: 23-Nov-23	Sample Date: 21-Jul-22	Sample Date: 9-Nov-22	Sample Date: 25-Feb-23	Sample Date: 12-May-23	Sample Date: 27-Jul-23	Sample Date: 23-Nov-23	Sample Date: 21-Jul-22	Sample Date: 9-Nov-22	Sample Date: 25-Feb-23	Sample Date: 12-May-23	Sample Date: 27-Jul-23	Sample Date: 23-Nov-23
Hfpo Dimer Acid	560	580	310	430	360	89 J	320	490	180	290	260	120	180	190	100	150	130	49
PFMOAA	1,300	1,900	480	830	970	200	250	1,000	300	360	610	290 J	45	72	35	55	58	25
PFO2HxA	650	960	280	500	500	150	250	640	160	280	350	190 J	140	190	74	130	140	61
PFO3OA	130	160	45	90	87	23 J	40	89	21	42	55	27	19	21	8.7	16	19	7.6
PFO4DA	25	29	10	15	16	5.4 J	12	17	4.5	8.2	10	5.3	5.3	4.8	2.1	3.5	5.1	2.2
PFO5DA	<3.9	<7.8	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.1	<2.0
PMPA	640	790	340	430	490	170	330	570	240	310	410	230 J	230	260	160	190	200	120
PEPA	150	200	74	120	120	45	70	150	52	86	92	48 J	45	70	32	53	50	24
PS Acid	<2.0	2.6	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Hydro-PS Acid	14	14	8	11	12	5.2	12	11	7.2	8.2	9.5	6.1	9.3	7.8	6.5	6.8	7.8	4.2
R-PSDA	42 J	36 J	30 J	86 J	170 J	11 J	26 J	31 J	18 J	49 J	96 J	9.4 J	<2.0	12 J	15 J	32 J	65 J	4.3 J
Hydrolyzed PSDA	230 J	230 J	190 J	380 J	290 J	28 J	44 J	130 J	28 J	44 J	75 J	20 J	<2.0	<2.0	<2.0	<2.0	7.6 J	<2.0
R-PSDCA	<2.0	<2.0	<2.0	<2.0	<3.0	<3.0	<2.0	<2.0	<2.0	<2.0	<3.0	<3.0	<2.0	<2.0	<2.0	<2.0	<3.0	<3.0
NVHOS, Acid Form	21	30	14	20	25	3.8	8.3	19	5.7	8.6	16	5.7 J	4.6	3.2	2.5	2.8	<3.0	<3.0
EVE Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Hydro-EVE Acid	9.9	13	5.1	6.7	7.4	<2.0	4.5	12	<2.0	3.1	2.2	2.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
R-EVE	24 J	16 J	14 J	38 J	59 J	5.9 J	9.4 J	19 J	9.6 J	28 J	41 J	7.4 J	5.6 J	6.1 J	7.5 J	16 J	23 J	2.7 J
Perfluoro(2-ethoxyethane)sulfonic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
PFECA B	<2.0	<2.7	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
PFECA-G	<2.4	<4.8	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
PFPrA					500	170					360	220 J			-		180	96
Total Table 3+ (17 compounds) ^{2,3}	3,500	4,680	1,570	2,450	2,590	691	1,300	3,000	970	1,400	1,810	924	678	819	421	607	612	293
Fotal Table 3+ (18 compounds) ^{2,4}					3,090	861					2,170	1,140			-		792	389
Fotal Table 3+ (21 compounds) ^{2,5}	-				3,610	906					2,390	1,180		-	-	-	888	396

Notes:

1 - The EPA Method 537 was modified to incorporate the Table 3+ compounds. Beginning with the July 27, 2023 sampling, perfluoropropionic acid (PFPA) was added to the compounds list.

2 - Total Table 3+ was calculated including J qualified data but not non-detect data. The total Table 3+ sum is rounded to three significant figures.

3 - Total Table 3+ (17 Compounds) does not include R-PSDA, Hydrolyzed PSDA, R-EVE, and PFPrA.

4 - Total Table 3+ (18 compounds) does not include R-PSDA, Hydrolyzed PSDA, and R-EVE.

5 - Total Table 3+ (21 compounds) is the sum of all Table 3+ PFAS compounds.

6 - Precipitation data obtained from USGS gauge #02105500 at the William O. Huske Lock and Dam.

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

UJ - Analyte not detected. Reporting limit may not be accurate or precise.

ng/L - nanograms per liter

SOP - standard operating procedure

-- - No data reported

< - Analyte not detected above associated reporting limit.

Table 6-3 Willis Creek PFAS Analytical Results Quarterly Report #4 (Oct - Dec 2023) Chemours Fayetteville Works Fayetteville, NC

	Jul 18 (0.00)	Nov 6 (0.00)	Feb 22 (0.00)	May 9 (0.00)	Jul 24 (0.20)	Nov 20 (0.00)	Jul 18 (0.00)	Nov 6 (0.00)	Feb 22 (0.00)	May 9 (0.00)	Jul 24 (0.20)	Nov 20 (0.00)	Jul 18 (0.00)	Nov 6 (0.00)	Feb 22 (0.00)	May 9 (0.00)	Jul 24 (0.20)	Nov 20 (0.00)
Antecedent Daily Total Rainfall ⁶ (inches):	Jul 19 (0.10)	Nov 7 (0.00)	Feb 23 (0.00)	May 10 (0.00)	Jul 25 (0.00)	Nov 21 (0.41)	Jul 19 (0.10)	Nov 7 (0.00)	Feb 23 (0.00)	May 10 (0.00)	Jul 25 (0.00)	Nov 21 (0.41)	Jul 19 (0.10)	Nov 7 (0.00)	Feb 23 (0.00)	May 10 (0.00)	Jul 25 (0.00)	Nov 21 (0.41)
	Jul 20 (0.47)	Nov 8 (0.00)	Feb 24 (0.01)	May 11 (0.00)	Jul 26 (0.00)	Nov 22 (1.26)	Jul 20 (0.47)	Nov 8 (0.00)	Feb 24 (0.01)	May 11 (0.00)	Jul 26 (0.00)	Nov 22 (1.26)	Jul 20 (0.47)	Nov 8 (0.00)	Feb 24 (0.01)	May 11 (0.00)	Jul 26 (0.00)	Nov 22 (1.26)
		ľ	W	C-1				1	w	C-2	ľ				W	C-3		
	CAP3Q22-WC-1- 24-072122	CAP4Q22-WC-1- 24-110922	CAP1Q23-WC-1- 24-022523	CAP2Q23-WC-1- 24-051223	CAP3Q23-WC-1- 24-072723	CAP4Q23-WC-1- 112323	CAP3Q22-WC-2- 24-072122	CAP4Q22-WC-2- 22-110922	CAP1Q23-WC-2- 24-022523	CAP2Q23-WC-2- 24-051223	CAP3Q23-WC-2- 24-072723	CAP4Q23-WC-2- 112323	CAP3Q22-WC-3- 24-072122	CAP4Q22-WC-3- 24-110922	CAP1Q23-WC-3- 24-022523	CAP2Q23-WC-3- 24-051223	CAP3Q23-WC-3- 24-072723	CAP4Q23-WC-3- 112323
METHOD 537 MOD SOP COMPOUNDs LIST ¹ (ng/L)	Sample Date: 21-Jul-22	Sample Date: 9-Nov-22	Sample Date: 25-Feb-23	Sample Date: 12-May-23	Sample Date: 27-Jul-23	Sample Date: 23-Nov-23	Sample Date: 21-Jul-22	Sample Date: 9-Nov-22	Sample Date: 25-Feb-23	Sample Date: 12-May-23	Sample Date: 27-Jul-23	Sample Date: 23-Nov-23	Sample Date: 21-Jul-22	Sample Date: 9-Nov-22	Sample Date: 25-Feb-23	Sample Date: 12-May-23	Sample Date: 27-Jul-23	Sample Date: 23-Nov-23
10:2 Fluorotelomer sulfonate	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
11Cl-PF3OUdS	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
1H,1H,2H,2H-perfluorodecanesulfonate (8:2 FTS)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
1H,1H,2H,2H-perfluorohexanesulfonate (4:2 FTS)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
2-(N-ethyl perfluoro-1-octanesulfonamido)-ethanol	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
2-(N-methyl perfluoro-1-octanesulfonamido)-ethano	l <4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
6:2 Fluorotelomer sulfonate	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
9CI-PF3ONS	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
DONA	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 UJ	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 UJ
N-ethylperfluoro-1-octanesulfonamide	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
N-methyl perfluoro-1-octanesulfonamide	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
N-Methyl Perfluorooctane Sulfonamidoacetic Acid	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 UJ	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Perfluorobutane Sulfonic Acid	4.6	3.9	4.4	4.6	4.9	3.7	4.4	3.6	4.5	4.6	4.6	4.7 J	4.7	3.1	4.6	4.3	4.6	3.5
Perfluorobutanoic Acid	6.6	9.1	7	6.3	9	<5.0	<5.0	10.0	<5.0	<5.0	7.6	<5.0 UJ	<5.0	<5.0	<5.0	<5.0	5.8	<5.0
Perfluorodecane Sulfonic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorodecanoic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorododecane Sulfonic Acid (PFDoS)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorododecanoic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluoroheptane Sulfonic Acid (PFHpS)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluoroheptanoic Acid	2.4	2.9	<2.0	2.4	2.4	<2.0	<2.0	2.4	<2.0	<2.0	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorohexadecanoic Acid (PFHxDA)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorohexane Sulfonic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorohexanoic Acid	3.5	4.1	2.8	3.7	4.3	<2.0	3.0	3.9	2.6	3.1	3.8	2.3	2.6	2.3	2.1	2.7	3.0	<2.0
Perfluorononanesulfonic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorononanoic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorooctadecanoic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorooctane Sulfonamide	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluoropentane Sulfonic Acid (PFPeS)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluoropentanoic Acid	13	13	7.8	11	9.9	3.4	8.8	13.0	5.0	7.3	8.1	5.1 J	5.5	4.5	3.6	5.1	4.9	2.6
Perfluorotetradecanoic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorotridecanoic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluoroundecanoic Acid	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0 UJ	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
PFOA	9.7	10	5.8	7.7	7.2	2.1	3.4	5.1	2.8	3.1	5.6	2.3	2.4	<2.0	<2.0	<2.0	2.1	<2.0
PFOS	2.5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0 J	2.3	<2.0	<2.0	<2.0	<2.0	<2.0

Notes:

1 - The EPA Method 537 was modified to incorporate the Table3+ compounds. Beginning with the July 27, 2023 sampling, perfluoropropionic acid (PFPrA) was added to the compounds list.

Bold - Analyte detected above associated reporting limit.

J - Analyte detected. Reported value may not be accurate or precise.

UJ - Analyte not detected. Reporting limit may not be accurate or precise.

ng/L - nanograms per liter

SOP - standard operating procedure

< - Analyte not detected above associated reporting limit.

Table 6-4Willis Creek PFAS Mass DischargeQuarterly Report #4 (Oct - Dec 2023)Chemours Fayetteville WorksFayetteville, NC

Sample Date	Willis Creek Flow	(17 com	• Concentration pounds) g/L)	PFAS Mass (Total Table 3+ (mg/	17 compounds)	Δ PFAS Mass Discharge (Total Table 3+ 17 compounds) (mg/sec)
	(ft ³ /sec)	WC-2	WC-1	WC-2	WC-1	Δ WC-2 TO WC-1
21-Jul-22	5.0	1,300	3,500	0.18	0.49	0.31
9-Nov-22	3.4	3,000	4,700	0.29	0.45	0.16
25-Feb-23	11.5	970	1,600	0.32	0.52	0.21
12-May-23	3.5	1,400	2,500	0.14	0.25	0.11
27-Jul-23	2.8	1,800	2,600	0.14	0.20	0.06
23-Nov-23	15.5	920 690		0.40	0.30	-0.10

Notes:

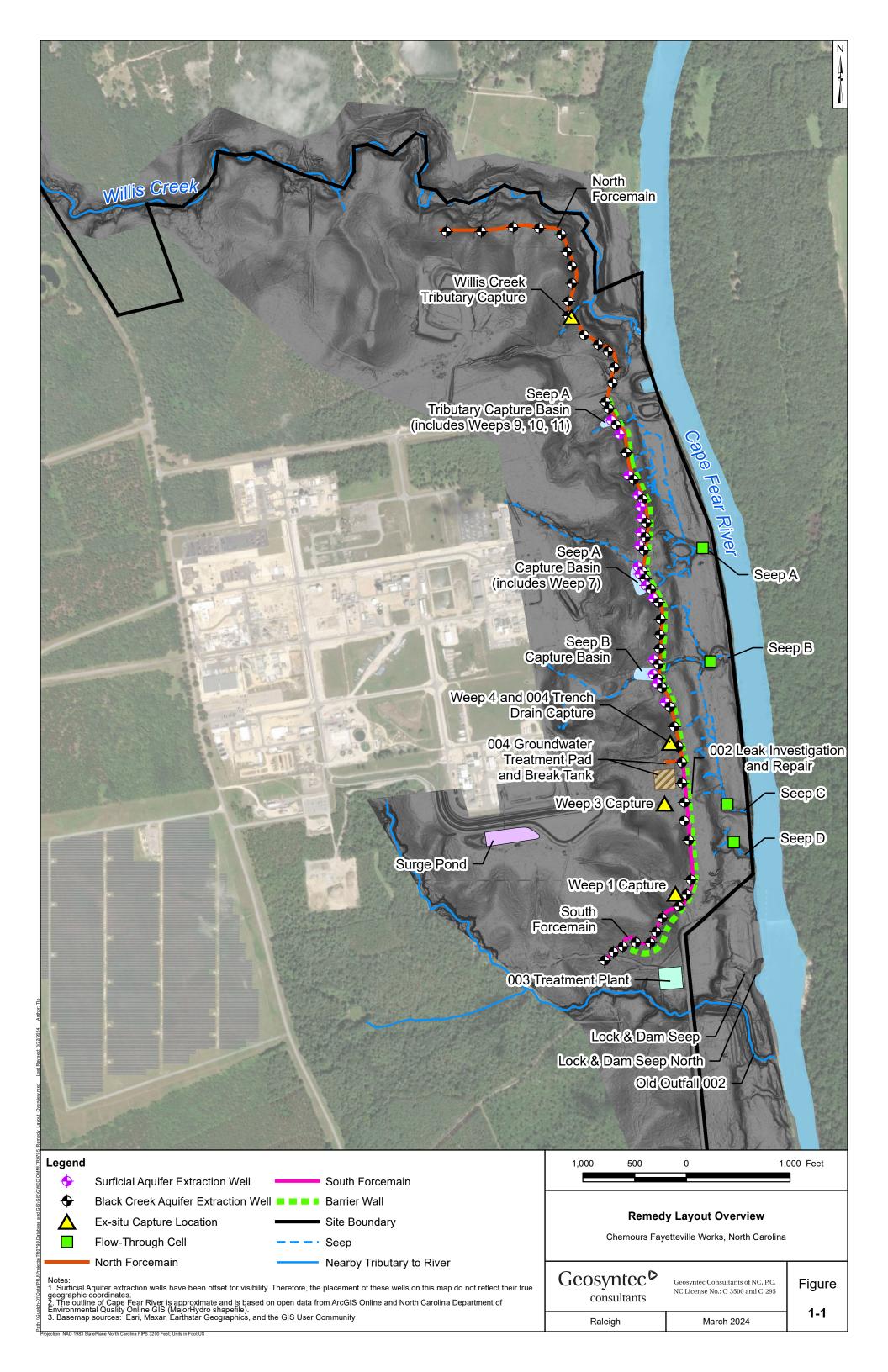
1 - Willis Creek (WC) flow was measured using the Marsh-McBirney method. Flow measurements were made at location WC-1 on the same day as analytical sampling, except for the February 25, 2023 sampling event, which had flow measured at WC-6 on February 13, 2023.

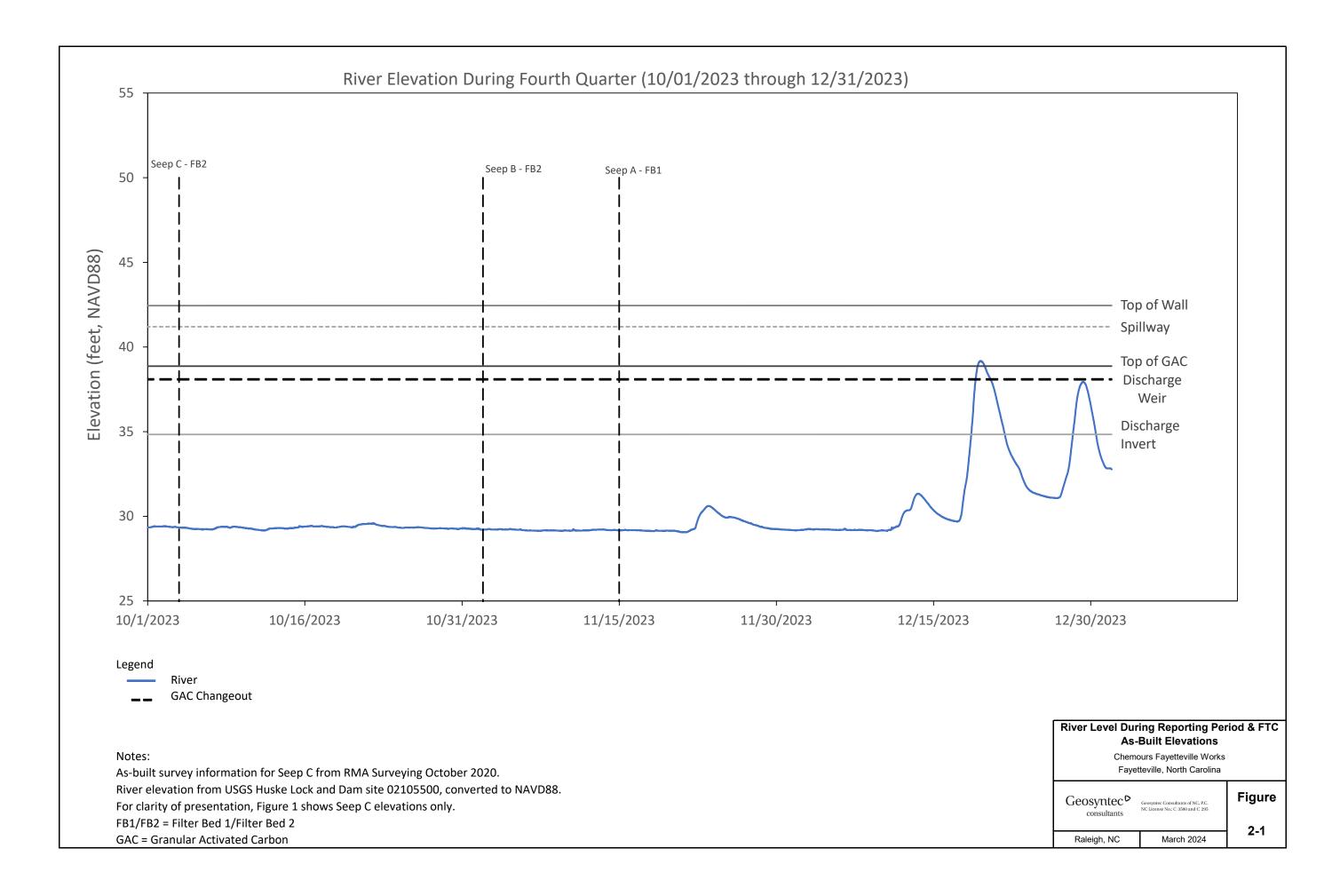
2 - The total Table 3+ concentration (17 compounds) is rounded to two significant figures. Presented values of flow and mass discharge are limited to 1 and 2 decimal places, respectively.

3 - WC-2 is located approximately at the upgradient end of the long-term remedy alignment, and WC-1 is located approximately near the confluence with the Cape Fear River.

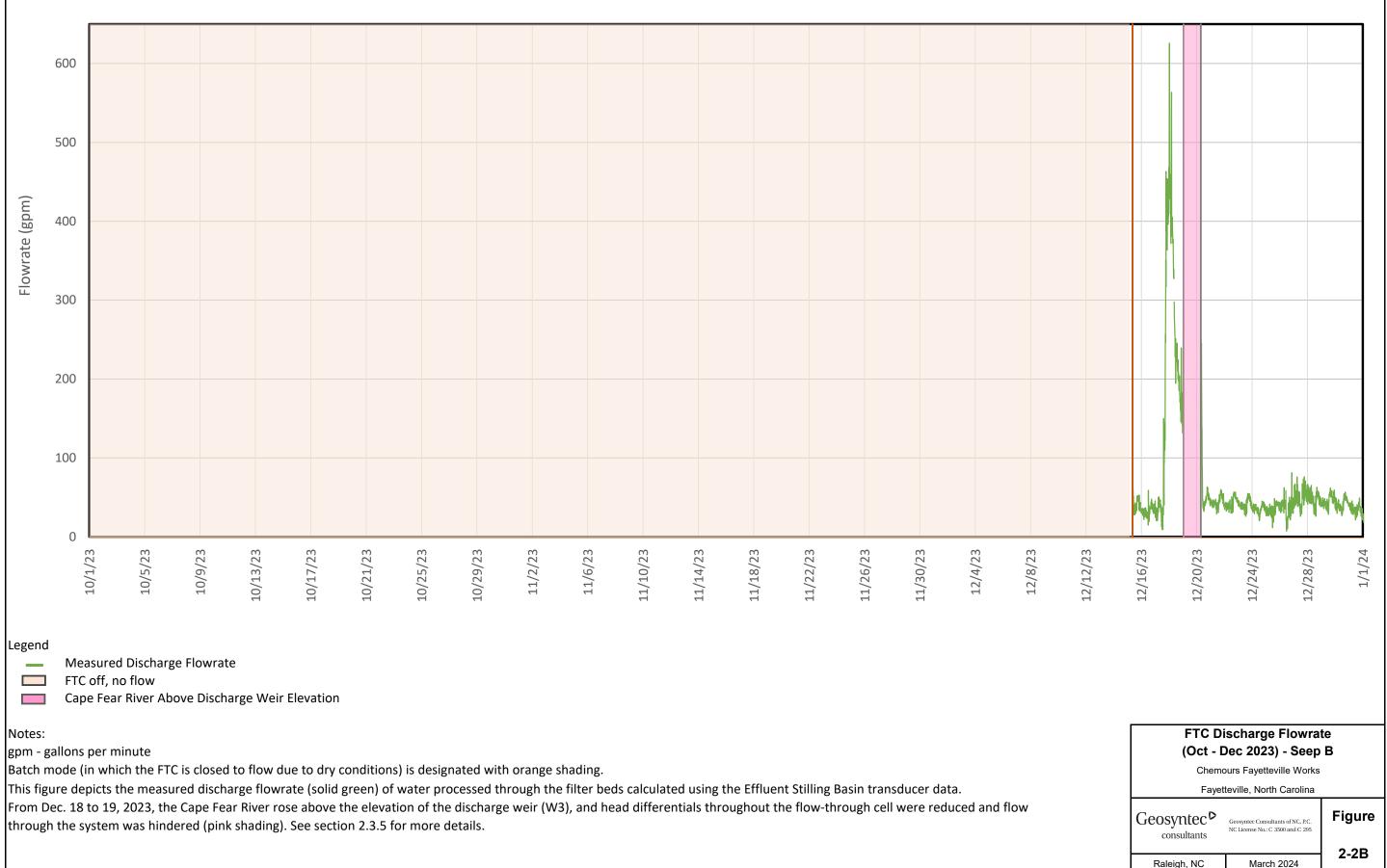
ft³/sec - cubic foot per second

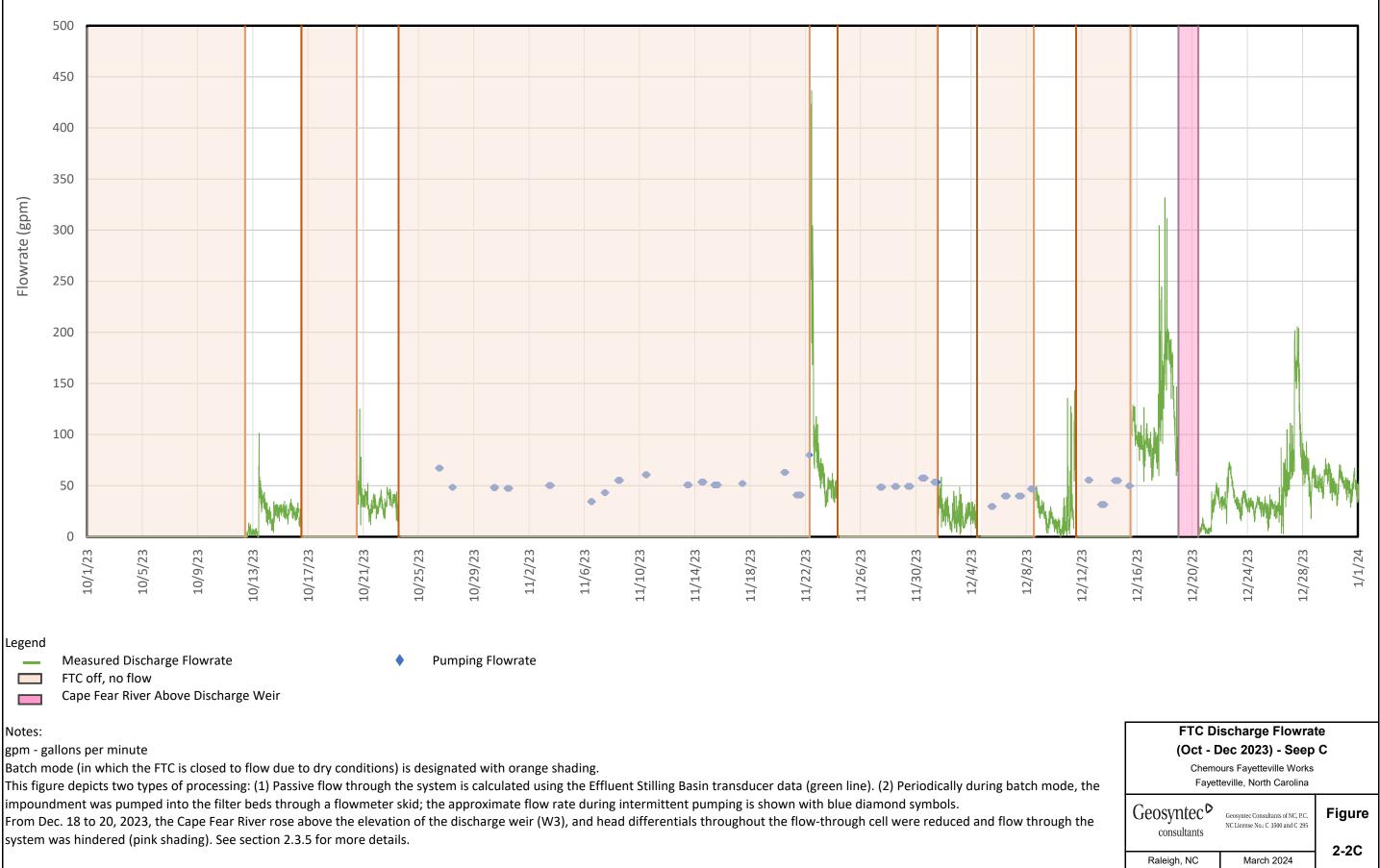
 Δ - delta or change

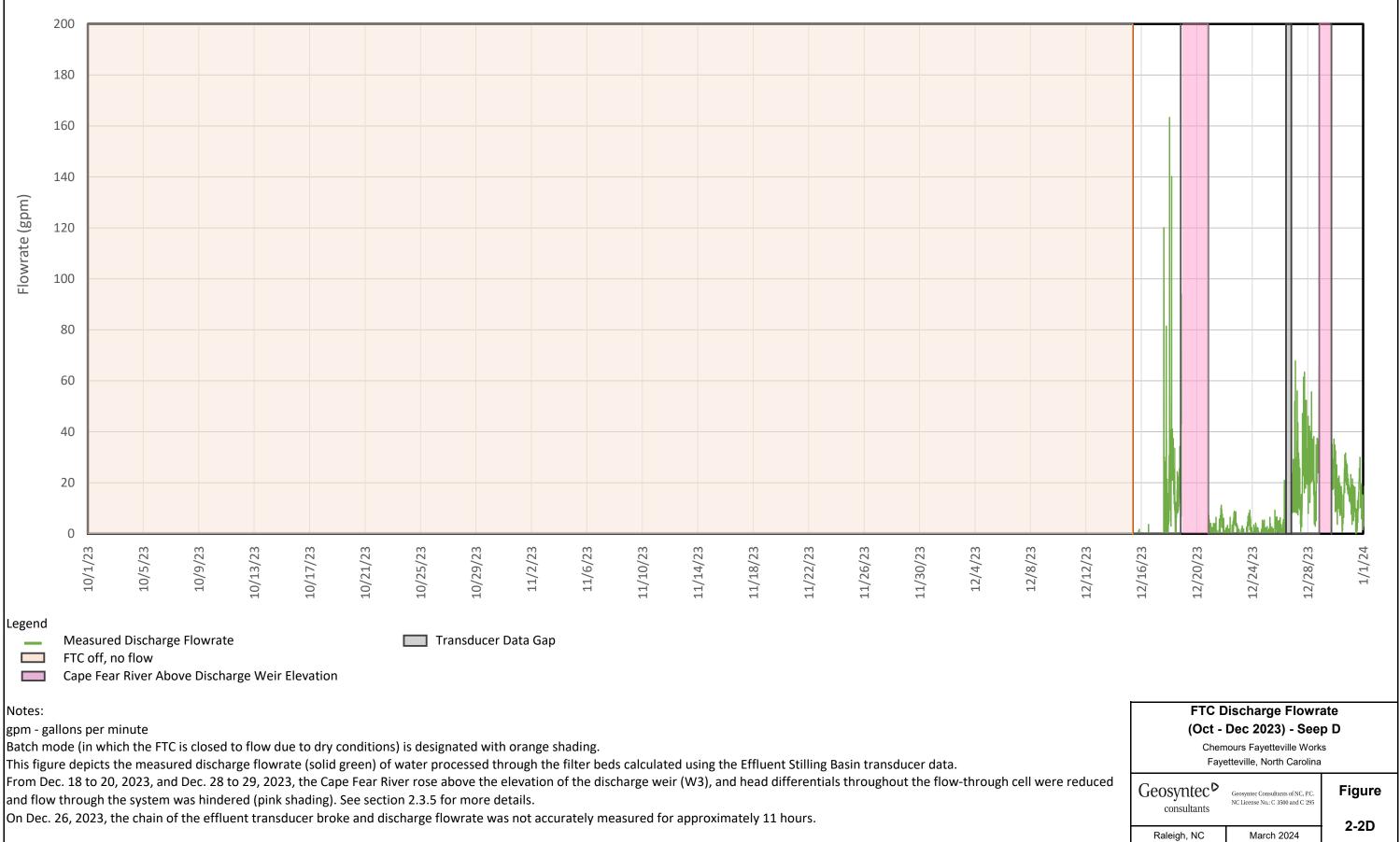

ng/L - nanograms per liter

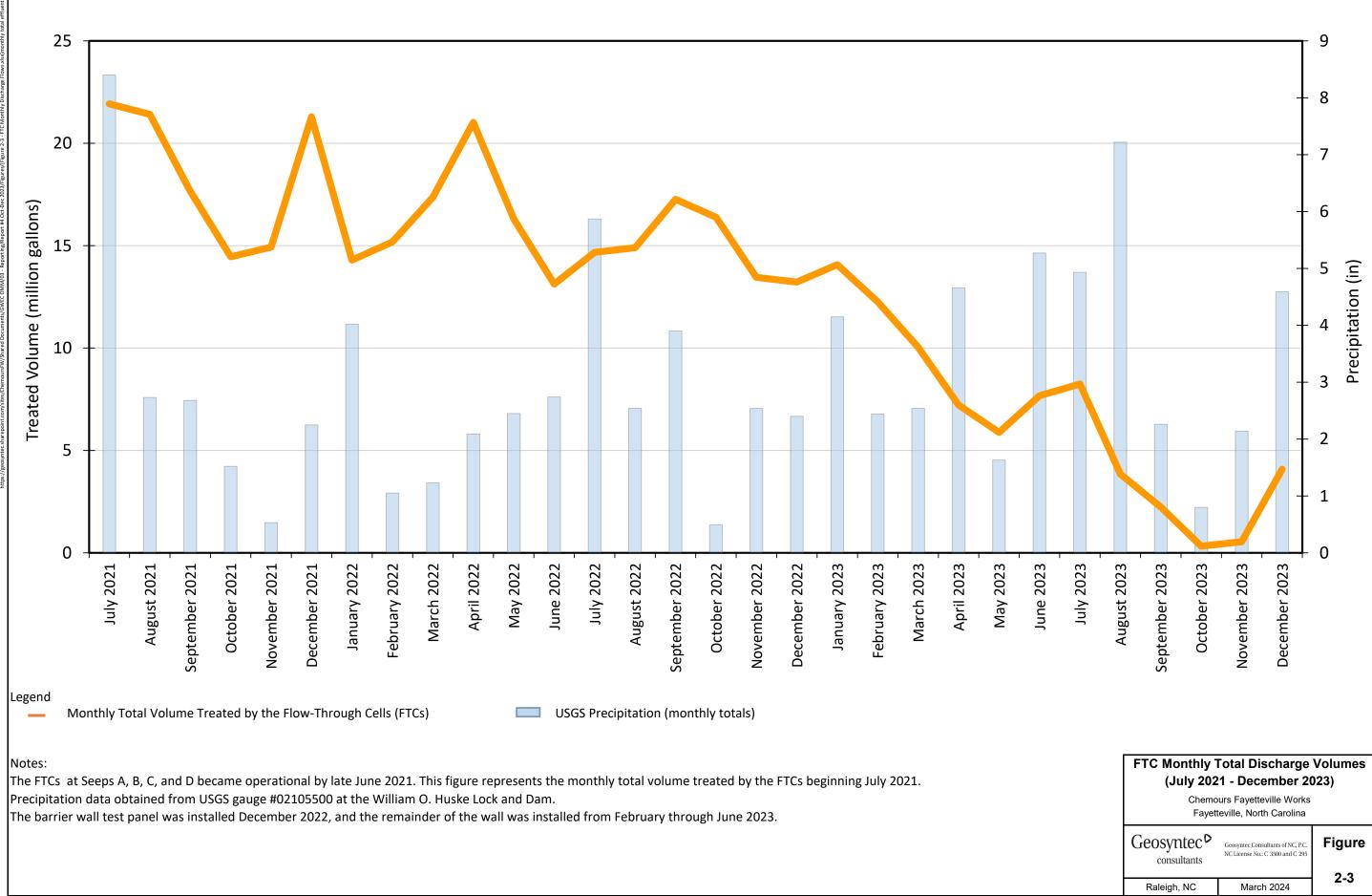

mg/sec - milligrams per second

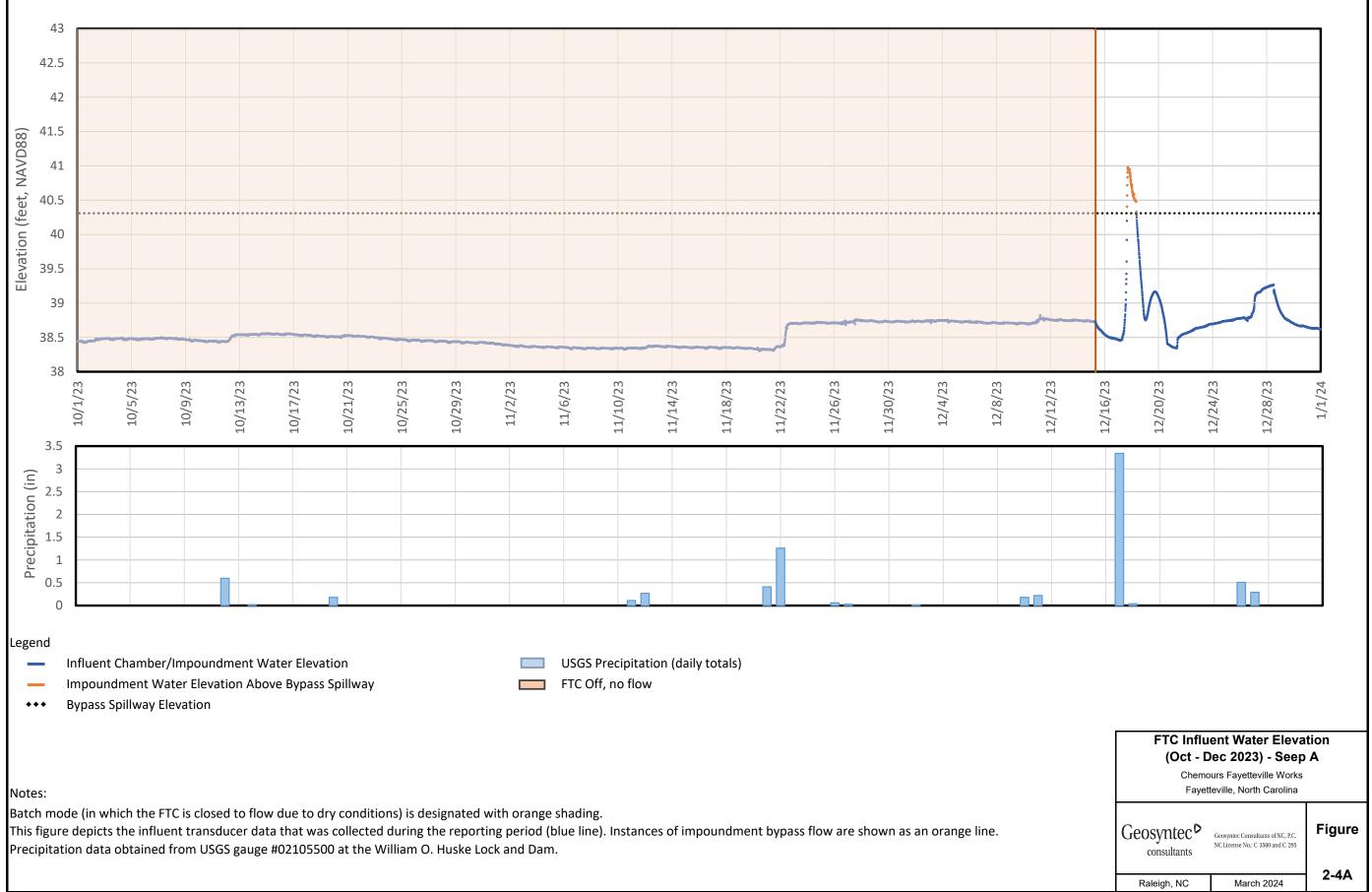


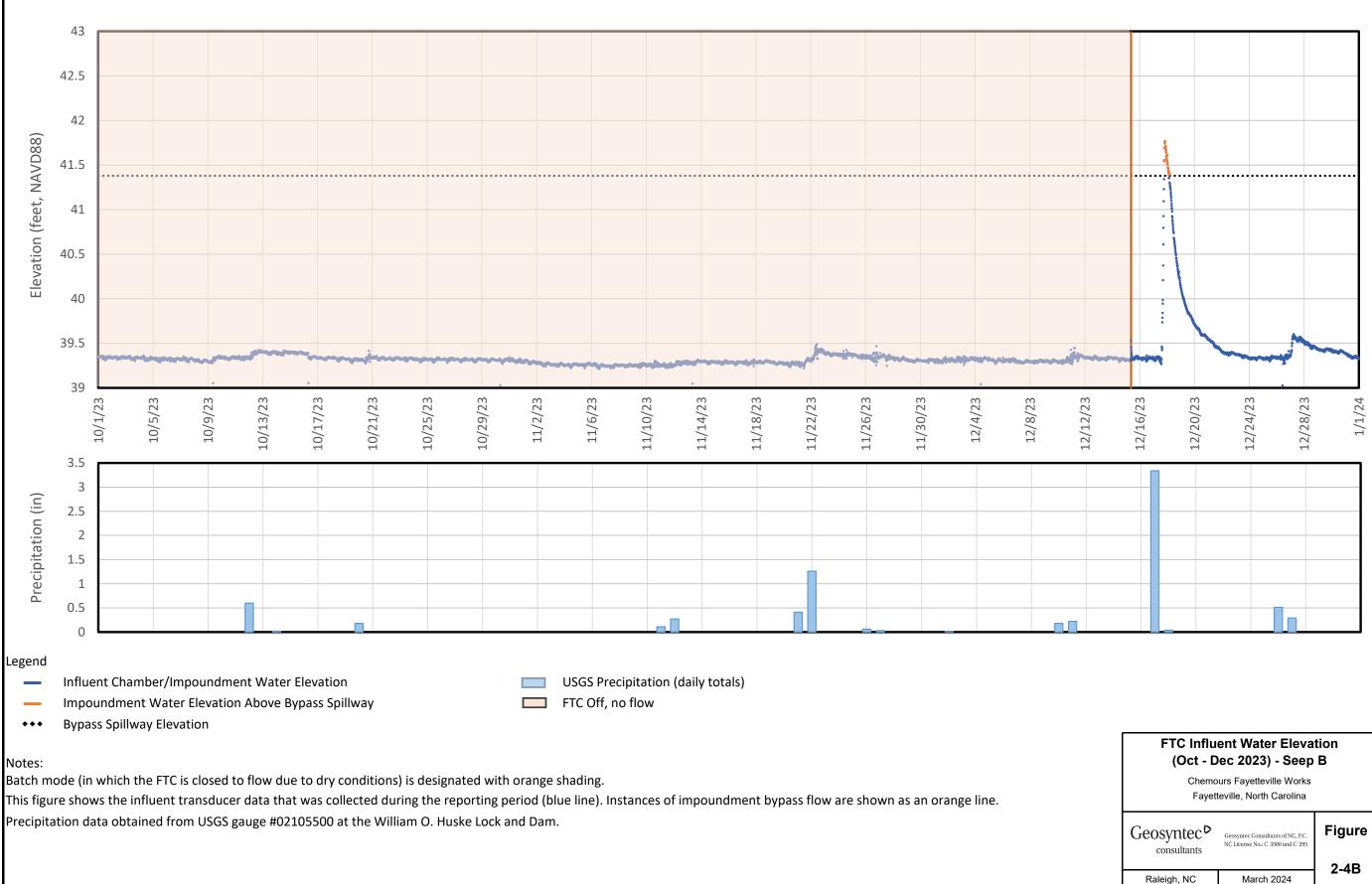

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

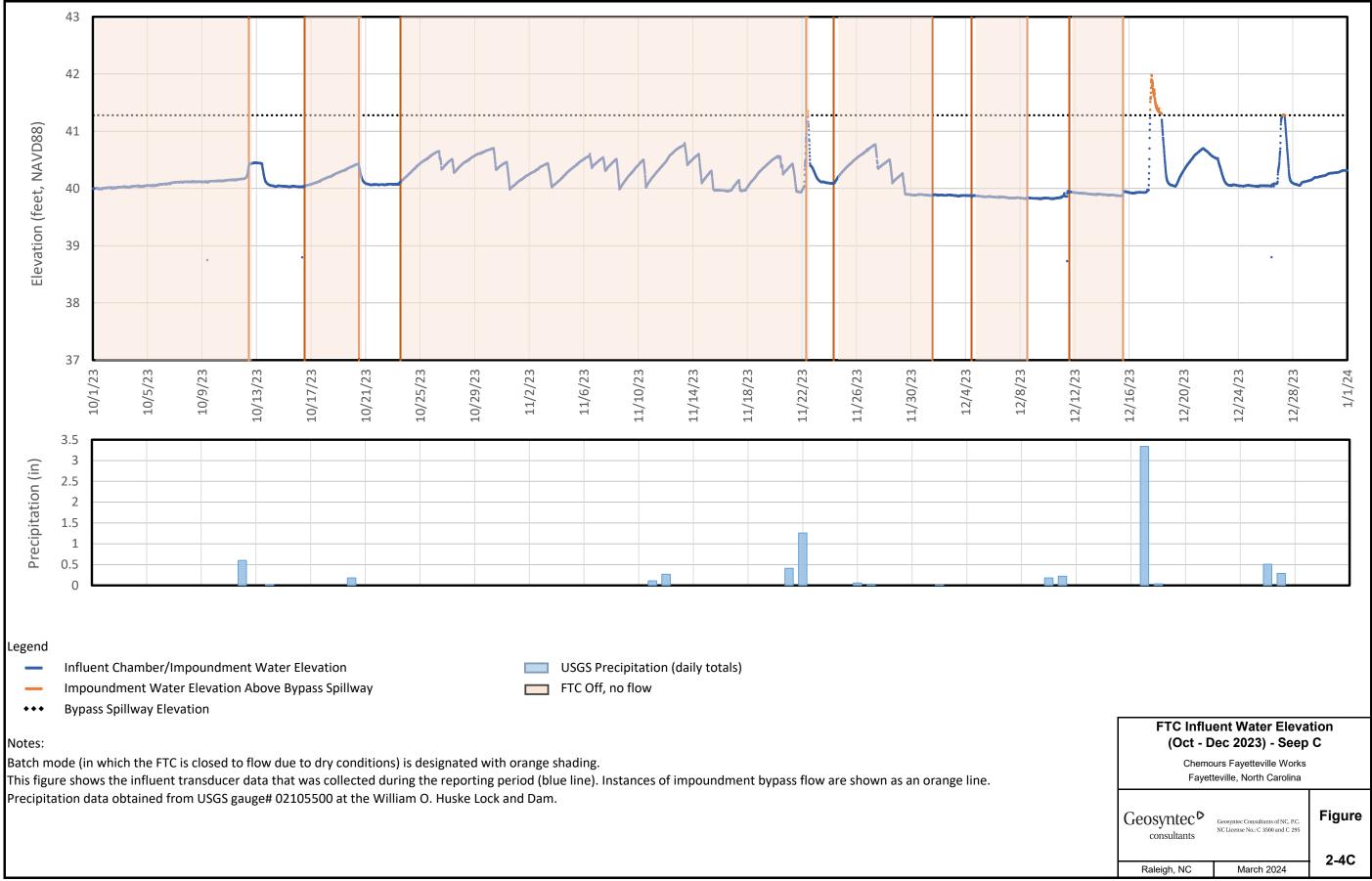

Figures

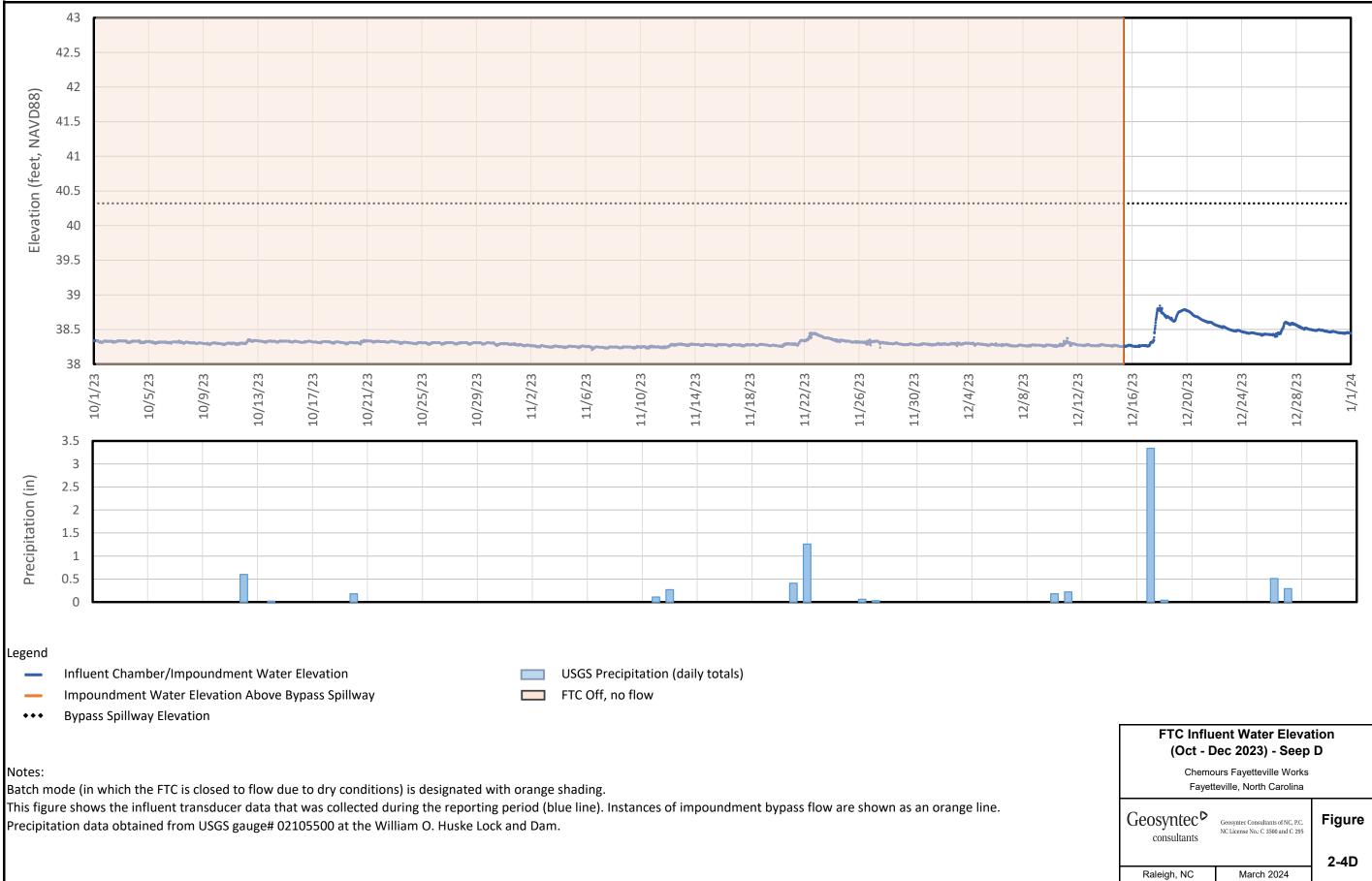


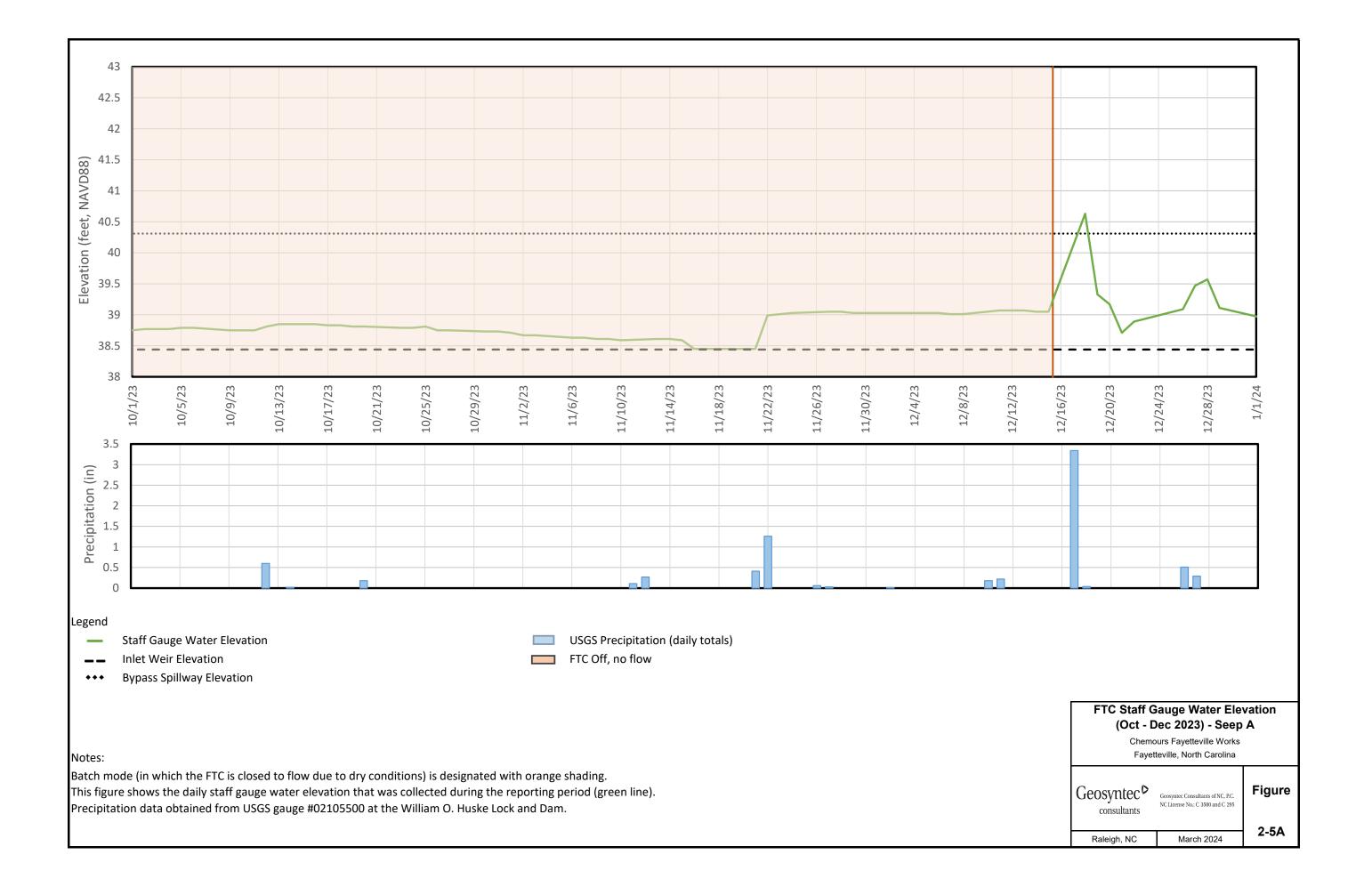


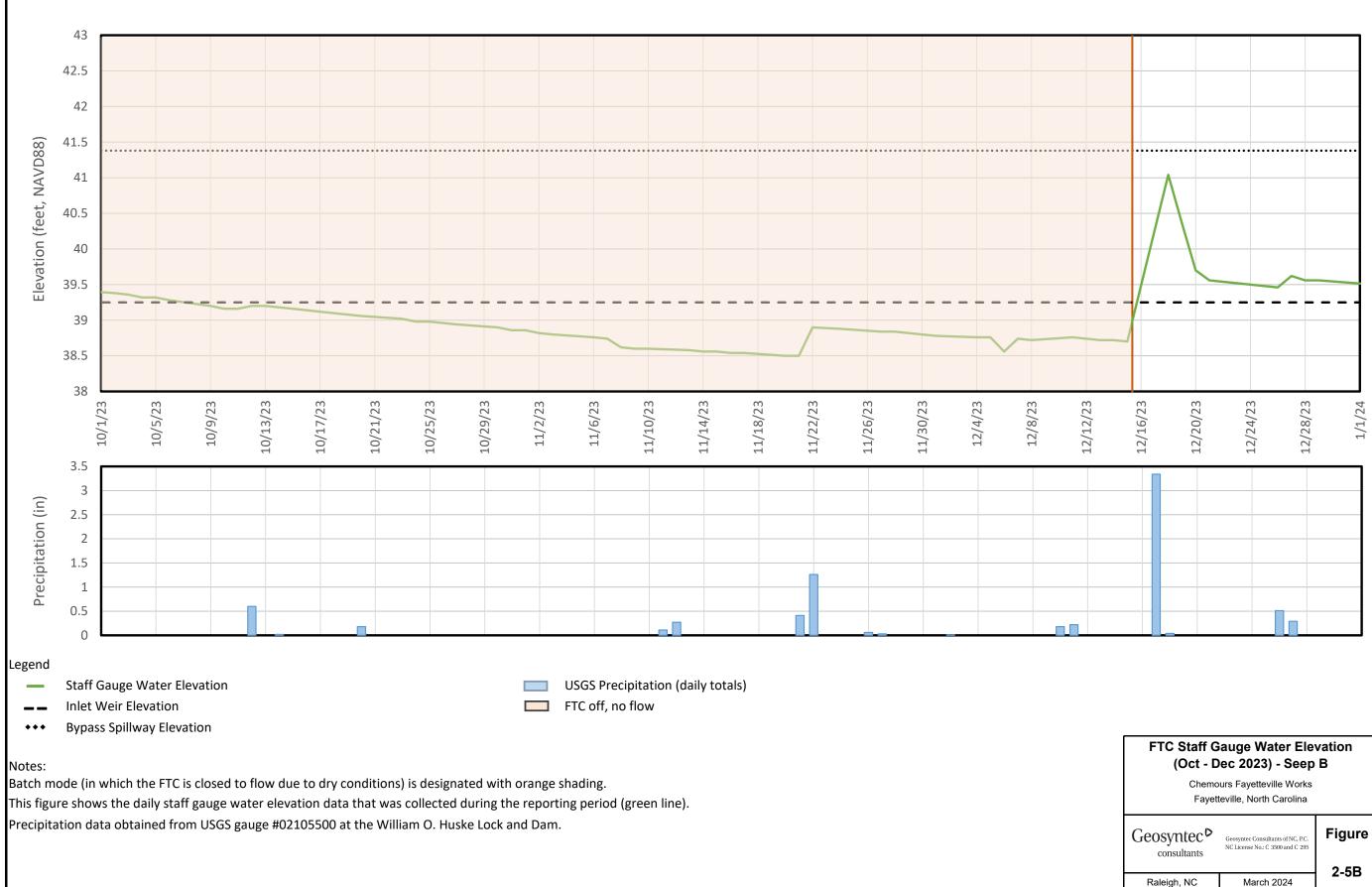


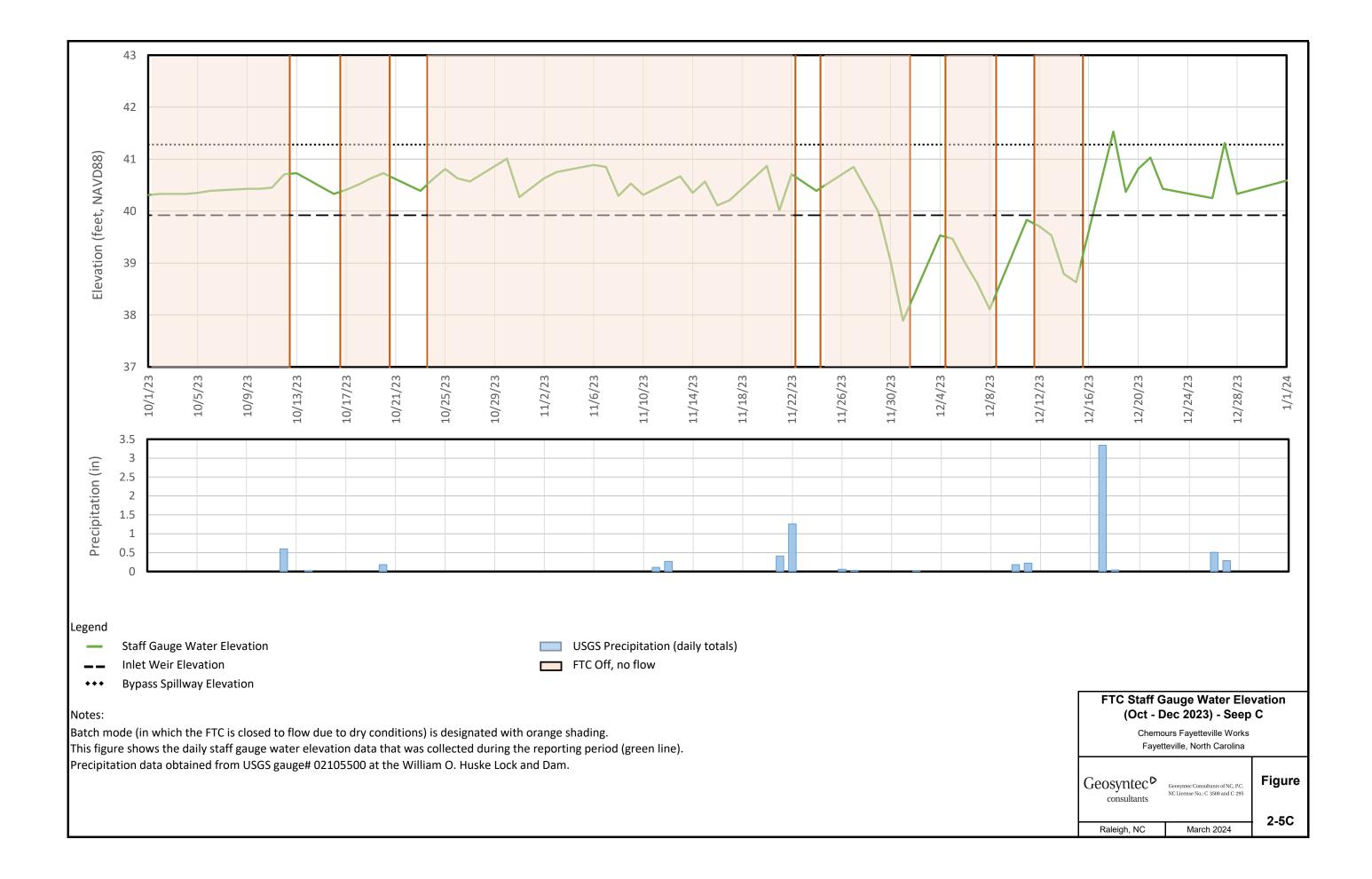


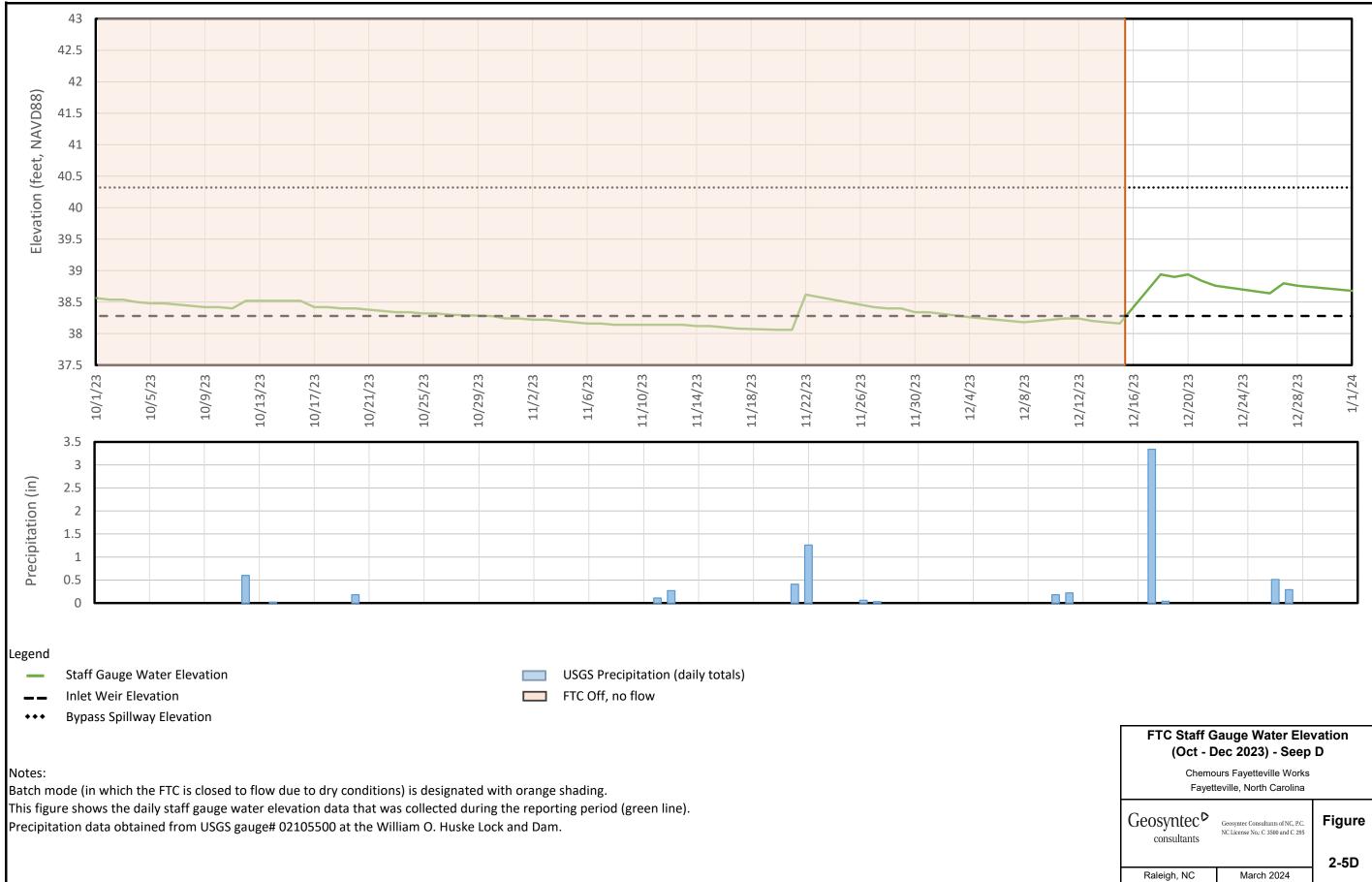


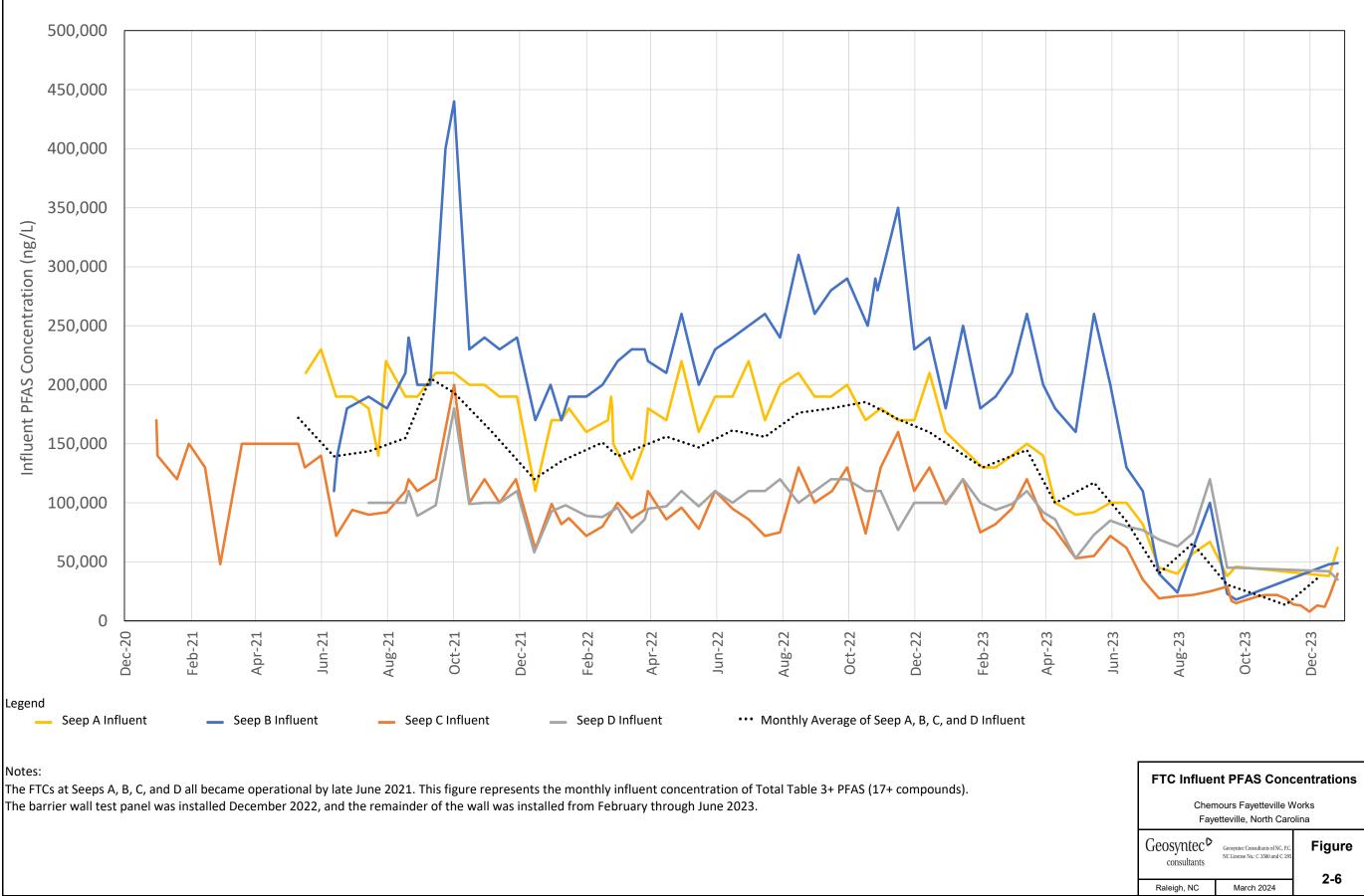


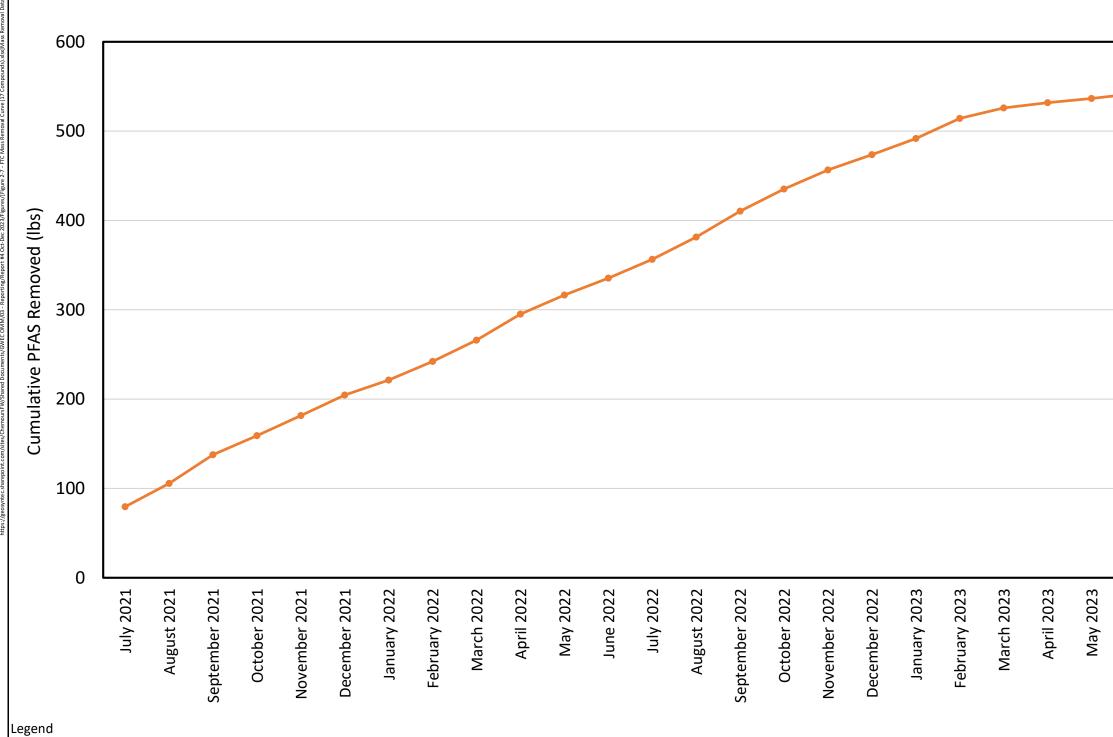


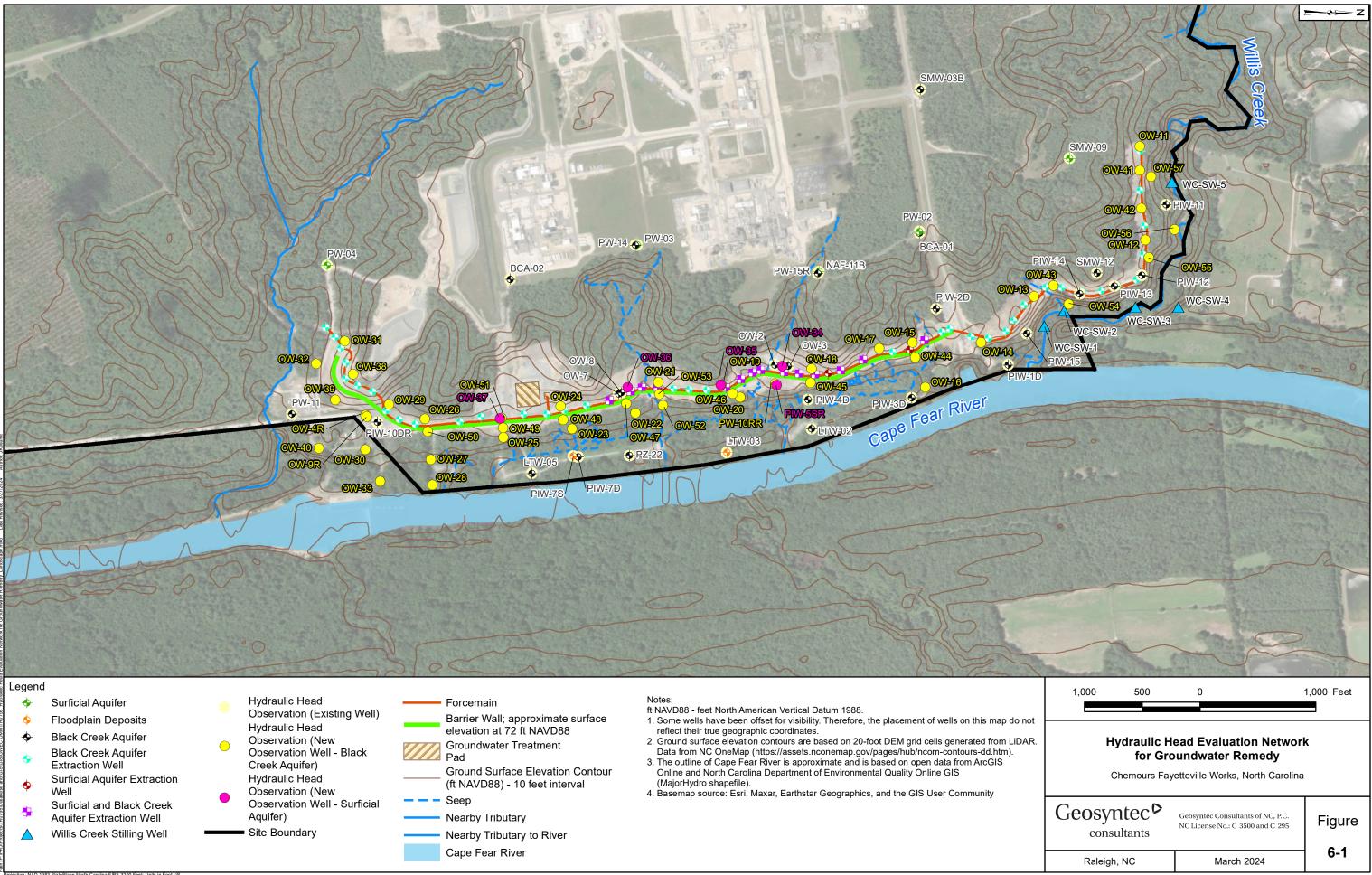


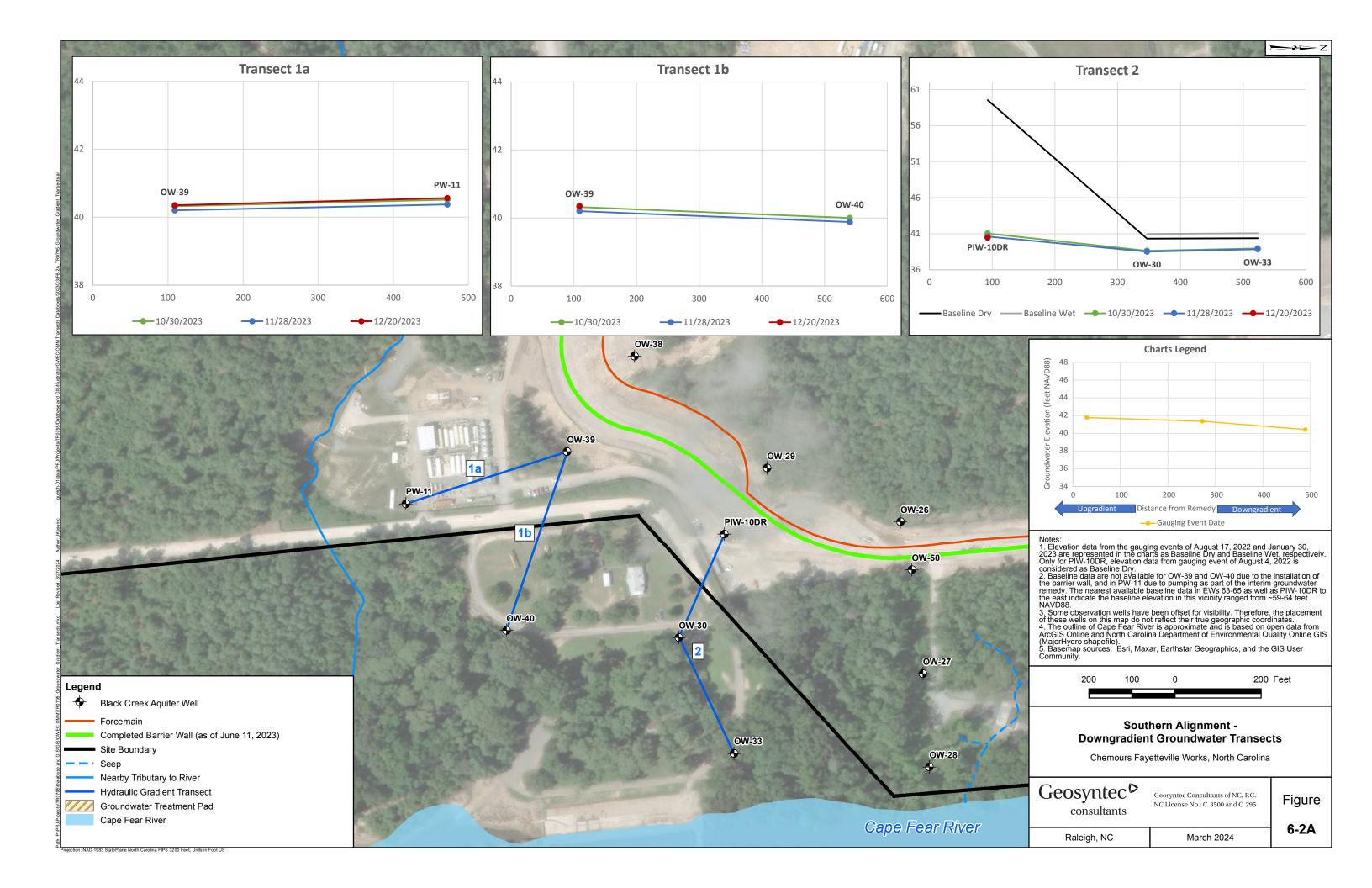


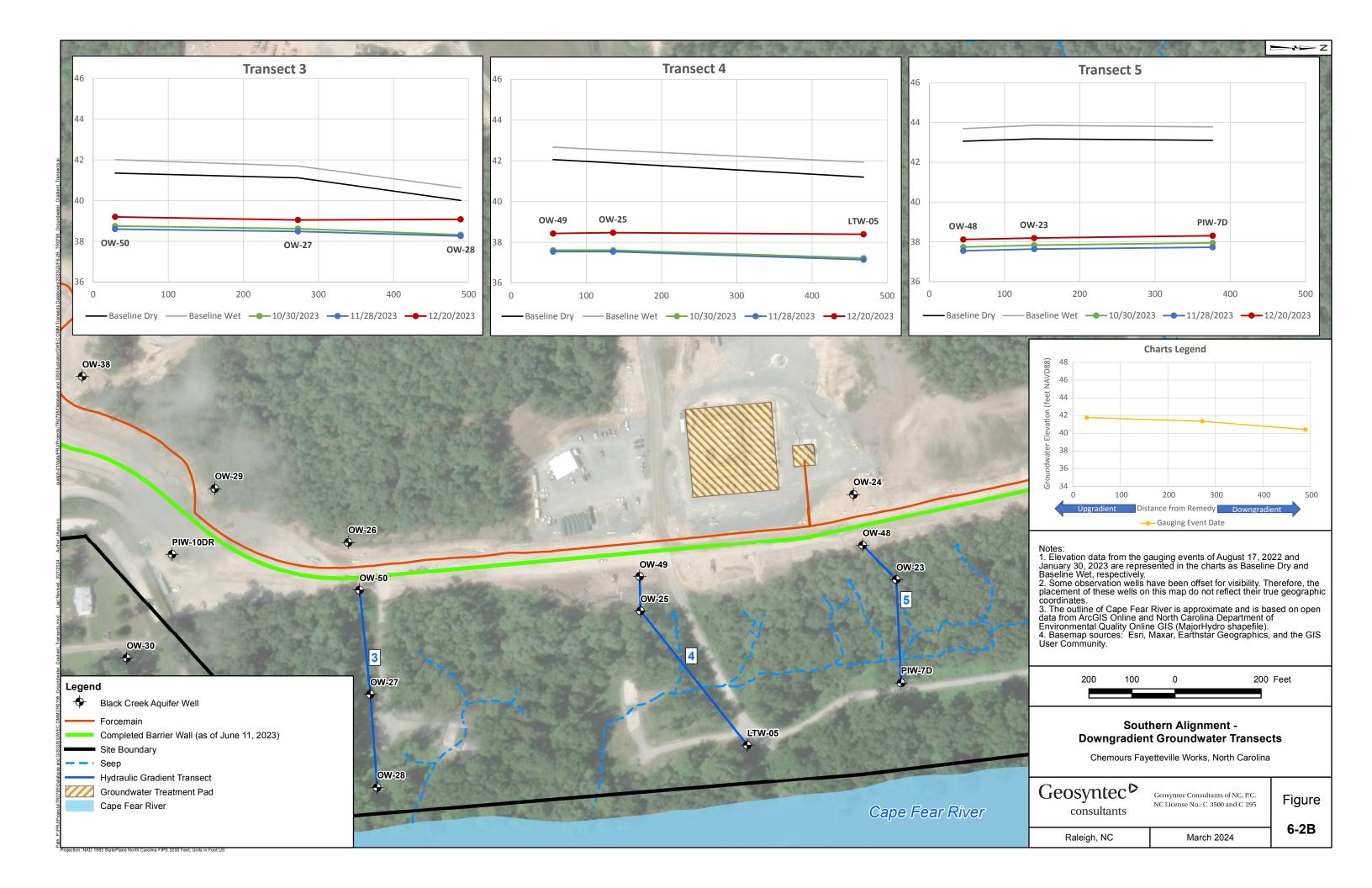


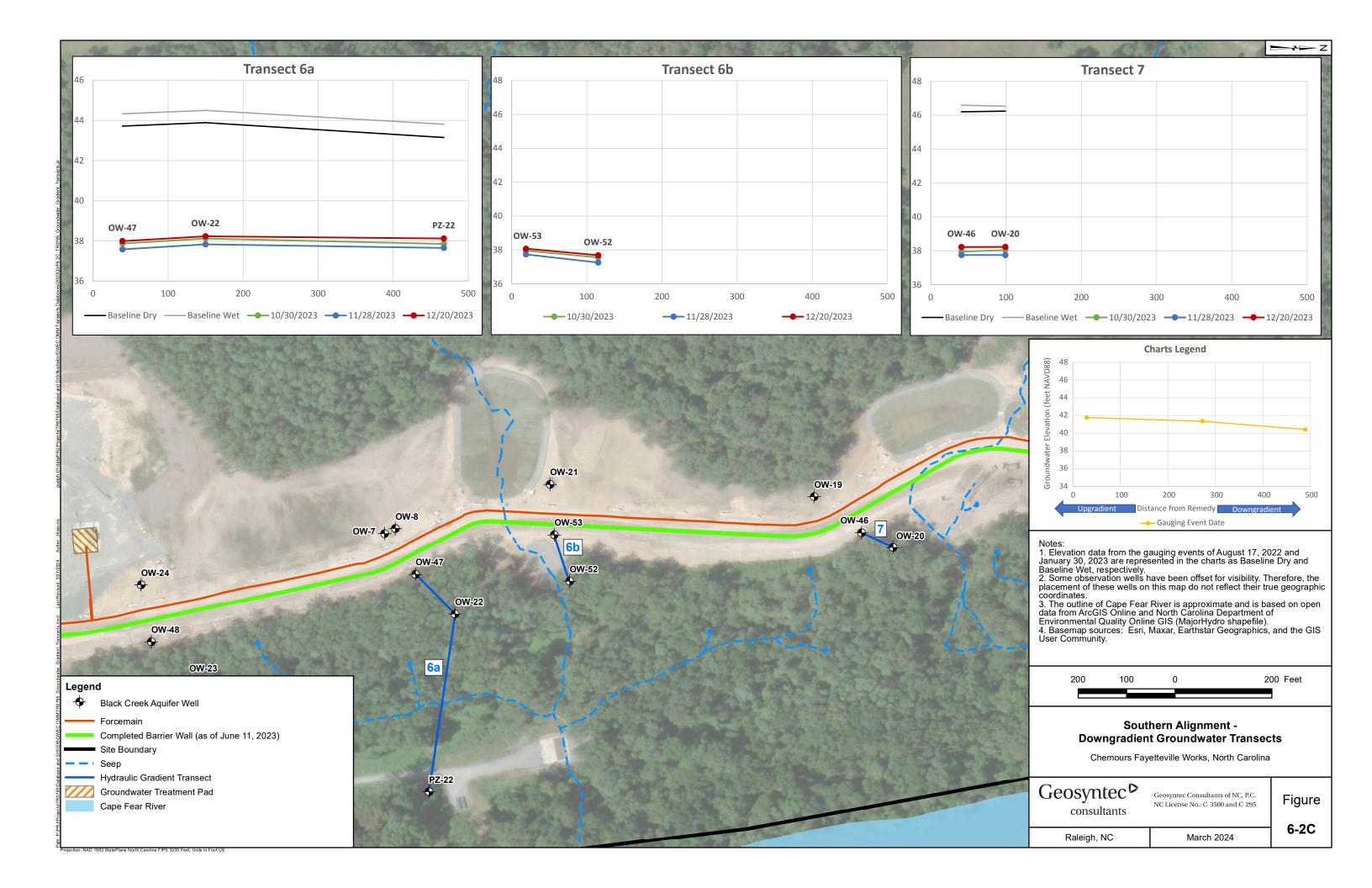


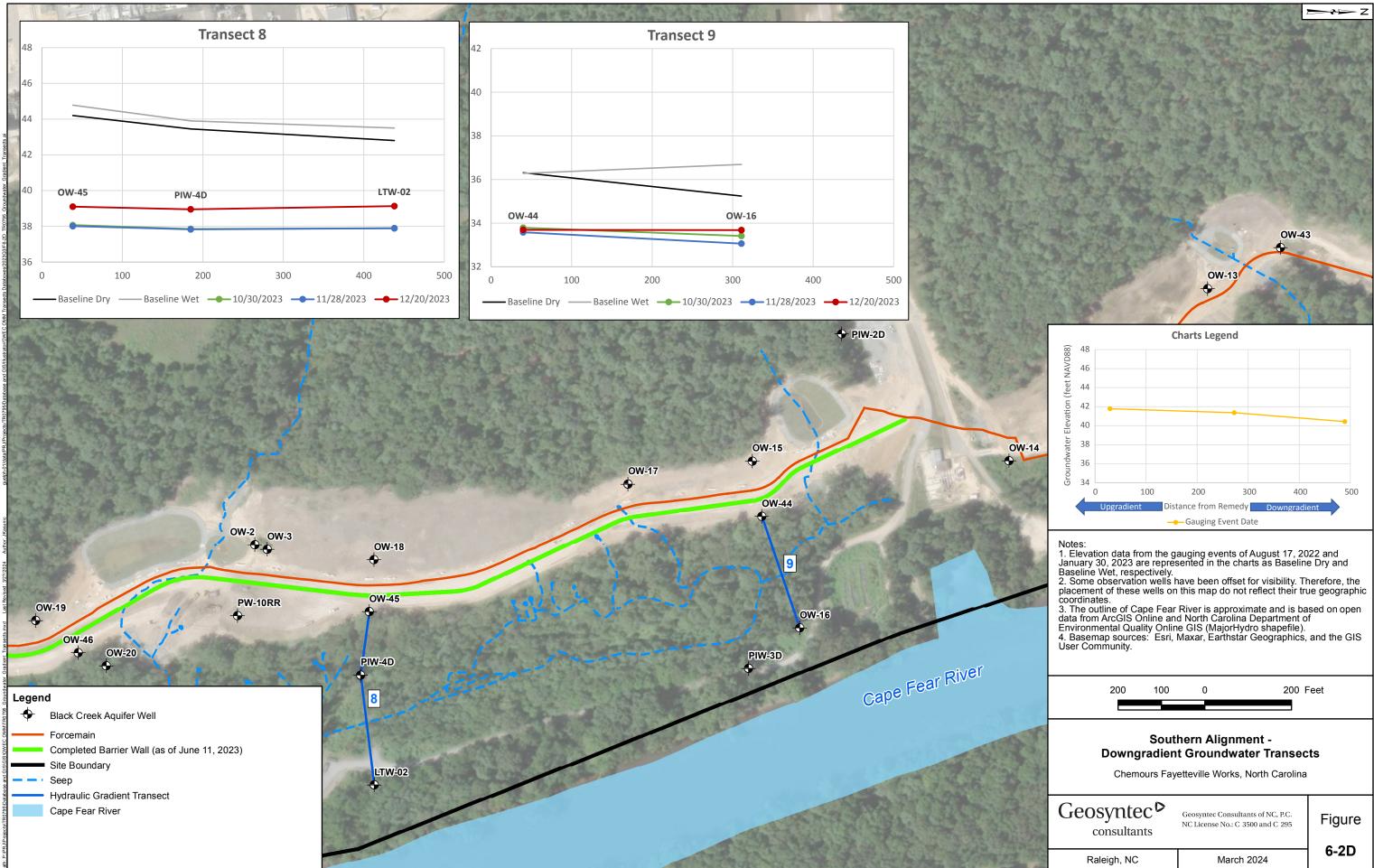


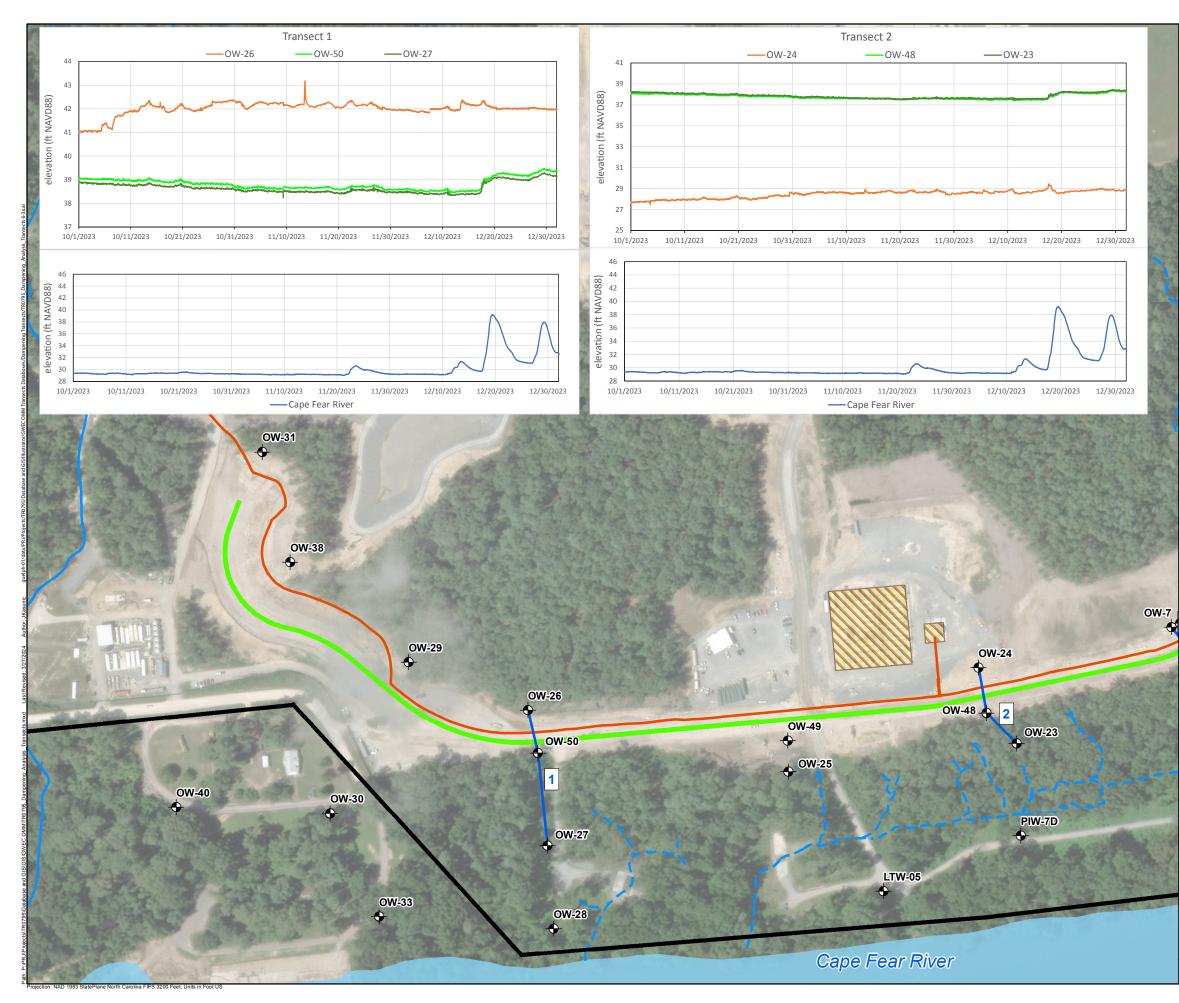

Cumulative PFAS Removed (lbs)


Notes:

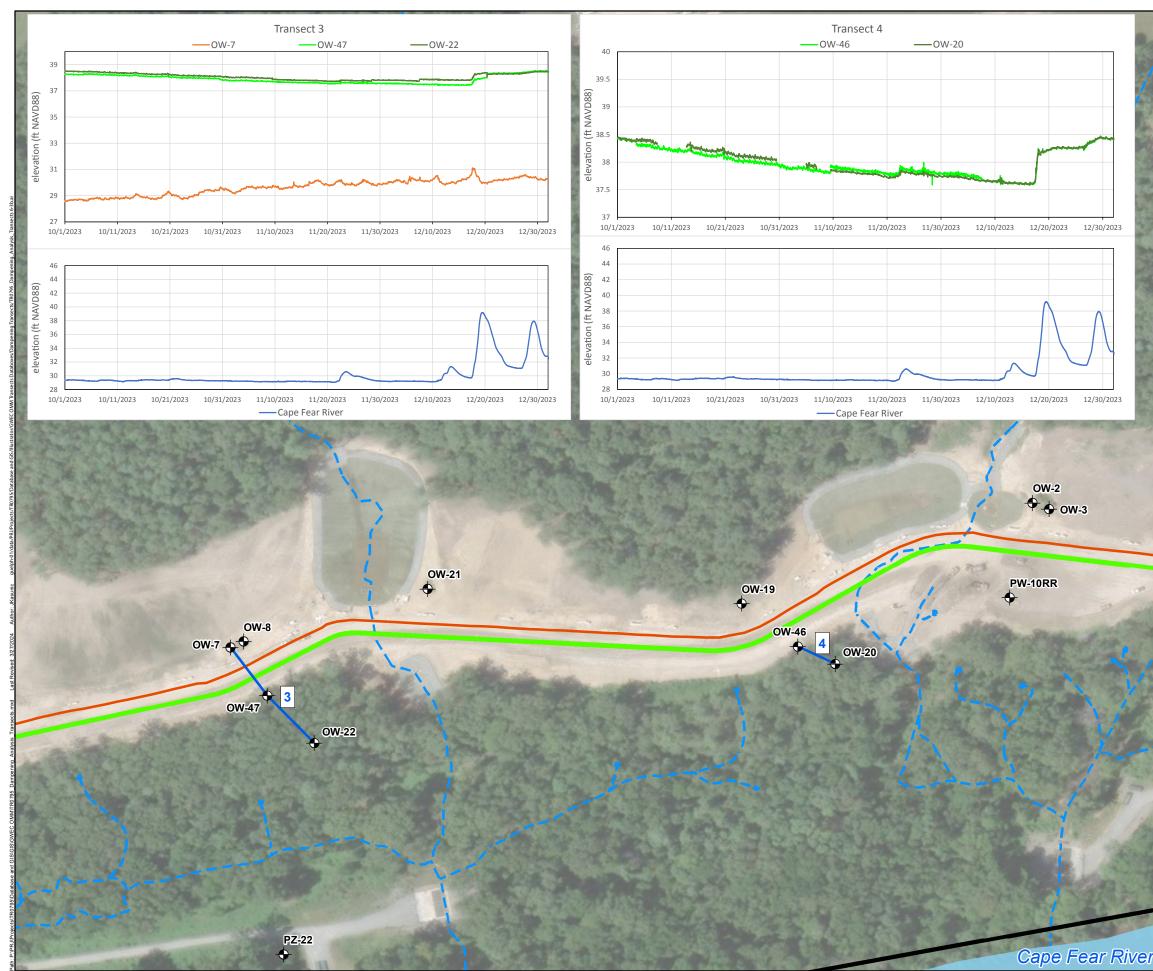

The FTCs at Seeps A, B, C, and D became operational by late June 2021. This figure presents the cumulative pounds (lbs) of PFAS removed by the FTCs beginning July 2021. Total lbs of PFAS removed is calculated for Total Table 3+ (17 Compounds).


The barrier wall test panel was installed December 2022, and the remainder of the wall was installed from February through June 2023.


				-		
23	23	23	23	23	23	23
June 202	July 2023	August 202	ber 20	October 202	November 202	December 2023
<u> </u>		Aug	September 202	Octo	Novem	Decem
			-,			
		FTC Mass Removal Curve (July 2021 - December 2023) Chemours Fayetteville Works				023)
	Ge	Fayetteville, North Carolina Geosyntec Geosyntec Geosyntec Reconsultants of NC, PC.			Figure	
		NC License No.: C 3500 and C 295 Raleigh, NC March 2024		2-7		



Legend


- \bullet Black Creek Aquifer Well
- Forcemain
- Completed Barrier Wall (as of June 11, 2023)
- Site Boundary
- · Seep
- Nearby Tributary to River
 - Dampening Analysis
 - Groundwater Treatment Pad
 - Cape Fear River

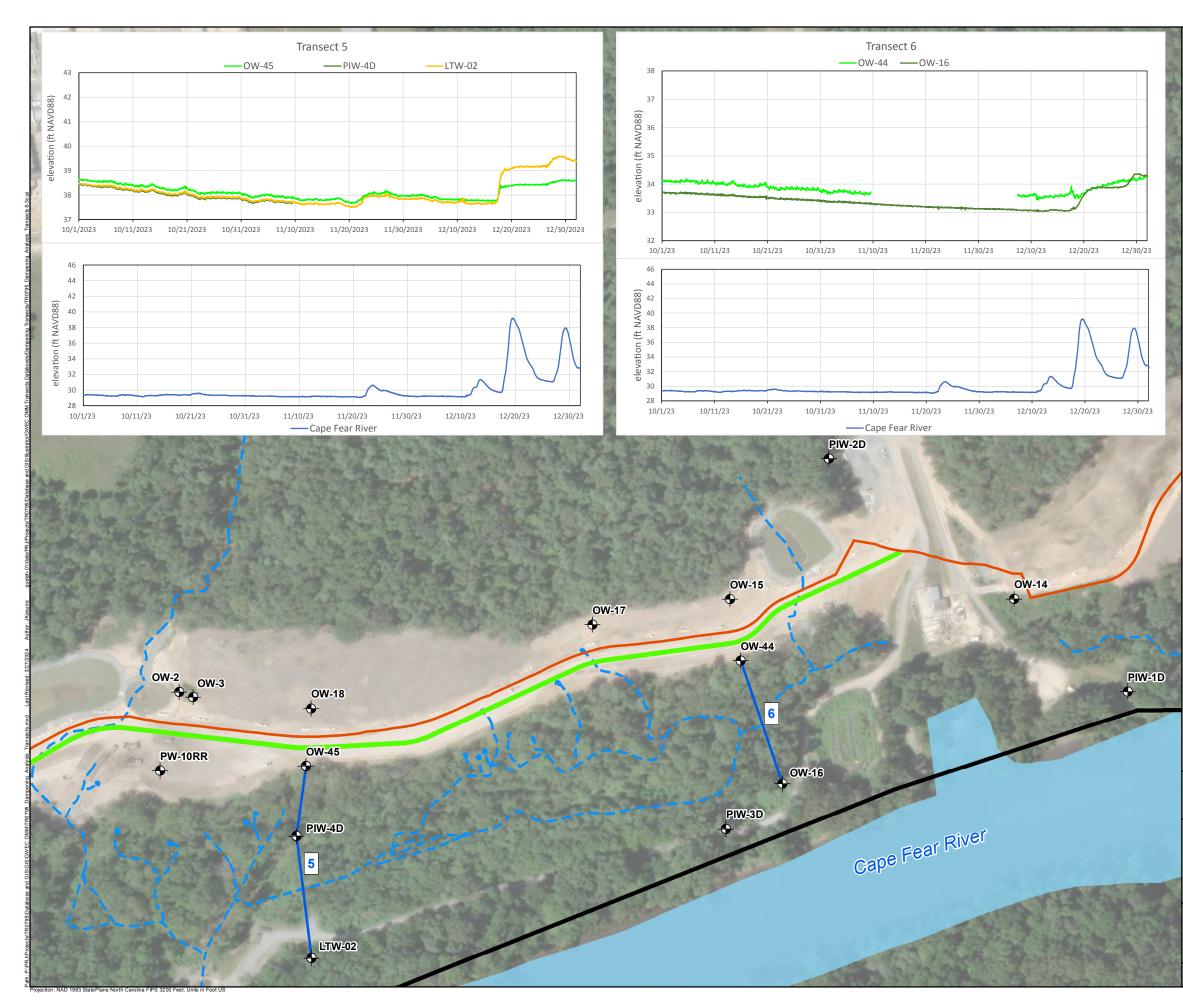
Notes:

1. Gaps in elevation data for some wells in Transects 4, 5, and 6 are due to malfunctioning of installed transducers. 2. Groundwater elevation in observations wells downgradient of the barrier wall is susceptible to fluctuations in Cape Fear River elevation, thereby influencing the downgradient groundwater transects.

transects.
3. Some observation wells have been offset for visibility. Therefore, the placement of these wells on this map do not reflect their true geographic coordinates.
4. The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmental Quality Online GIS (MajorHydro shapefile).
5. Basemap sources: Esri, Maxar, Earthstar Geographics, and the GIS User Community. GIS User Community.

250 125	0 250 F	Feet		
Southern Alignment - Dampening Analysis Transects Chemours Fayetteville Works, North Carolina				
Geosyntec ^{>} consultants	Geosyntec Consultants of NC, P.C. NC License No.: C 3500 and C 295	Figure		
Raleigh, NC	March 2024	6-3A		

Legend


•	Black Creek Aquifer Well
	Forcemain
	Completed Barrier Wall (as of June 11, 2023)
	Site Boundary
	Seep
	Dampening Analysis Transect
	Cape Fear River

Notes: 1. Gaps in elevation data for some wells in Transects 4, 5, and 6 are due to malfunctioning of installed transducers. 2. Groundwater elevation in observations wells downgradient of the barrier wall is susceptible to fluctuations in Cape Fear River elevation, thereby influencing the downgradient groundwater transects.

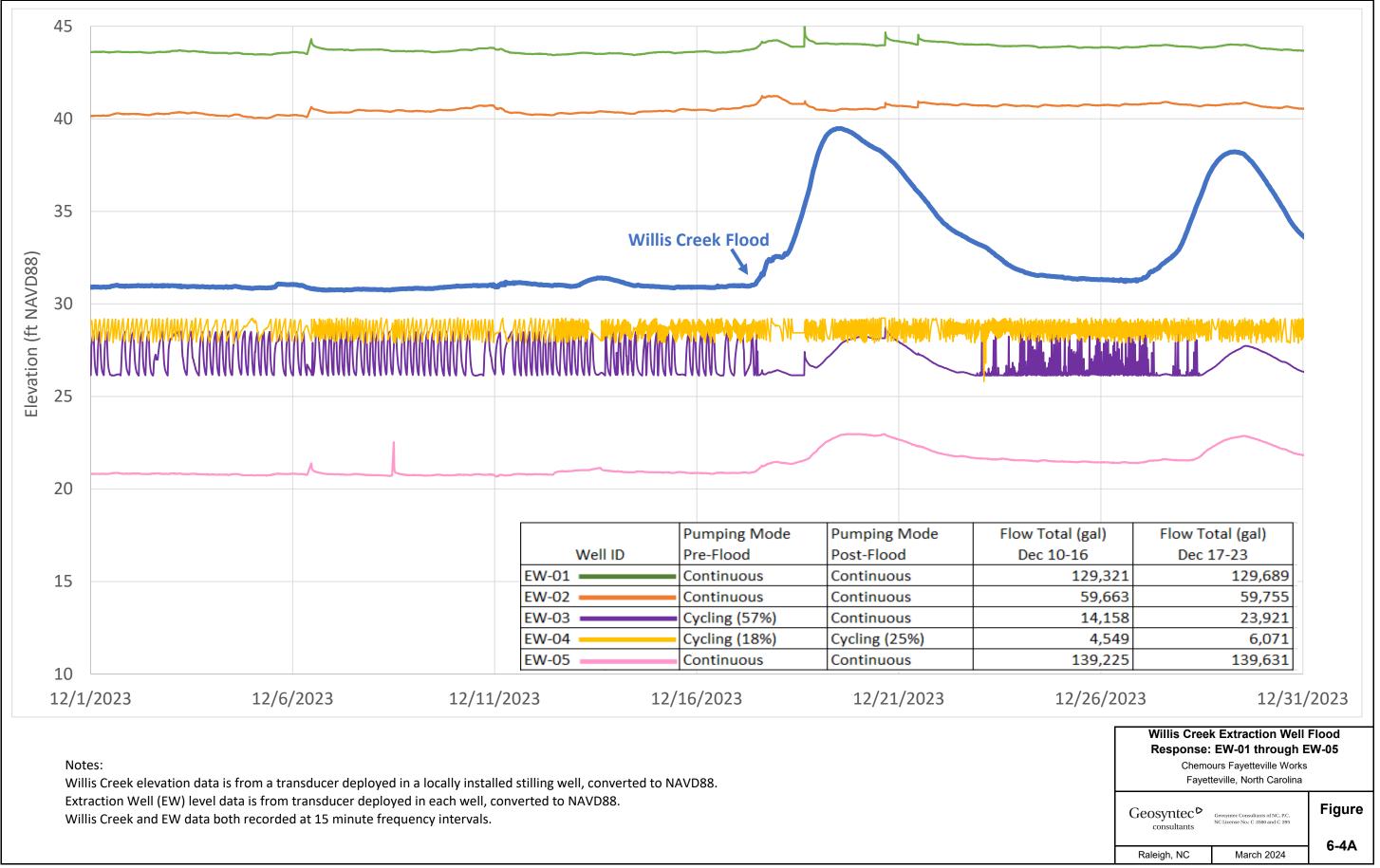
Some observation wells have been offset for visibility. Therefore, the placement of these wells on this map do not reflect their true geographic coordinates.
 The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmental Quelty Online (Meiser Gla)

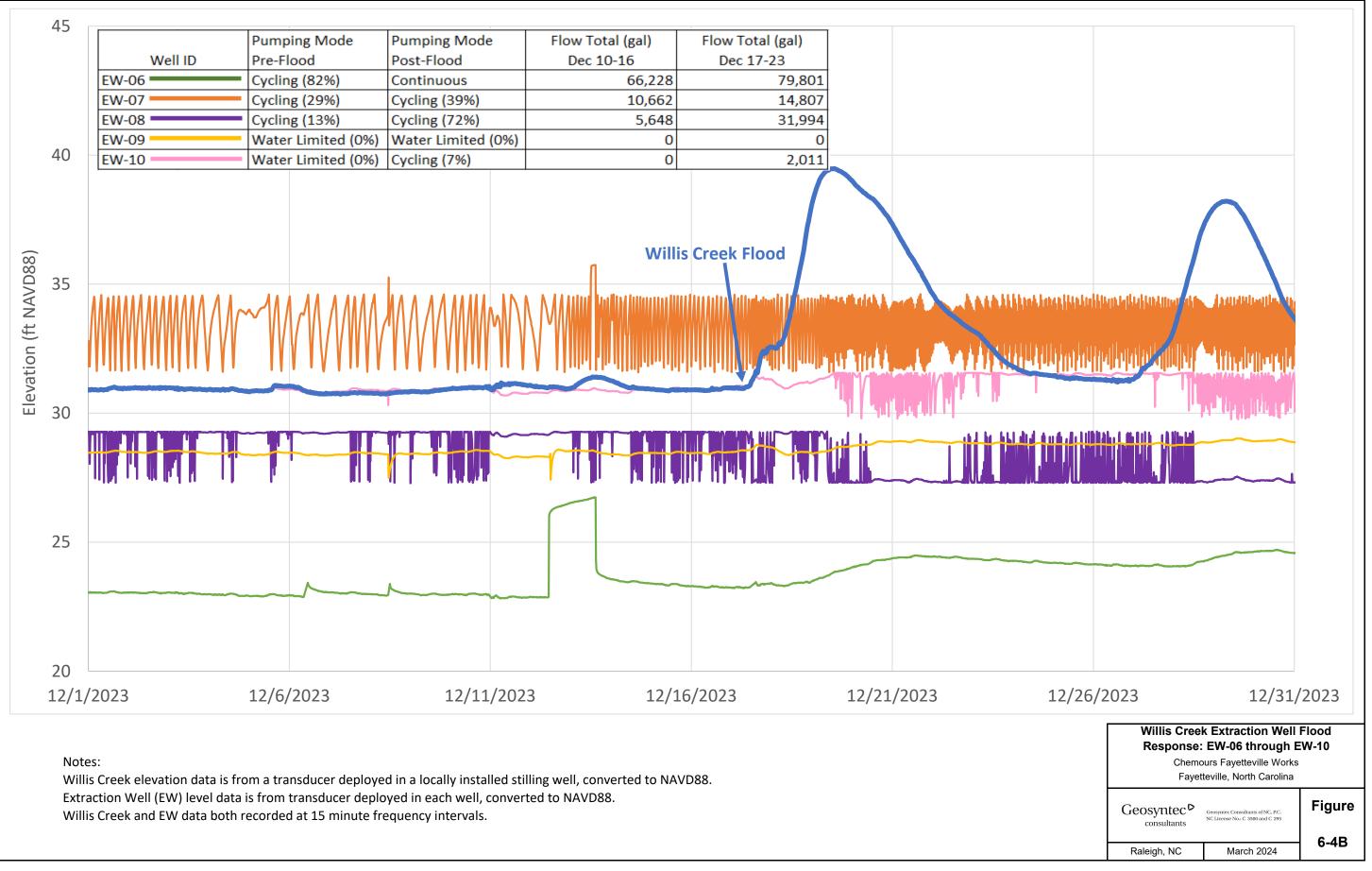
Environmental Quality Online GIS (MajorHydro shapefile). 5. Basemap sources: Esri, Maxar, Earthstar Geographics, and the GIS User Community.

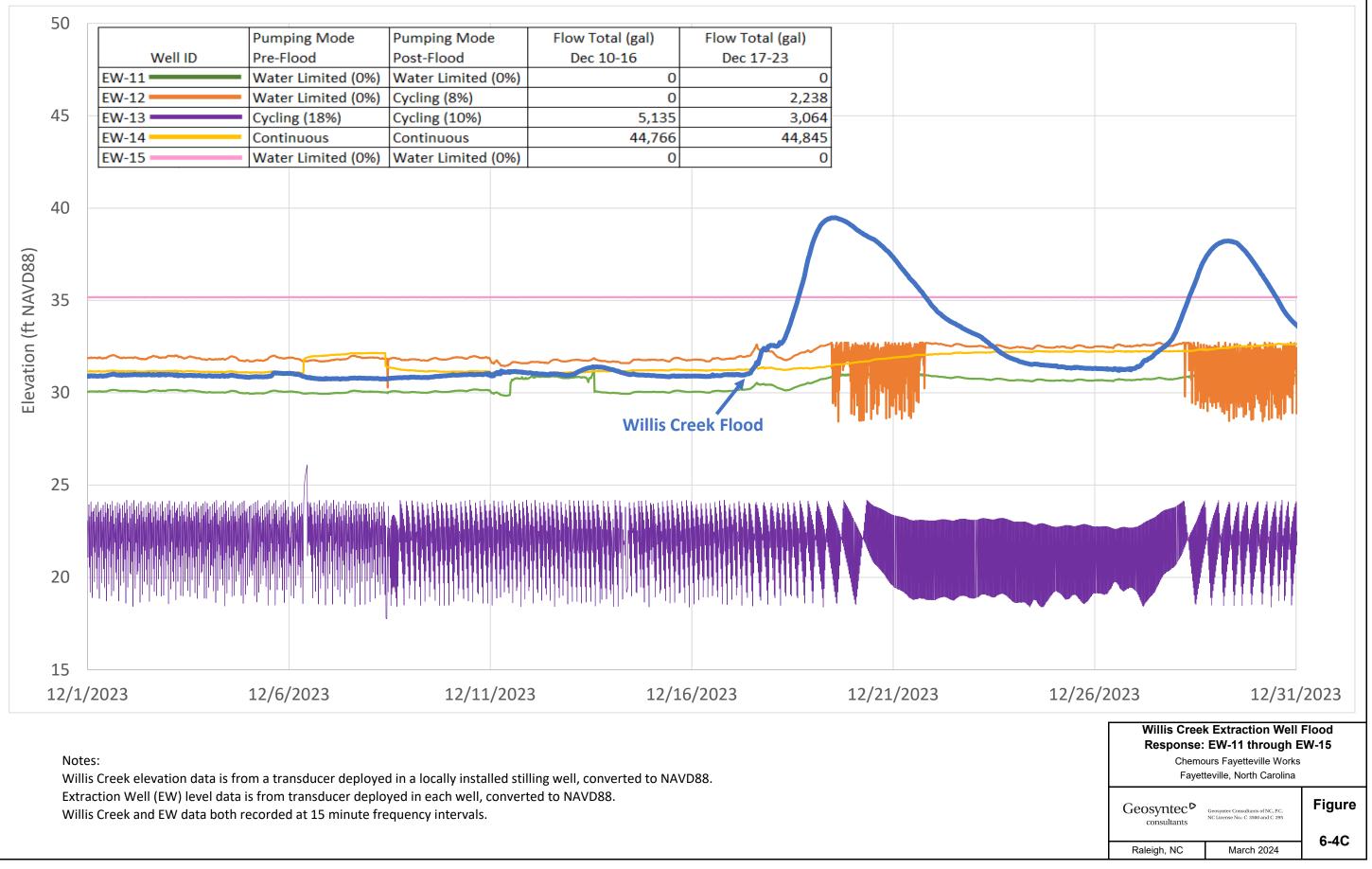
300	250	125	0	250 Feet	
CARL NOR	Southern Alignment - Dampening Analysis Transects Chemours Fayetteville Works, North Carolina				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	yntec [¢]	Geosyntec Consultants of NC, P.C. NC License No.: C 3500 and C 295	Figure	
~	Ralei	igh, NC	March 2024	6-3B	

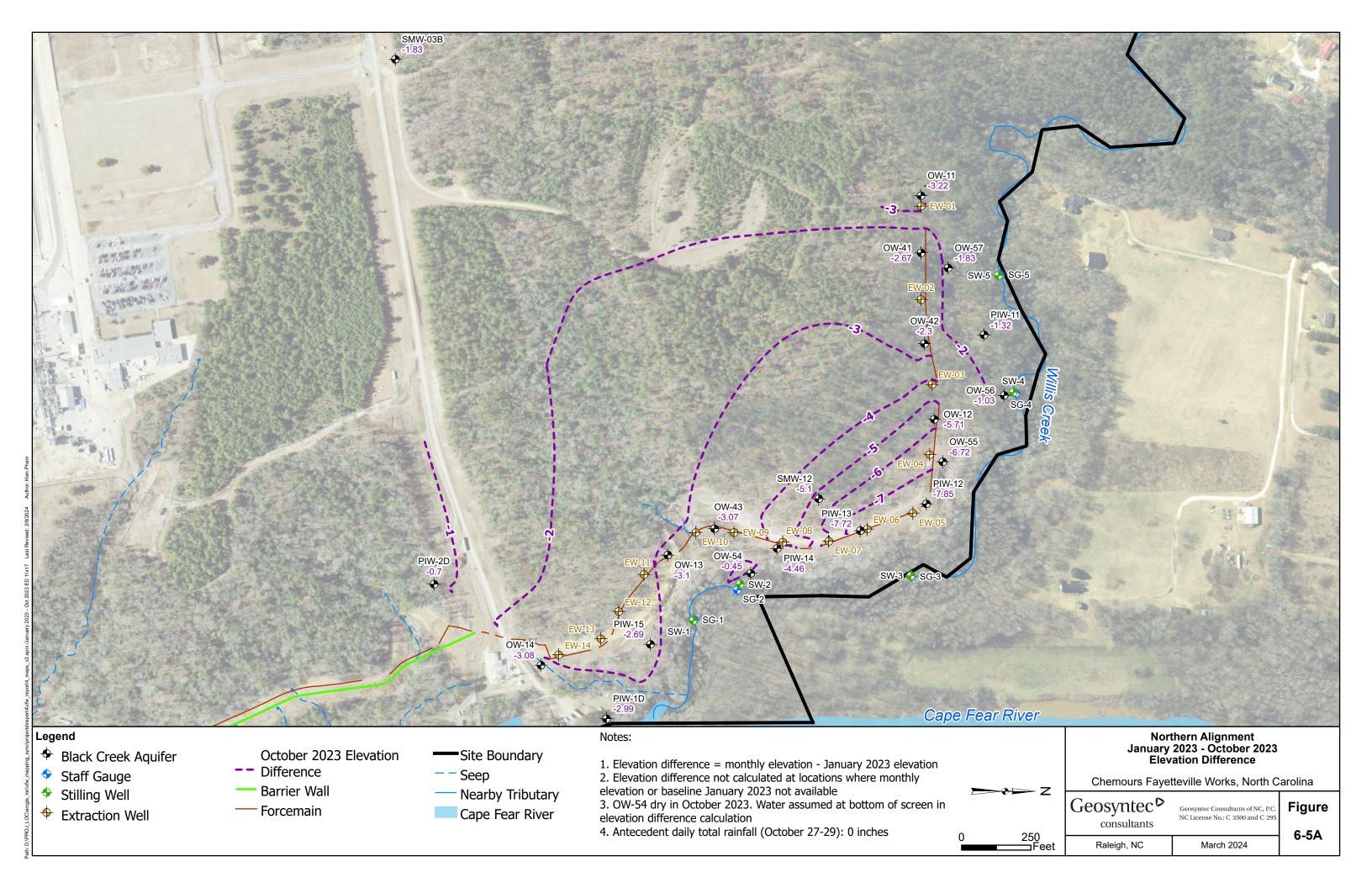
Legend

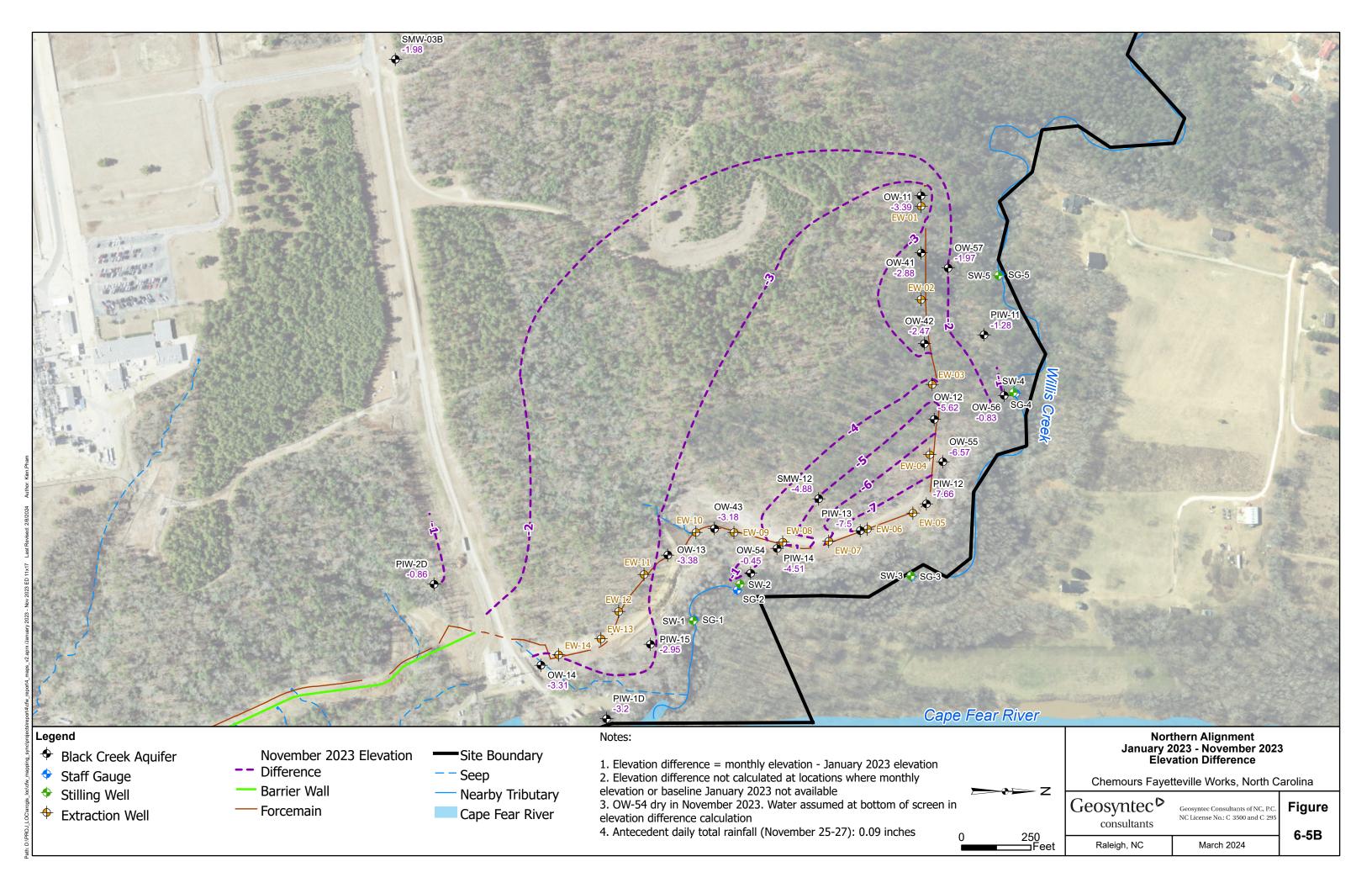
•	Black Creek Aquifer Well		
	Forcemain		
	Completed Barrier Wall (as of June 11, 2023)		
	Site Boundary		
	Seep		
	Dampening Analysis		
	Cape Fear River		

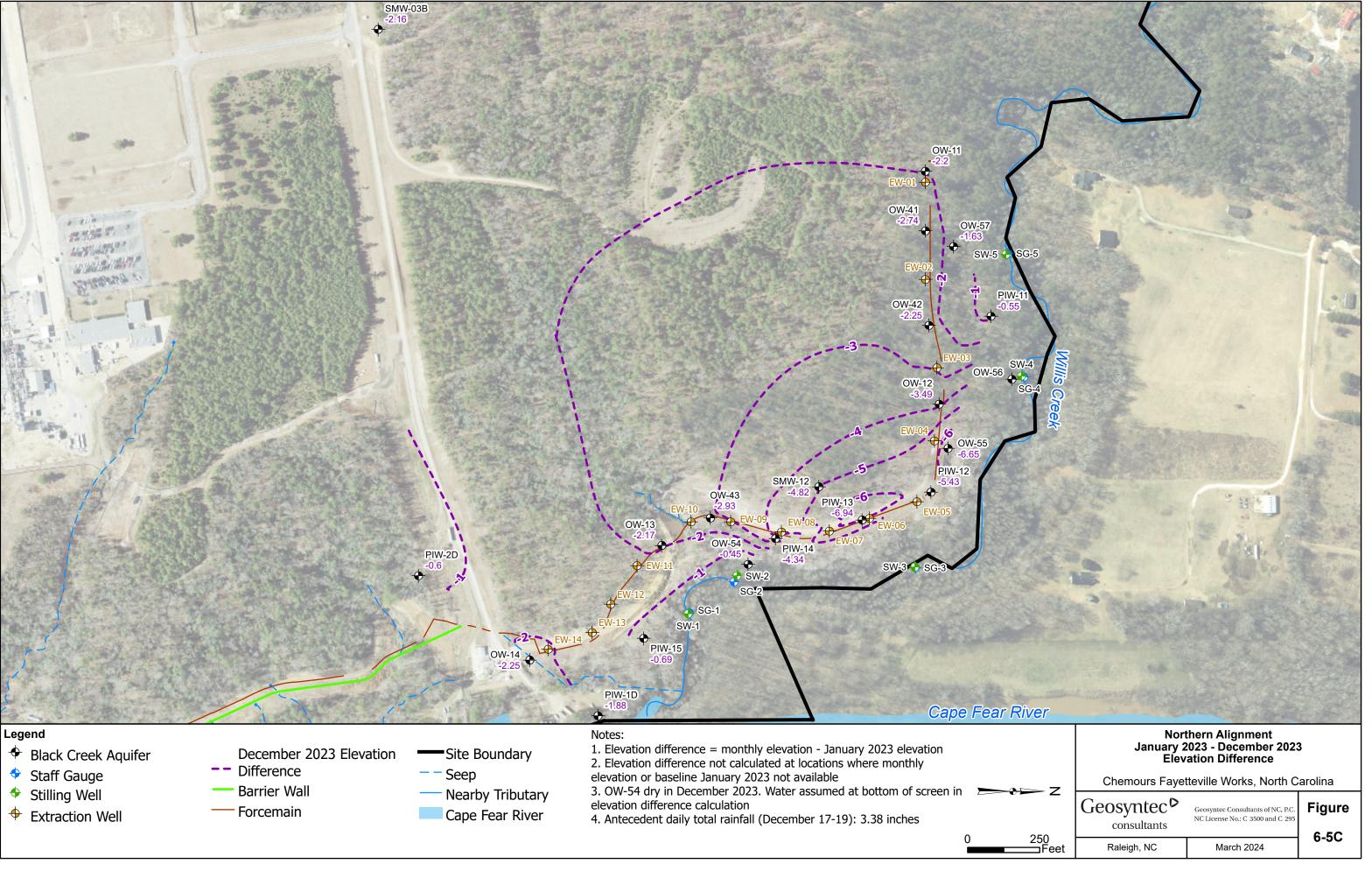

Notes:

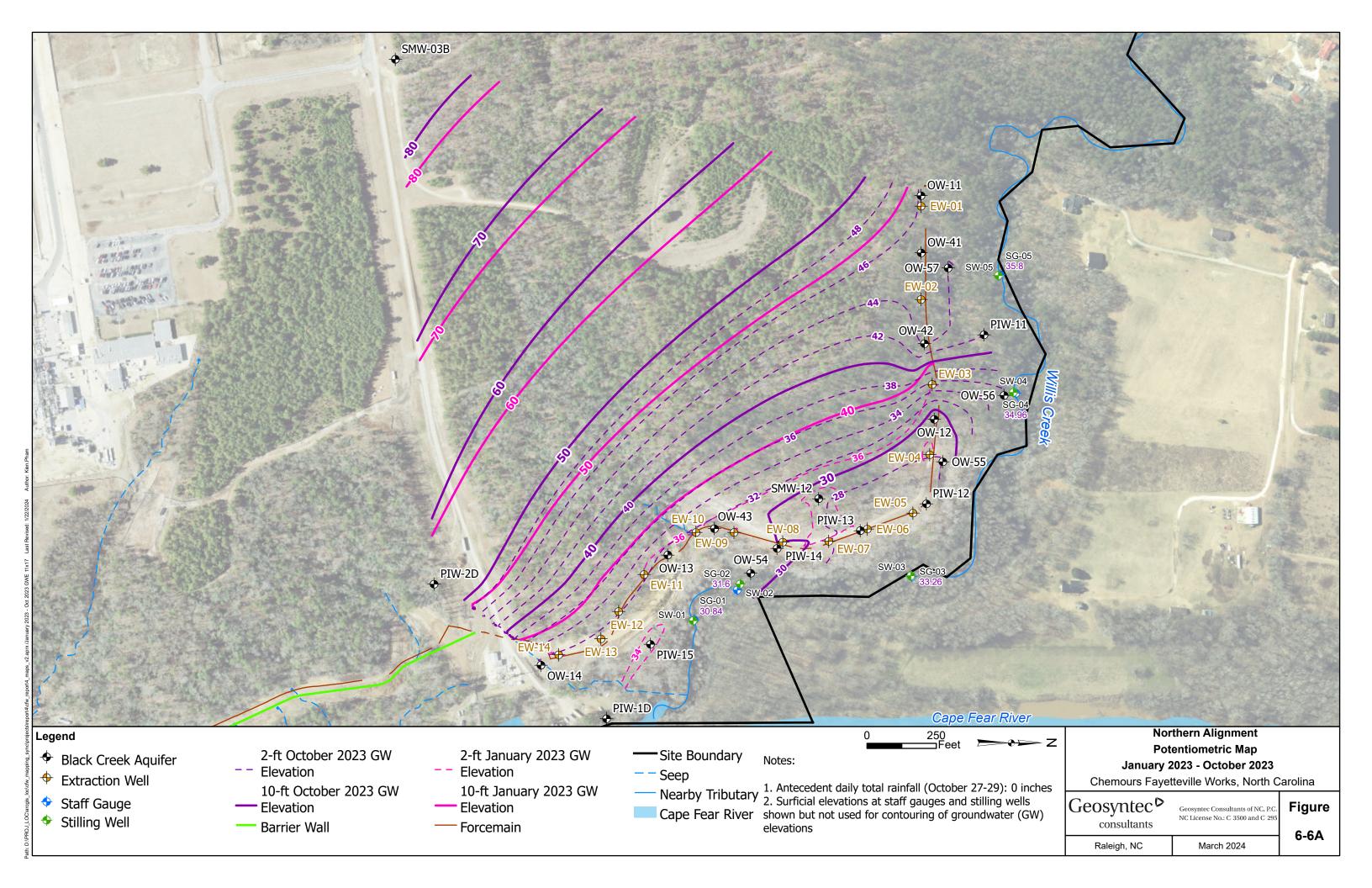

 Gaps in elevation data for some wells in Transects 4, 5, and 6 are due to malfunctioning of installed transducers.
 Groundwater elevation in observations wells downgradient of the barrier wall is susceptible to fluctuations in Cape Fear River elevation, thereby influencing the downgradient groundwater transects.

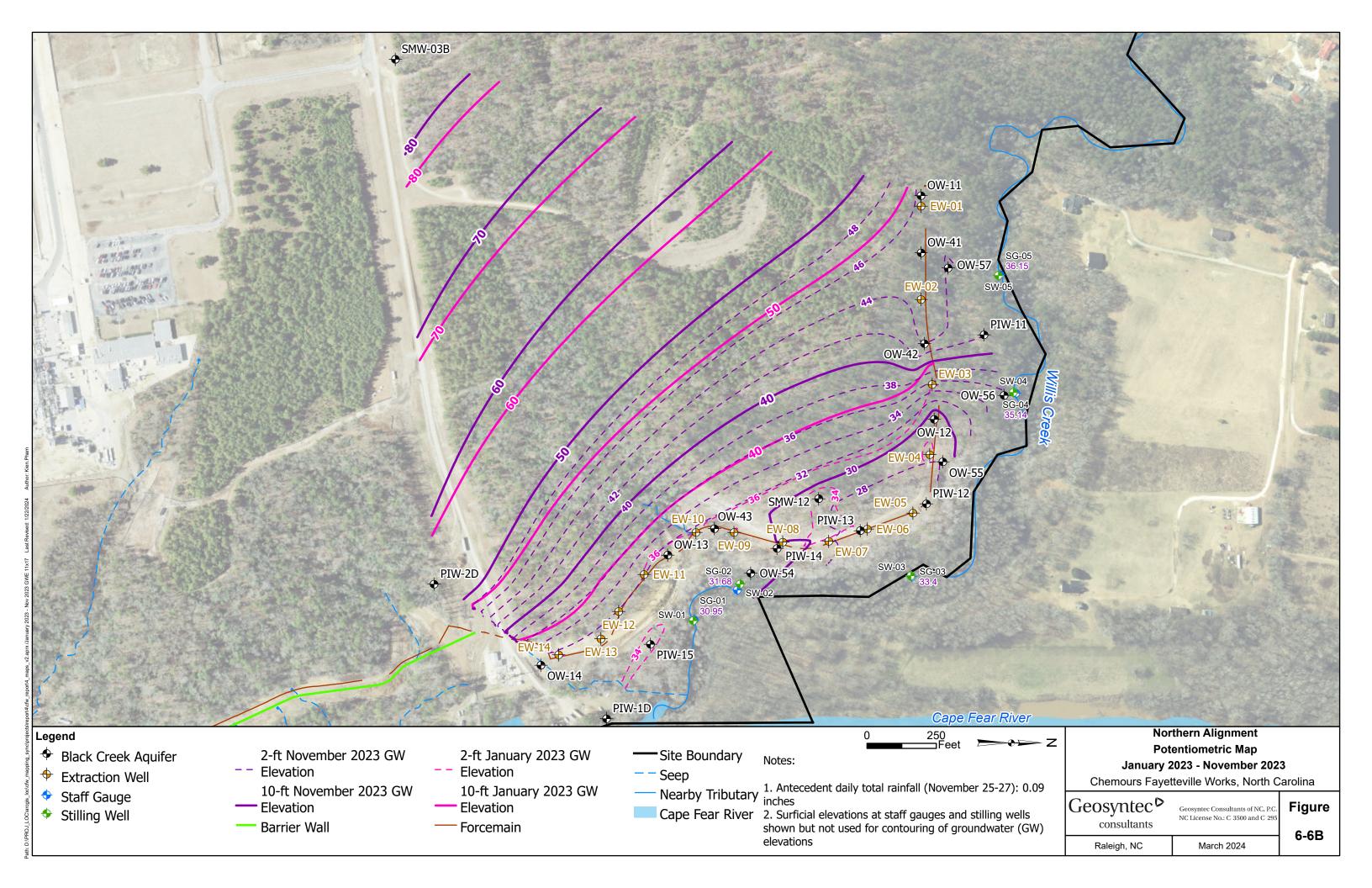

 Some observation wells have been offset for visibility. Therefore, the placement of these wells on this map do not reflect their true geographic coordinates.
 The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmentation Department of

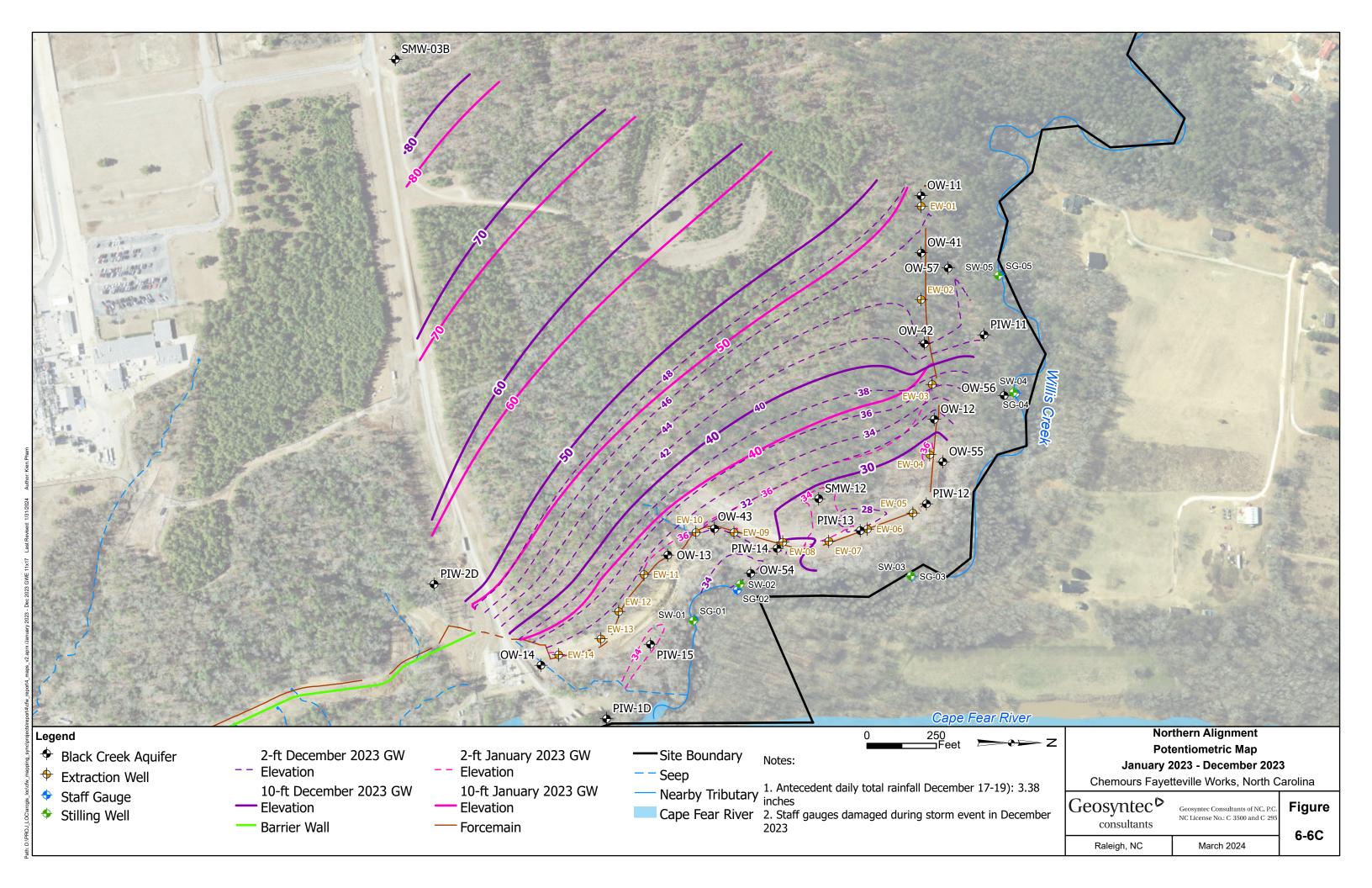

 The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmental Quality Online GIS (MajorHydro shapefile).
 Basemap sources: Esri, Maxar, Earthstar Geographics, and the GIS User Community.

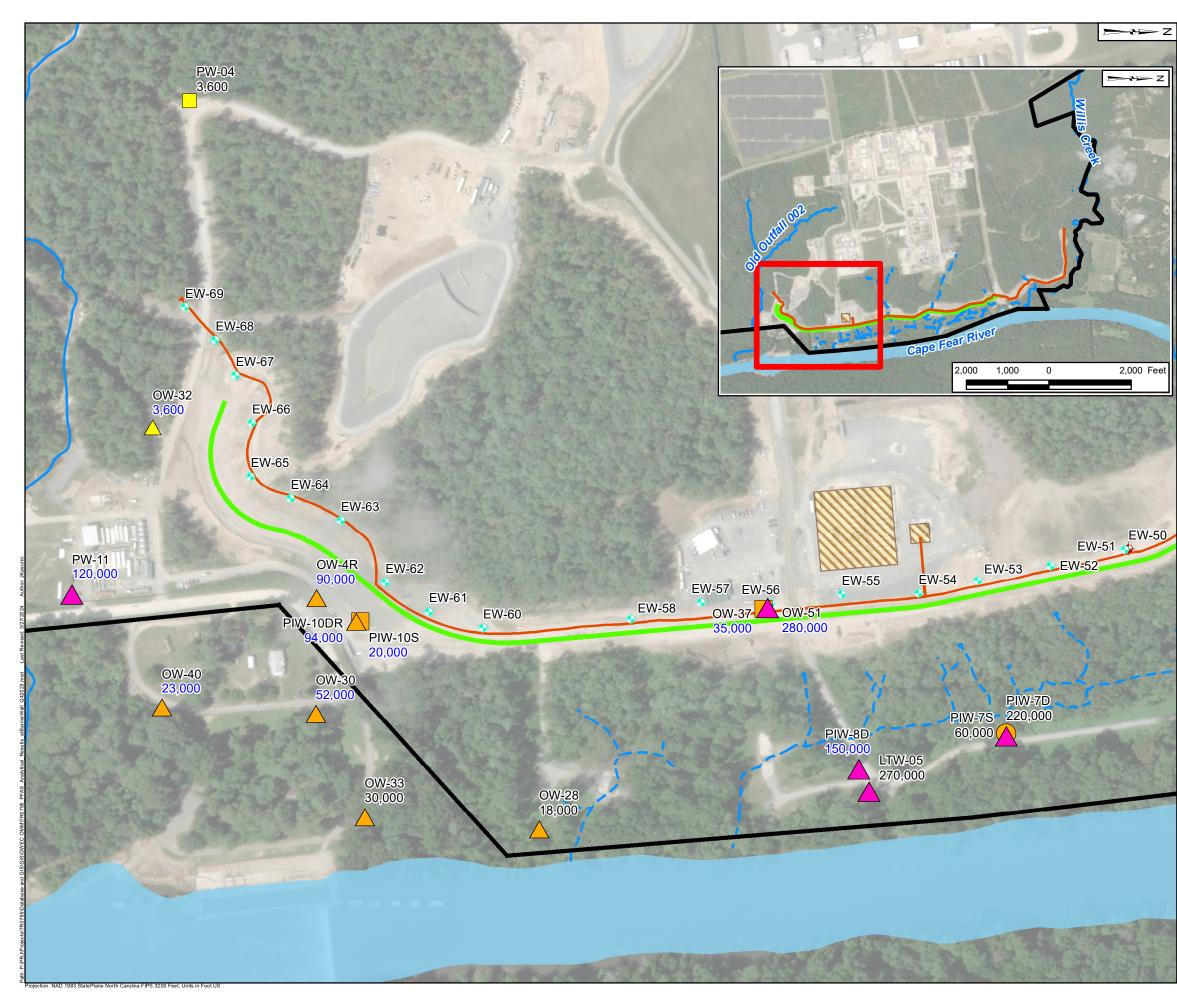

250	125	0	2	50 Feet	
Southern Alignment - Dampening Analysis Transects Chemours Fayetteville Works, North Carolina					
Geosyn		Geosyntec Consultan NC License No.: C 350		Figure	
Raleigh,	NC	March 2	024	6-3C	

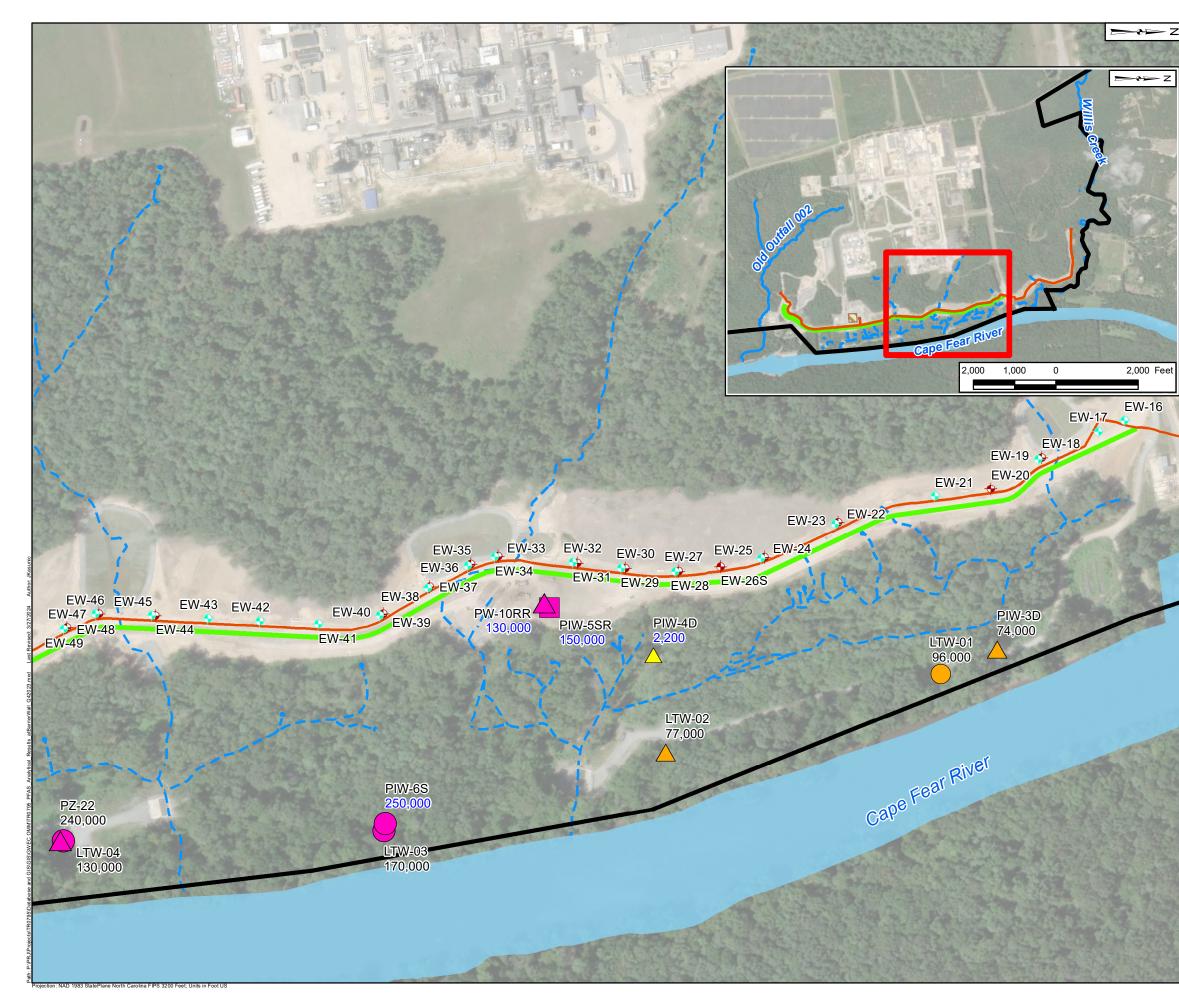


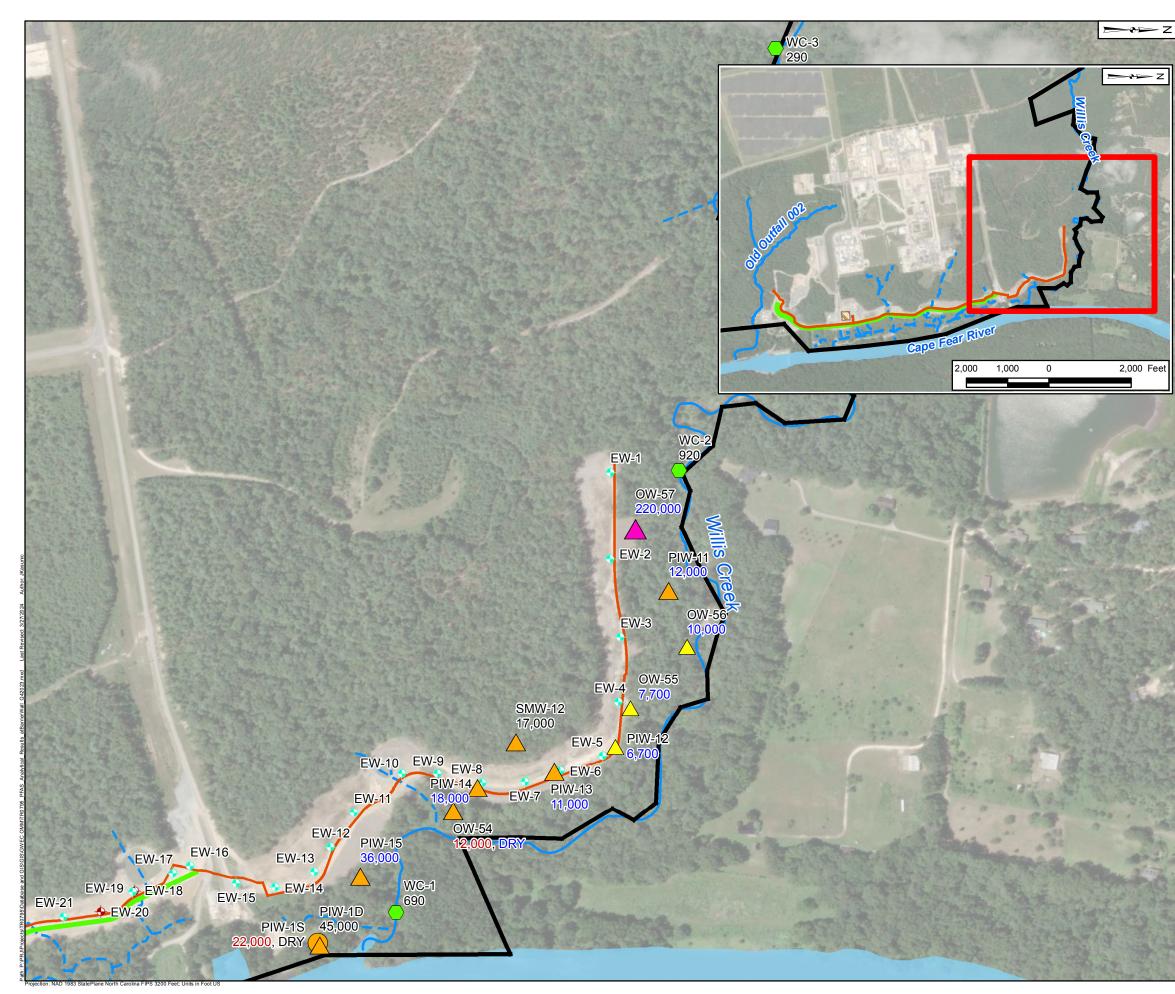


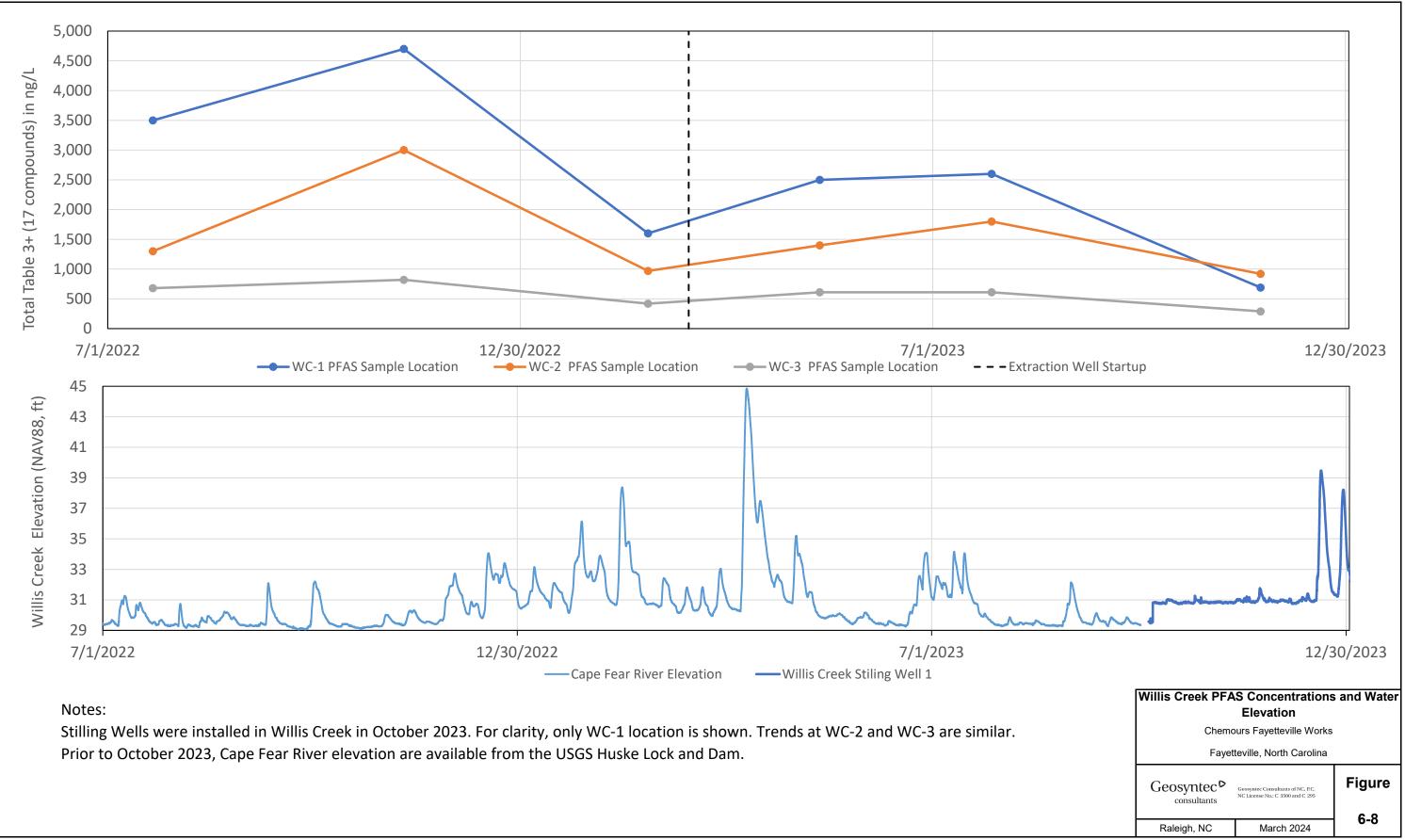


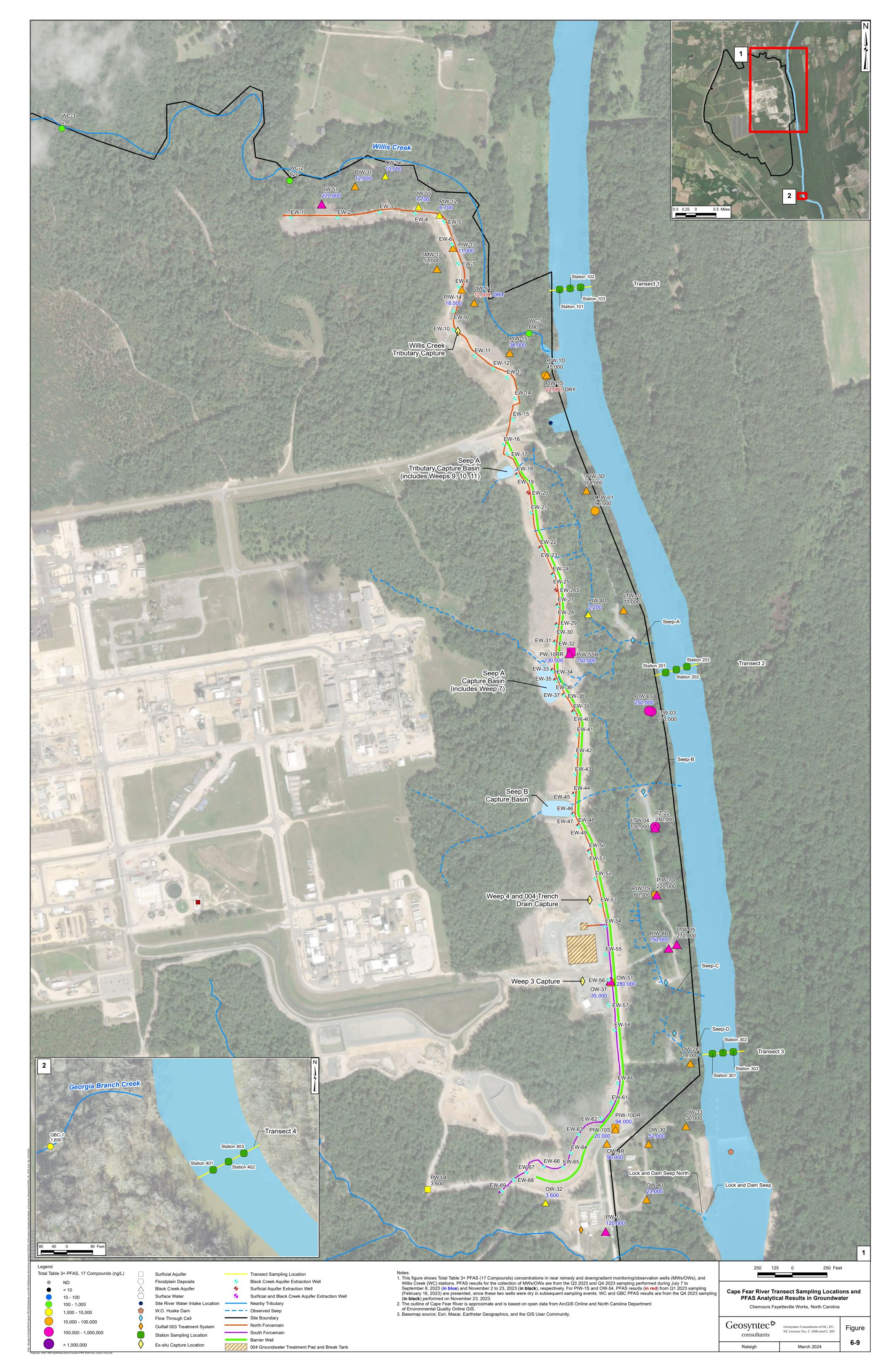


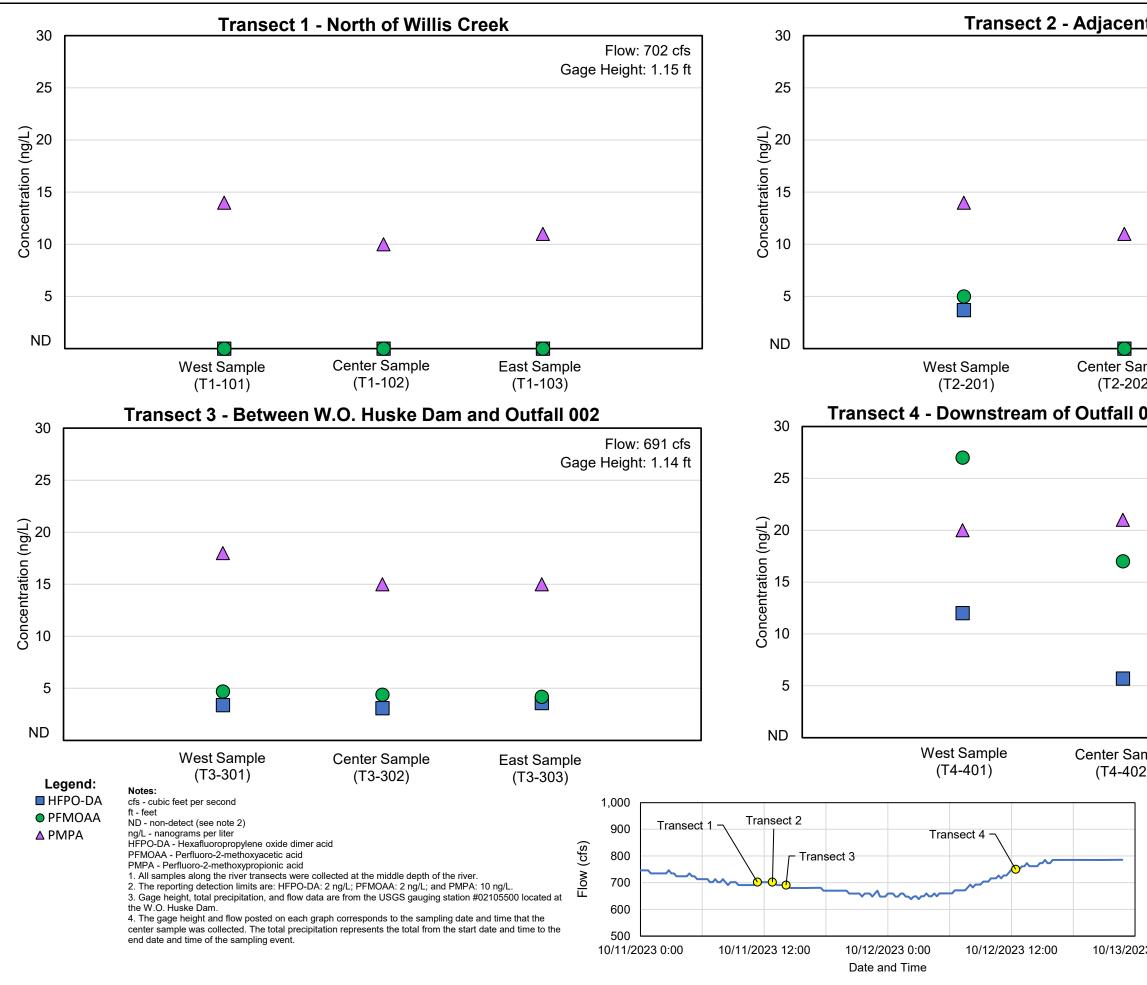


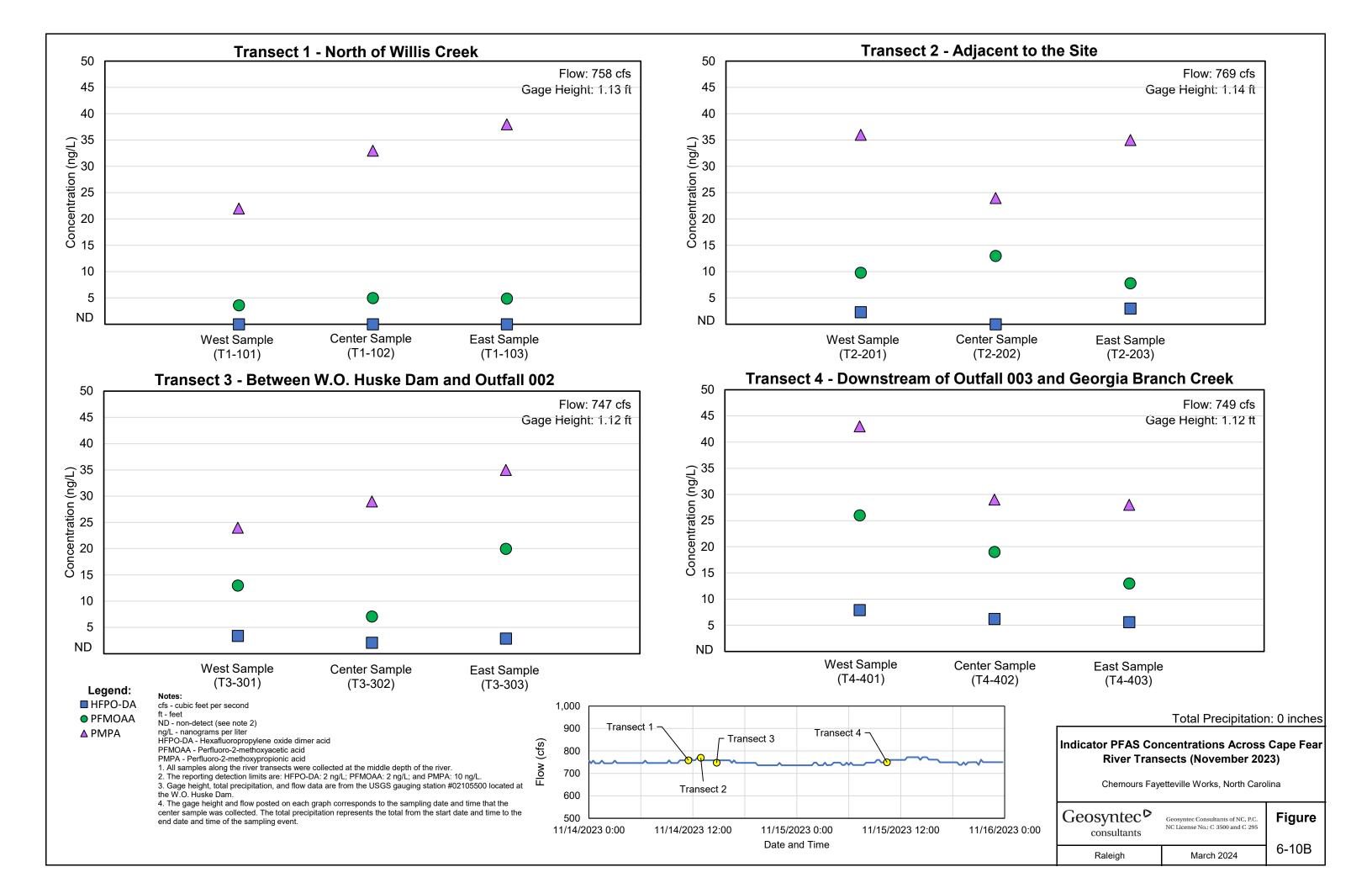


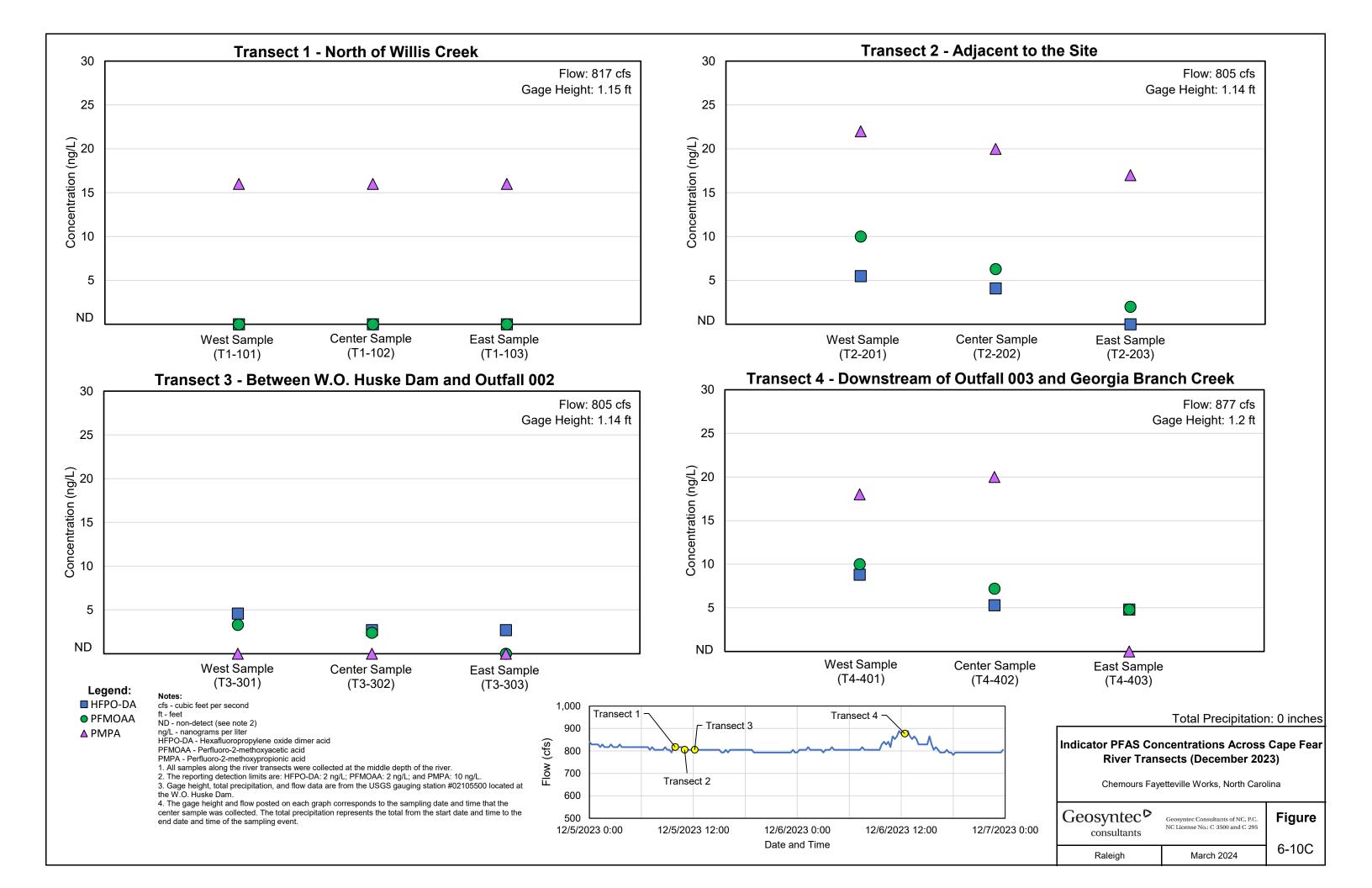


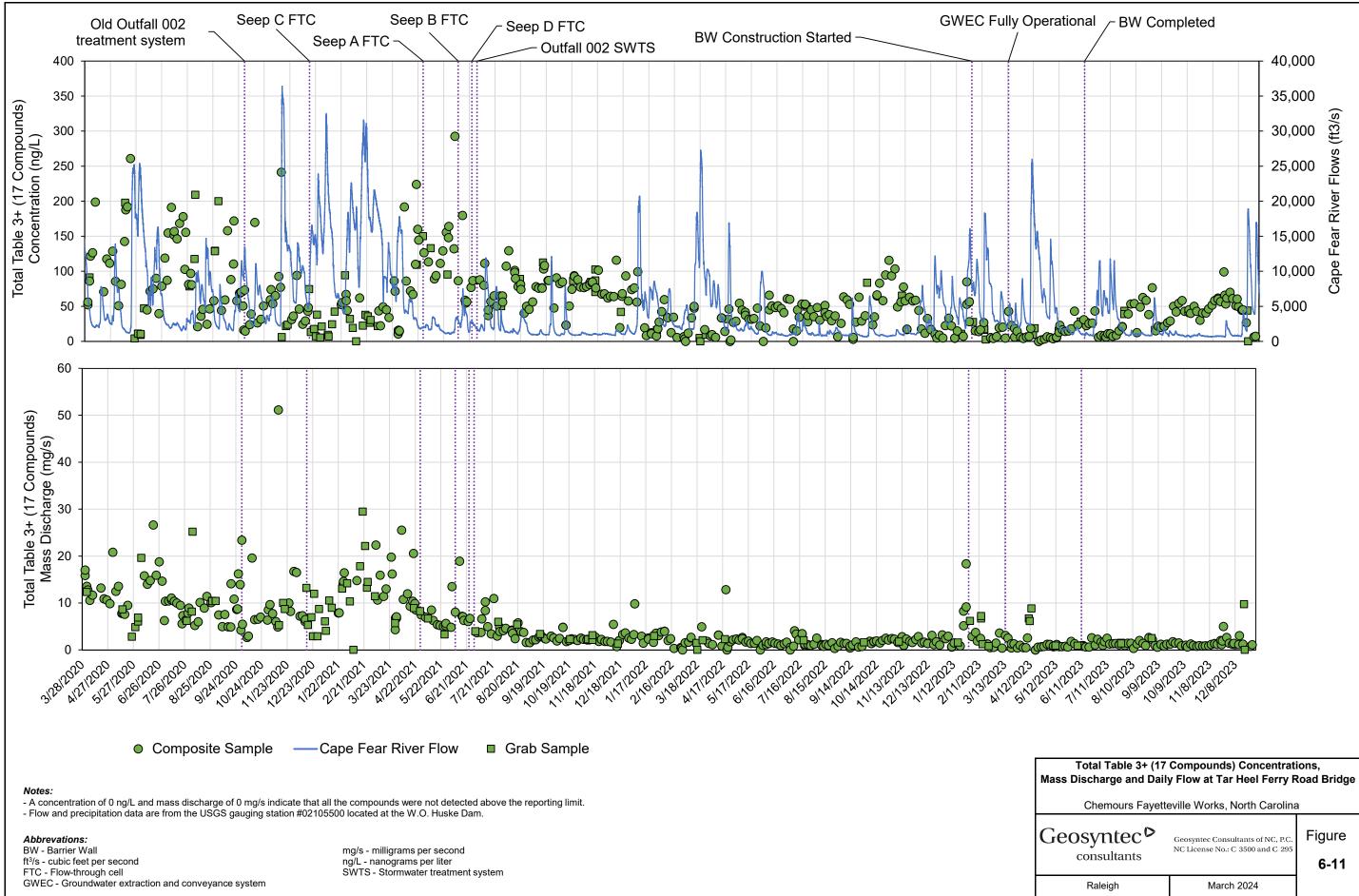

Legend					
PFAS Sampling Location					
Surficial Aquife	er				
Floodplain De	Floodplain Deposits				
\triangle Black Creek A	riangle Black Creek Aquifer				
Surface Water					
Total Table 3+ PFAS, 1	7 Compounds (ng/L)				
▲ ND					
▲ < 10					
10 - 100					
<u> </u>					
1,000 - 10,000					
10,000 - 100,0	00				
100,000 - 1,00	0,000				
> 1,000,000					
💠 🛛 Black Creek A	quifer Extraction Well				
🔶 🛛 Surficial Aquife	er Extraction Well				
Site Boundary					
Forcemain					
	pproximate surface				
elevation at 72					
	Freatment Pad and Break Ta	INK			
— — — Seep					
Nearby Tributary to River					
Cape Fear Riv	rer				
Notes: 1. This figure shows Total	Table 3+ PFAS (17 Compounds	s)			
concentrations in near r	emedy and downgradient				
	wells (MWs/OWs), and Willis C or the collection of MWs/OWs a				
Q3 2023 and Q4 2023 s	sampling performed during July	7 to			
September 8, 2023 (in blue) and November 2 to 23, 2023 (in black), respectively. For PIW-1S and OW-54, PFAS results (in red) from Q1					
2023 sampling (February 16, 2023) are presented, since these two					
wells were dry in subsequent sampling events. WC PFAS results are from the Q4 2023 sampling (in black) performed on November					
23, 2023.					
The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of					
Environmental Quality Online GIS (MajorHydro shapefile).					
 Basemap source: Esri, Maxar, Earthstar Geographics, and the GIS User Community. 					
250 125	0 250 F	Feet			
PFAS	PFAS Analytical Results				
Chamaura Favettavilla Warka North Carolina					
Chemours Fayetteville Works, North Carolina					
Geosyntec [⊳]	Communa Communa (NO DO				
	Geosyntec Consultants of NC, P.C. NC License No.: C 3500 and C 295	Figure			
consultants		• - -			
Raleigh, NC	March 2024	6-7A			




_										
100	Legend									
	PFAS Sampling Locatio									
1000										
100	 Floodplain Deposits Black Creek Aquifer 									
1000										
100	Surface Water Total Table 3+ PEAS 17 Compounds (pg/L)									
1000	▲ ND	Total Table 3+ PFAS, 17 Compounds (ng/L)								
1000	▲ < 10									
1000	10 - 100									
	100 - 1,000									
	1,000 - 10,000									
1.000	10,000 - 100,0									
1.00	100,000 - 1,00									
10000	> 1,000,000									
		quifer Extraction Well								
		er Extraction Well								
1000	Site Boundary									
	Forcemain									
		oproximate surface								
1	elevation at 72	feet NAVD88								
-	Seep									
	Cape Fear Riv	er								
AND I										
8										
100										
1	Notes:									
		Table 3+ PFAS (17 Compounds emedy and downgradient	3)							
	monitoring/observation	wells (MWs/OWs), and Willis C								
		or the collection of MWs/OWs a ampling performed during July								
	September 8, 2023 (in I	olue) and November 2 to 23, 20	023 (in black),							
		S and OW-54, PFAS results (in y 16, 2023) are presented, sind								
	wells were dry in subsec	quent sampling events. WC PF	AS results are							
	23, 2023.	ling (in black) performed on No	ovember							
		ar River is approximate and is b e and North Carolina Departme								
1	Environmental Quality C	Online GIS (MajorHydro shapefi	ile).							
25 A 21	 Basemap source: Esri, I User Community. 	Maxar, Earthstar Geographics,	and the GIS							
Sec.	j									
	250 125	0 250 F	Feet							
100										
0.420	PFAS	Analytical Results								
Number	Chemours Fay	etteville Works, North Carolina								
1										
	Geosyntec [⊳]	Geosyntec Consultants of NC, P.C.	Figure							
1221	consultants	NC License No.: C 3500 and C 295	rigule							
1000	Raleigh, NC	March 2024	6-7B							


Legend									
PFAS Sampling Locatio									
Surficial Aquife									
	 Floodplain Deposits A Plack Crock Aquifar 								
Black Creek Aquifer									
	$\langle \rangle$ Surface Water Total Table 3+ PFAS, 17 Compounds (ng/L)								
	Compounds (ng/L)								
▲ < 10									
▲ 10 - 100									
100,000 - 1,00	0,000								
> 1,000,000									
💠 🛛 Black Creek A	quifer Extraction Well								
🔶 Surficial Aquife	er Extraction Well								
Site Boundary									
Forcemain									
	oproximate surface								
elevation at 72	feet NAVD88								
Seep									
Nearby Tributa	-								
Cape Fear Riv	er								
 Notes: 1. This figure shows Total Table 3+ PFAS (17 Compounds) concentrations in near remedy and downgradient monitoring/observation wells (MWs/OWs), and Willis Creek (WC) stations. PFAS results for the collection of MWs/OWs are from the Q3 2023 and Q4 2023 sampling performed during July 7 to September 8, 2023 (in blue) and November 2 to 23, 2023 (in black), respectively. For PIW-1S and OW-54, PFAS results (in red) from Q1 2023 sampling (February 16, 2023) are presented, since these two wells were dry in subsequent sampling events. WC PFAS results are from the Q4 2023 sampling (in black) performed on November 23, 2023. 2. The outline of Cape Fear River is approximate and is based on open data from ArcGIS Online and North Carolina Department of Environmental Quality Online GIS (MajorHydro shapefile). 3. Basemap source: Esri, Maxar, Earthstar Geographics, and the GIS User Community. 									
250 125 0 250 Feet									
PFAS Analytical Results Chemours Fayetteville Works, North Carolina									
		[
Geosyntec	Geosyntec Consultants of NC, P.C.	Figure							
consultants	NC License No.: C 3500 and C 295	riguie							
Raleigh, NC	Raleigh, NC March 2024 6-70								





nt to th	e Site		
	Ga	Flow: 702 cfs ge Height: 1.15 ft	
		<u></u>	
	E a st O a mark		
imple 2)	East Sample (T2-203)	9	
003 an	d Georgia Bra	nch Creek	
	Ga	Flow: 750 cfs ge Height: 1.19 ft	
	•		
mple 2)	East Sample (T4-403)	;	
		Total Precipitation:	0.6 inches
		ncentrations Across nsects (October 202	
	Chemours Fay	etteville Works, North Caro	lina
23 0:00		Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295	Figure
	Raleigh	March 2024	6-10A

Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295

Appendix A Laboratory Analytical Data Review Narratives (Full lab reports to be uploaded to OneDrive and EQuIS)

ADQM Data Review

Site: Chemours Fayetteville

Project: 004 NPDES Sampling 10/23, 11/23, and 12/23

Project Reviewer: Bridget Gavaghan

Sample Summary

Field Sample ID	Lab Sample ID	Sample Matrix	Filtered	Sample Date	Sample Time	Sample Purpose
004-INF-1023-2	320-105600-1	Other Liquid	N	10/03/2023	07:45	FS
004-EFF-1023-2	320-105600-2	Other Liquid	N	10/03/2023	08:00	FS
004-1023-FBLK	320-105600-3	Blank Water	N	10/03/2023	07:45	FB
004-INF-1023-3	320-105864-1	Other Liquid	N	10/10/2023	08:00	FS
004-EFF-1023-3	320-105864-2	Other Liquid	N	10/10/2023	08:00	FS
004-INF-1023-4	320-106101-1	Other Liquid	N	10/17/2023	08:00	FS
004-EFF-1023-4	320-106101-2	Other Liquid	N	10/17/2023	08:00	FS
004-INF-1023-5	320-106338-1	Other Liquid	N	10/24/2023	08:00	FS
004-EFF-1023-5	320-106338-2	Other Liquid	N	10/24/2023	08:00	FS
004-INF-1023	320-106562-1	Other Liquid	N	10/31/2023	07:30	FS
004-EFF-1023	320-106562-2	Other Liquid	N	10/31/2023	07:30	FS
004-INF-1123	320-106857-1	Other Liquid	N	11/06/2023	08:00	FS
004-EFF-1123	320-106857-2	Other Liquid	N	11/06/2023	08:00	FS
004-INF-1123-2	320-107032-1	Other Liquid	N	11/13/2023	08:00	FS
004-EFF-1123-2	320-107032-2	Other Liquid	N	11/13/2023	08:00	FS
004-1123-FBLK	320-107032-3	Blank Water	N	11/13/2023	08:00	FB
004-INF-1123-3	320-107359-1	Other Liquid	N	11/20/2023	08:00	FS
004-EFF-1123-3	320-107359-2	Other Liquid	N	11/20/2023	08:00	FS
004-INF-1123-4	320-107512-1	Other Liquid	N	11/27/2023	08:00	FS
004-EFF-1123-4	320-107512-2	Other Liquid	N	11/27/2023	08:00	FS
004-INF-1223	320-107703-1	Other Liquid	N	12/04/2023	07:30	FS
004-EFF-1223	320-107703-2	Other Liquid	N	12/04/2023	07:30	FS
004-INF-1223-2	320-107939-1	Other Liquid	N	12/11/2023	07:30	FS
004-EFF-1223-2	320-107939-2	Other Liquid	N	12/11/2023	07:30	FS
004-INF-1223-3	320-108186-1	Other Liquid	N	12/18/2023	08:30	FS
004-EFF-1223-3	320-108186-2	Other Liquid	N	12/18/2023	08:30	FS
004-INF-1223-4	320-108386-1	Other Liquid	N	12/27/2023	07:30	FS
004-EFF-1223-4	320-108386-2	Other Liquid	Ν	12/27/2023	07:30	FS

* FS=Field Sample DUP=Field Duplicate FB=Field Blank EB=Equipment Blank TB=Trip Blank

Analytical Protocol

Lab Name	Lab Method	Parameter Category	Sampling Program
Eurofins Environ Testing Northern Cali	537 Modified	Per- and Polyfluorinated Alkyl Substances (PFAS)	004 NPDES Sampling 11/23
Eurofins Environ Testing	Cl. Spec. Table 3	Per- and Polyfluorinated Alkyl	004 NPDES Sampling 10/23
Northern Cali	Compound SOP	Substances (PFAS)	
Eurofins Environ Testing	Cl. Spec. Table 3	Per- and Polyfluorinated Alkyl	004 NPDES Sampling 11/23
Northern Cali	Compound SOP	Substances (PFAS)	
Eurofins Environ Testing	Cl. Spec. Table 3	Per- and Polyfluorinated Alkyl	004 NPDES Sampling 12/23
Northern Cali	Compound SOP	Substances (PFAS)	

Description	Yes	No*	DVM Narrative Report	Laboratory Report	Exception Report (ER) #
Did samples meet laboratory acceptability requirements upon receipt (i.e., intact, within temperature, properly preserved, and no headspace where applicable)?	x				
Were samples received by the laboratory in agreement with the associated chain of custody?	х				
Was the chain of custody properly completed by the laboratory and/or field team?	х				
Were samples prepped/analyzed by the laboratory within method holding times?		х	х	х	
Were data review criteria met for method blanks, LCSs/LCSDs, MSs/MSDs, PDSs, SDs, replicates, surrogates, sample results within calibration range, total/dissolved samples, field duplicates, field/equipment/trip blanks?		x	x	х	
Were all data usable and not R qualified?	Х				
Description					
QA/QC Items to Note:					
	Did samples meet laboratory acceptability requirements upon receipt (i.e., intact, within temperature, properly preserved, and no headspace where applicable)? Were samples received by the laboratory in agreement with the associated chain of custody? Was the chain of custody properly completed by the laboratory and/or field team? Were samples prepped/analyzed by the laboratory within method holding times? Were data review criteria met for method blanks, LCSs/LCSDs, MSs/MSDs, PDSs, SDs, replicates, surrogates, sample results within calibration range, total/dissolved samples, field duplicates, field/equipment/trip blanks? Were all data usable and not R qualified? Description	Did samples meet laboratory acceptability requirements upon receipt (i.e., intact, within temperature, properly preserved, and no headspace where applicable)?XWere samples received by the laboratory in agreement with the associated chain of custody?XWas the chain of custody properly completed by the laboratory and/or field team?XWere samples prepped/analyzed by the laboratory within method holding times?XWere data review criteria met for method blanks, LCSs/LCSDs, MSs/MSDs, PDSs, SDs, replicates, surrogates, sample results within calibration range, total/dissolved samples, field duplicates, field/equipment/trip blanks?XWere all data usable and not R qualified?X	Did samples meet laboratory acceptability requirements upon receipt (i.e., intact, within temperature, properly preserved, and no headspace where applicable)?XWere samples received by the laboratory in agreement with the associated chain of custody?XWas the chain of custody properly completed by the laboratory and/or field team?XWere samples prepped/analyzed by the laboratory within method holding times?XWere data review criteria met for method blanks, LCSs/LCSDs, MSs/MSDs, PDSs, SDs, replicates, surrogates, sample results within calibration range, total/dissolved samples, field duplicates, field/equipment/trip blanks?XWere all data usable and not R qualified?X	DescriptionYesNo*Narative ReportDid samples meet laboratory acceptability requirements upon receipt (i.e., intact, within temperature, properly preserved, and no headspace where applicable)?XImage: Comparison of the temperature applicable and no temperature applicable applicable and no temperature applicable applicab	DescriptionYesNo*Narrative ReportLaboratory ReportDid samples meet laboratory acceptability requirements upon receipt (i.e., intact, within temperature, properly preserved, and no headspace where applicable)?XXImage: Constraint of the second

ADQM Data Review Checklist

* See DVM Narrative Report, Laboratory Report, and/or ER # for further details as indicated.

The electronic data submitted for this project were reviewed via the Data Verification Module (DVM)

process. Overall, the data are acceptable for use without qualification, except as noted on the attached

DVM Narrative Report.

The lab reports due to a large page count are stored on a network shared drive and are available to be

posted on external shared drives, or on a flash drive.

Data Verification Module (DVM)

The DVM is an internal review process used by the ADQM group to assist with the determination of data usability. The electronic data deliverables received from the laboratory are loaded into the Locus EIM[™] database and processed through a series of data quality checks, which are a combination of software, Locus EIM[™] database Data Verification Module (DVM), and manual reviewer evaluations. The data are evaluated against the following data usability checks:

- Field and laboratory blank contamination
- US EPA hold time criteria
- Missing Quality Control (QC) samples
- Matrix spike (MS)/matrix spike duplicate (MSD) recoveries and the relative percent differences (RPDs) between these spikes
- Laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) recoveries and the RPD between these spikes
- Surrogate spike recoveries for organic analyses
- Difference/RPD between field duplicate sample pairs
- RPD between laboratory replicates for inorganic analyses
- Difference/percent difference between total and dissolved sample pairs

There are two qualifier fields in EIM:

Laboratory Qualifier is the qualifier assigned by the laboratory and may not reflect the usability of the data. This qualifier may have many different meanings and can vary between labs and over time within the same lab. Please refer to the laboratory report for a description of the laboratory qualifiers. As they are laboratory descriptors they are not to be used when evaluating the data.

Validation Qualifier is the 3rd party formal validation qualifier if this was performed. Otherwise this field contains the qualifier resulting from the ADQM DVM review process. This qualifier assesses the usability of the data and may not equal the laboratory qualifier. The DVM applies the following data evaluation qualifiers to analysis results, as warranted:

Qualifier	Definition
В	Not detected substantially above the level reported in the laboratory or field
	blanks.
R	Unusable result. Analyte may or may not be present in the sample.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected. Reporting limit may not be accurate or precise.

The **Validation Status Code** field is set to "DVM" if the ADQM DVM process has been performed. If the DVM has not been run, the field will be blank.

If the DVM has been run (Validation Status Code equals "DVM"), use the Validation Qualifier.

If the data have been validated by a third party, the field **"Validated By"** will be set to the validator (e.g., ESI for Environmental Standards, Inc.).

DVM Narrative Report

Site: Fayetteville

Sampling Program: 0

004 NPDES Sampling 10/23

Validation Options: LABSTATS

Validation Reason Code:

Associated MS and/or MSD analysis had relative percent recovery (RPR) values less than the lower control limit. The actual detection limits may be higher than reported.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
004-EFF-1023-5	10/24/2023 320-106338-2	PFMOAA	0.0020 ug/L	PQL		0.0020	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-EFF-1123-3	11/20/2023 320-107359-2	PFMOAA	0.0020 ug/L	PQL		0.0020	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-EFF-1123-4	11/27/2023 320-107512-2	PFMOAA	0.0020 ug/L	PQL		0.0020	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-EFF-1223-2	12/11/2023 320-107939-2	PMPA	0.010 UG/L	PQL		0.010	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-EFF-1223-3	12/18/2023 320-108186-2	PMPA	0.010 UG/L	PQL		0.010	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-EFF-1223-3	12/18/2023 320-108186-2	PFMOAA	0.0020 ug/L	PQL		0.0020	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

Site:	Fayetteville
-------	--------------

Sampling Program: 004 NPDES Sampling 12/23

Validation Options: LABSTATS

Validation Reason Code:

High relative percent difference (RPD) observed between LCS and LCSD samples. The reported result may be imprecise.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
004-INF-1223-2	12/11/2023 320-107939-1	Hydrolyzed PSDA	9.2 UG/L	PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-INF-1223-2	12/11/2023 320-107939-1	R-EVE	0.49 UG/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

Sampling Program: 004 NPDES Sampling 10/23

Validation Options: LABSTATS

Validation Reason Code:

de: Uncertainty around the analysis of R-PSDA, Hydrolyzed PSDA and R-EVE; J-qualifier added to all detects in the data set, even if there was no matrix spike analyzed for that particular sample.

	particular sample.									
Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
004-INF-1023-2	10/03/2023 320-105600-1	R-PSDA	1.3 UG/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-INF-1023-2	10/03/2023 320-105600-1	Hydrolyzed PSDA	13 UG/L	PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-INF-1023-2	10/03/2023 320-105600-1	R-EVE	0.69 UG/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-INF-1223-2	12/11/2023 320-107939-1	R-PSDA	1.1 UG/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-INF-1123-2	11/13/2023 320-107032-1	R-PSDA	1.2 UG/L	PQL		0.035	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-INF-1123-2	11/13/2023 320-107032-1	Hydrolyzed PSDA	11 UG/L	PQL		0.019	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-INF-1123-2	11/13/2023 320-107032-1	R-EVE	0.62 UG/L	PQL		0.036	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

Site:	Fayetteville
-------	--------------

Sampling Program:

004 NPDES Sampling 10/23

Validation Options: LABSTATS

Validation Reason Code:

The analysis hold time for this sample was exceeded. The reported result may be biased low.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
004-INF-1023-5	10/24/2023 320-106338-1	PMPA	9.1 UG/L	PQL		0.62	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-INF-1023-5	10/24/2023 320-106338-1	Hfpo Dimer Acid	14 UG/L	PQL		0.081	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
004-INF-1023-5	10/24/2023 320-106338-1	PFMOAA	59 ug/L	PQL		0.080	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

ADQM Data Review

Site: Chemours Fayetteville

Project: CAP GW 4Q23, CAP MW 4Q23, CAP SW 4Q23

Project Reviewer: Bridget Gavaghan

		ample Sumr	nary	1		
Field Sample ID	Lab Sample ID	Sample Matrix	Filtered	Sample Date	Sample Time	Sample Purpose
CAP4Q23-LTW-05- 110223	320-106772-1	Groundwater	N	11/02/2023	10:50	FS
CAP4Q23-PIW-7S- 110223	320-106772-2	Groundwater	N	11/02/2023	15:50	FS
CAP4Q23-PIW-7D- 110223	320-106772-3	Groundwater	N	11/02/2023	14:00	FS
CAP4Q23-PZ-22-110223	320-106772-4	Groundwater	N	11/02/2023	15:25	FS
CAP4Q23-LTW-04- 110223	320-106772-5	Groundwater	Ν	11/02/2023	14:40	FS
CAP4Q23-OW-28- 110223	320-106772-6	Groundwater	N	11/02/2023	12:15	FS
CAP4Q23-LTW-02- 110323	320-106772-7	Groundwater	N	11/03/2023	11:55	FS
CAP4Q23-LTW-01- 110323	320-106773-1	Groundwater	N	11/03/2023	11:25	FS
CAP4Q23-PIW-3D- 110323	320-106773-2	Groundwater	N	11/03/2023	10:00	FS
CAP4Q23-OW-33- 110223	320-106773-3	Groundwater	N	11/02/2023	10:25	FS
CAP4Q23-OW-33- 110223-D	320-106773-4	Groundwater	N	11/02/2023	10:25	DUP
CAP4Q23-PW-06- 110623	320-106773-5	Groundwater	N	11/06/2023	12:50	FS
CAP4Q23-PIW-1D- 110723	320-106887-1	Groundwater	N	11/07/2023	13:10	FS
CAP4Q23-PIW-1D- 110723-Z	320-106887-2	Groundwater	Y	11/07/2023	13:10	FS
CAP4Q23-SMW-11- 110723	320-106887-3	Groundwater	N	11/07/2023	15:35	FS
CAP4Q23-PW-09- 110823	320-106887-4	Groundwater	N	11/08/2023	12:40	FS
CAP4Q23-EQBLK-DV- 110823-Z	320-106887-5	Blank Water	Y	11/08/2023	15:15	EB
CAP4Q23-EQBLK-DV- 110823	320-106887-6	Blank Water	N	11/08/2023	15:15	EB
CAP4Q23-PW-09- 110823-Z	320-106887-7	Groundwater	Y	11/08/2023	12:40	FS
CAP4Q23-EQBLK-PP- 110823-Z	320-106887-8	Blank Water	Y	11/08/2023	15:00	EB
CAP4Q23-EQBLK-PP- 110823	320-106887-9	Blank Water	N	11/08/2023	15:00	EB
CAP4Q23-PW-04- 110923	320-107233-1	Groundwater	N	11/09/2023	09:20	FS
CAP4Q23-PW-04- 110923-Z	320-107233-2	Groundwater	Y	11/09/2023	09:20	FS
CAP4Q23-LTW-03- 111323	320-107233-3	Groundwater	N	11/13/2023	12:40	FS
CAP4Q23-SMW-12- 110823	320-107233-4	Groundwater	N	11/08/2023	13:05	FS
CAP4Q23-SMW-10- 111623	320-107233-5	Groundwater	Ν	11/16/2023	13:29	FS
	•					

CAP4Q23-EQBLK- BAILER-110923	320-107233-6	Blank Water	Ν	11/09/2023	09:00	EB
CAP4Q23-EQBLK- BAILER-110923-Z	320-107233-7	Blank Water	Y	11/09/2023	09:05	EB
CAP4Q23-WC-1-112323	320-107480-1	Surface Water	Ν	11/23/2023	07:00	FS
CAP4Q23-WC-2-112323	320-107480-2	Surface Water	Ν	11/23/2023	06:50	FS
CAP4Q23-WC-3-112323	320-107480-3	Surface Water	Ν	11/23/2023	07:00	FS
CAP4Q23-SEEP-C- 112323	320-107480-4	Surface Water	Ν	11/23/2023	09:30	FS
RIVER-WATER- INTAKE2-24-112323	320-107480-5	Surface Water	Ν	11/23/2023	07:00	FS
CAP4Q23-OUTFALL- 002-112323	320-107480-6	Surface Water	Ν	11/23/2023	09:12	FS
CAP4Q23-WC-1- 112323-D	320-107480-7	Surface Water	Ν	11/23/2023	07:00	DUP
CAP4Q23-TARHEEL-24- 112423	320-107480-8	Surface Water	Ν	11/24/2023	04:36	FS
CAP4Q23-OLDOF-1-24- 112323	320-107480-9	Surface Water	Ν	11/23/2023	10:44	FS
CAP4Q23-CFR-RM-76- 112223	320-107648-1	Surface Water	Ν	11/22/2023	09:10	FS
CAP4Q23-GBC-1- 112223	320-107648-2	Surface Water	Ν	11/22/2023	14:25	FS
CAP4Q23-LOCK-DAM- SEEP-112223	320-107648-3	Surface Water	Ν	11/22/2023	11:35	FS
CAP4Q23-LOCK-DAM- SEEP-112223-D	320-107648-4	Surface Water	Ν	11/22/2023	11:35	DUP
CAP4Q23-LOCK-DAM- NORTH-112223	320-107648-5	Surface Water	Ν	11/22/2023	11:45	FS
CAP4Q23-CFR- BLADEN-120623	320-107896-1	Surface Water	Ν	12/06/2023	11:25	FS
CAP4Q23-CFR- TARHEEL-120623	320-107896-2	Surface Water	Ν	12/06/2023	16:38	FS
CAP4Q23-CFR-KINGS- 121423	320-108081-1	Surface Water	Ν	12/14/2023	12:15	FS
CAP4Q23-BLADEN- 1DR-010424	320-108551-1	Groundwater	Ν	01/04/2024	11:18	FS
CAP4Q23-EQBLK-PP- 010424	320-108551-2	Blank Water	Ν	01/04/2024	07:15	EB

* FS=Field Sample DUP=Field Duplicate FB=Field Blank EB=Equipment Blank TB=Trip Blank

Analytical Protocol

Lab Name	Lab Method	Parameter Category	Sampling Program
Eurofins Environ Testing	537	Per- and Polyfluorinated Alkyl	CAP GW Sampling 4Q23
Northern Cali	Modified	Substances (PFAS)	
Eurofins Environ Testing	537	Per- and Polyfluorinated Alkyl	CAP SW Sampling 4Q23
Northern Cali	Modified	Substances (PFAS)	
Eurofins Environ Testing	537	Per- and Polyfluorinated Alkyl	CAP MW Sampling 4Q23
Northern Cali	Modified	Substances (PFAS)	

ltem	Description	Yes	No*	DVM Narrative Report	Laboratory Report	Exception Report (ER) #
A	Did samples meet laboratory acceptability requirements upon receipt (i.e., intact, within temperature, properly preserved, and no headspace where applicable)?	x				
В	Were samples received by the laboratory in agreement with the associated chain of custody?		х		х	
С	Was the chain of custody properly completed by the laboratory and/or field team?	х				
D	Were samples prepped/analyzed by the laboratory within method holding times?		х	x	х	
E	Were data review criteria met for method blanks, LCSs/LCSDs, MSs/MSDs, PDSs, SDs, replicates, surrogates, sample results within calibration range, total/dissolved samples, field duplicates, field/equipment/trip blanks?		x	x	х	
F	Were all data usable and not R qualified?	Х				
ER#	Description					
Other	QA/QC Items to Note:					

ADQM Data Review Checklist

* See DVM Narrative Report, Laboratory Report, and/or ER # for further details as indicated.

The electronic data submitted for this project were reviewed via the Data Verification Module (DVM)

process. Overall, the data are acceptable for use without qualification, except as noted on the attached

DVM Narrative Report.

The lab reports due to a large page count are stored on a network shared drive and are available to be

posted on external shared drives, or on a flash drive.

Data Verification Module (DVM)

The DVM is an internal review process used by the ADQM group to assist with the determination of data usability. The electronic data deliverables received from the laboratory are loaded into the Locus EIM[™] database and processed through a series of data quality checks, which are a combination of software, Locus EIM[™] database Data Verification Module (DVM), and manual reviewer evaluations. The data are evaluated against the following data usability checks:

- Field and laboratory blank contamination
- US EPA hold time criteria
- Missing Quality Control (QC) samples
- Matrix spike (MS)/matrix spike duplicate (MSD) recoveries and the relative percent differences (RPDs) between these spikes
- Laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) recoveries and the RPD between these spikes
- Surrogate spike recoveries for organic analyses
- Difference/RPD between field duplicate sample pairs
- RPD between laboratory replicates for inorganic analyses
- Difference/percent difference between total and dissolved sample pairs

There are two qualifier fields in EIM:

Laboratory Qualifier is the qualifier assigned by the laboratory and may not reflect the usability of the data. This qualifier may have many different meanings and can vary between labs and over time within the same lab. Please refer to the laboratory report for a description of the laboratory qualifiers. As they are laboratory descriptors they are not to be used when evaluating the data.

Validation Qualifier is the 3rd party formal validation qualifier if this was performed. Otherwise this field contains the qualifier resulting from the ADQM DVM review process. This qualifier assesses the usability of the data and may not equal the laboratory qualifier. The DVM applies the following data evaluation qualifiers to analysis results, as warranted:

Qualifier	Definition
В	Not detected substantially above the level reported in the laboratory or field
	blanks.
R	Unusable result. Analyte may or may not be present in the sample.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected. Reporting limit may not be accurate or precise.

The **Validation Status Code** field is set to "DVM" if the ADQM DVM process has been performed. If the DVM has not been run, the field will be blank.

If the DVM has been run (Validation Status Code equals "DVM"), use the Validation Qualifier.

If the data have been validated by a third party, the field **"Validated By"** will be set to the validator (e.g., ESI for Environmental Standards, Inc.).

DVM Narrative Report

Site: Fayetteville

Sampling Program: CA

CAP MW Sampling 4Q23

Validation Options: LABSTATS

Validation Reason Code:

Contamination detected in equipment blank(s). Sample result does not differ significantly from the analyte concentration detected in the associated equipment blank(s).

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-SMW-10- 111623	11/16/2023 320-107233-5	Hydrolyzed PSDA	0.0025 UG/L	PQL		0.0020	В	537 Modified		3535
CAP4Q23-SMW-10- 111623	11/16/2023 320-107233-5	PFO2HxA	0.022 ug/L	PQL		0.0020	В	537 Modified		3535
CAP4Q23-SMW-12- 110823	11/08/2023 320-107233-4	R-PSDA	0.076 UG/L	PQL		0.028	В	537 Modified		3535

Site: Fayetteville

Sampling Program: CAP S

CAP SW Sampling 4Q23

Validation Reason Code:

Only one surrogate has relative percent recovery (RPR) values outside control limits and the parameter is a PFC (Nondetects).

Field Comple ID	Date Sempled Leb Semple ID	Apolito	Decult 11	nito	Turne			Validation	Analytical		Drop
Field Sample ID	Sampled Lab Sample ID	Analyte	Result U	nits	Туре	MDL	PQL	Qualifier	Method	Pre-prep	Prep
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluoro(2- ethoxyethane)sulfonic	0.0020 U	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	10:2 Fluorotelomer sulfonate	0.0020 u	ıg/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluoroundecanoic Acid	0.0020 U	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	N-Methyl Perfluorooctane Sulfonamidoacetic Acid	0.0050 U	JG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluoropentane Sulfonic Acid (PFPeS)	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	0.0050 U	JG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluorododecanoic Acid	0.0020 U	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluorodecanoic Acid	0.0020 U	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluorodecane Sulfonic Acid	0.0020 U	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluorobutanoic Acid	0.0050 U	JG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluorotetradecanoic Acid	0.0020 U	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluorononanesulfon ic Acid	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluorotridecanoic Acid	0.0020 U	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	9CI-PF3ONS	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	11CI-PF3OUdS	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluorododecane Sulfonic Acid (PFDoS)	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-WC-3-112323	11/23/2023 320-107480-3	N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	0.0050 U	JG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	DONA	0.0020 u	ıg/L	PQL		0.0020	UJ	537 Modified		3535

Site: Fayetteville		Sampling Program:	CAP MW Samp	ing 4Q2	3		Validat	ion Options:	LABSTATS	
Validation Reason Co	ode: The preparation	The preparation hold time for this sample was exceeded by a factor of					result may			
Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-PW-04-110923- Z	11/09/2023 320-107233-2	Perfluorooctadecanoic Acid	0.12 ug/L	PQL		0.12	UJ	537 Modified		3535

Site:	Fayetteville
-------	--------------

Sampling Program:

CAP GW Sampling 4Q23

Validation Options: LABSTATS

Validation Reason Code:

Associated MS and/or MSD analysis had relative percent recovery (RPR) values less than the lower control limit. The actual detection limits may be higher than reported.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	з Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep	
CAP4Q23-OW-33-110223	11/02/2023 320-106773-3	Perfluorooctadecanoic Acid	0.094 ug/L	PQL		0.094	UJ	537 Modified		3535	

Site: Fayetteville

Sampling Program: CAF

CAP SW Sampling 4Q23

Validation Options:

LABSTATS

Validation Reason Code:

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluoropentane Sulfonic Acid (PFPeS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	6:2 Fluorotelomer sulfonate	0.0050	ug/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PS Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	0.0050	UG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	2-(N-methyl perfluoro-1- octanesulfonamido)-ethanol	0.0040	ug/L	PQL		0.0040	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PEPA	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorododecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	N-methyl perfluoro-1- octanesulfonamide	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorodecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorodecane Sulfonic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluoroheptane Sulfonic Acid (PFHpS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorononanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorotetradecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	1H,1H,2H,2H- perfluorodecanesulfonate (8:2 FTS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorohexadecanoic Acid (PFHxDA)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorononanesulfon ic Acid	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	EVE Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorotridecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Hydro-PS Acid	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorooctane Sulfonamide	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	9CI-PF3ONS	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	1H,1H,2H,2H- perfluorohexanesulfonate (4:2 FTS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	11CI-PF3OUdS	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535

Sampling Program: C

CAP SW Sampling 4Q23

Validation Options:

LABSTATS

Validation Reason Code:

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep	
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Hydro-EVE Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorododecane Sulfonic Acid (PFDoS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	NVHOS, Acid Form	0.0030	UG/L	PQL		0.0030	UJ	537 Modified		3535	
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PFECA-G	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	DONA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PFO4DA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PFO5DA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	N-ethylperfluoro-1- octanesulfonamide	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-SMW-10- 111623	11/16/2023 320-107233-5	Perfluorooctadecanoic Acid	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluoro(2- ethoxyethane)sulfonic	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	10:2 Fluorotelomer sulfonate	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PMPA	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Hfpo Dimer Acid	0.0040	UG/L	PQL		0.0040	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PFECA B	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorooctadecanoic Acid	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	2-(N-ethyl perfluoro-1- octanesulfonamido)-ethanol	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PFOS	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluoroundecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	N-Methyl Perfluorooctane Sulfonamidoacetic Acid	0.0050	UG/L	PQL		0.0050	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	R-PSDA	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Hydrolyzed PSDA	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	R-PSDCA	0.0030	UG/L	PQL		0.0030	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	R-EVE	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	

Site: Fayetteville

Sampling Program: CAP GV

CAP GW Sampling 4Q23

Validation Options:

LABSTATS

Validation Reason Code:

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	2-(N-methyl perfluoro-1- octanesulfonamido)-ethanol	0.0040	ug/L	PQL		0.0040	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PEPA	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluoropentanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluoropentane Sulfonic Acid (PFPeS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	6:2 Fluorotelomer sulfonate	0.0050	ug/L	PQL		0.0050	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PS Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	0.0050	UG/L	PQL		0.0050	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorohexanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorododecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	N-methyl perfluoro-1- octanesulfonamide	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PFOA	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorodecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorodecane Sulfonic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorohexane Sulfonic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorobutanoic Acid	0.0050	UG/L	PQL		0.0050	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorobutane Sulfonic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluoroheptanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluoroheptane Sulfonic Acid (PFHpS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorononanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorotetradecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	1H,1H,2H,2H- perfluorodecanesulfonate (8:2 FTS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PFO2HxA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PF030A	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535	

Site: Fayetteville

Sampling Program:

CAP GW Sampling 4Q23

Validation Options:

LABSTATS

Validation Reason Code:

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result U	Jnits	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PFO4DA	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PFO5DA	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	N-ethylperfluoro-1- octanesulfonamide	0.0020 L	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PPF Acid	0.0050 L	JG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PFMOAA	0.0020 (ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorohexadecanoic Acid (PFHxDA)	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorononanesulfon ic Acid	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	EVE Acid	0.0020 L	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorotridecanoic Acid	0.0020 L	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Hydro-PS Acid	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorooctane Sulfonamide	0.0020 L	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	9CI-PF3ONS	0.0020 (ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	1H,1H,2H,2H- perfluorohexanesulfonate (4:2	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	FTS) 11CI-PF3OUdS	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Hydro-EVE Acid	0.0020 L	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	Perfluorododecane Sulfonic Acid (PFDoS)	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	NVHOS, Acid Form	0.0030 L	JG/L	PQL		0.0030	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	PFECA-G	0.0020 L	JG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823	11/08/2023 320-106887-4	DONA	0.0020 (ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluoro(2- ethoxyethane)sulfonic	0.0020 L	JG/L	PQL		0.0020	UJ	537 Modified		3535
	11/08/2023 320-106887-7	10:2 Fluorotelomer sulfonate	0.0020 u	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PMPA	0.0020 L	JG/L	PQL		0.0020	UJ	537 Modified		3535
—	11/08/2023 320-106887-7	Hfpo Dimer Acid	0.0040 L	JG/L	PQL		0.0040	UJ	537 Modified		3535

Site: Fayetteville

Sampling Program: CA

CAP GW Sampling 4Q23

Validation Options:

LABSTATS

Validation Reason Code:

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	. Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PFECA B	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
Z CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluorooctadecanoic Acid	0.0020 ug/L	PQL		0.0020	UJ	537 Modified		3535
	11/08/2023 320-106887-7	2-(N-ethyl perfluoro-1- octanesulfonamido)-ethanol	0.0020 ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PFOS	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluoroundecanoic Acid	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	N-Methyl Perfluorooctane Sulfonamidoacetic Acid	0.0050 UG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	R-PSDA	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Hydrolyzed PSDA	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
Z CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	R-PSDCA	0.0030 UG/L	PQL		0.0030	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	R-EVE	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
Z CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	2-(N-methyl perfluoro-1- octanesulfonamido)-ethanol	0.0040 ug/L	PQL		0.0040	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PEPA	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluoropentanoic Acid	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluoropentane Sulfonic Acid (PFPeS)	0.0020 ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	6:2 Fluorotelomer sulfonate	0.0050 ug/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PS Acid	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	N-Ethyl Perfluorooctane Sulfonamidoacetic Acid	0.0050 UG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluorohexanoic Acid	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluorododecanoic Acid	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	N-methyl perfluoro-1- octanesulfonamide	0.0020 ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PFOA	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
Z CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluorodecanoic Acid	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535
	11/08/2023 320-106887-7	Perfluorodecane	0.0020 UG/L	PQL		0.0020	UJ	537 Modified		3535

Site: Fayetteville

Sampling Program: CAP G

CAP GW Sampling 4Q23

Validation Options:

LABSTATS

Validation Reason Code:

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluorohexane Sulfonic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
-	11/08/2023 320-106887-7	Perfluorobutanoic Acid	0.0050	UG/L	PQL		0.0050	UJ	537 Modified		3535
	11/08/2023 320-106887-7	Perfluorobutane Sulfonic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluoroheptanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluoroheptane Sulfonic Acid (PFHpS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
—	11/08/2023 320-106887-7	Perfluorononanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
	11/08/2023 320-106887-7	Perfluorotetradecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
	11/08/2023 320-106887-7	1H,1H,2H,2H- perfluorodecanesulfonate (8:2	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	fts) PFO2HxA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
	11/08/2023 320-106887-7	PFO3OA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
Z CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PFO4DA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
	11/08/2023 320-106887-7	PFO5DA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
Z CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	N-ethylperfluoro-1- octanesulfonamide	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PPF Acid	0.0050	UG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PFMOAA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluorohexadecanoic Acid (PFHxDA)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluorononanesulfon ic Acid	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	EVE Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluorotridecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
-	11/08/2023 320-106887-7	Hydro-PS Acid	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
	11/08/2023 320-106887-7	Perfluorooctane Sulfonamide	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
_	11/08/2023 320-106887-7	9CI-PF3ONS	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
Z CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	1H,1H,2H,2H- perfluorohexanesulfonate (4:2	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
<u> </u>		FTS)									

Site: Fayetteville

Sampling Program: CA

: CAP GW Sampling 4Q23

Validation Options:

LABSTATS

Validation Reason Code:

Field Completion	Date Compled Leb Comple ID	Analista	Deevit	m!t-	Thurs a			Validation	Analytical		Deee
Field Sample ID	Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Qualifier	Method	Pre-prep	Prep
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	11CI-PF3OUdS	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Hydro-EVE Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	Perfluorododecane Sulfonic Acid (PFDoS)	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	NVHOS, Acid Form	0.0030	UG/L	PQL		0.0030	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	PFECA-G	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-PW-09-110823- Z	11/08/2023 320-106887-7	DONA	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-OW-28-110223	11/02/2023 320-106772-6	Hydrolyzed PSDA	0.027	UG/L	PQL		0.027	UJ	537 Modified		3535
CAP4Q23-PW-06-110623	11/06/2023 320-106773-5	R-PSDA	0.028	UG/L	PQL		0.028	UJ	537 Modified		3535
CAP4Q23-LTW-03-111323	11/13/2023 320-107233-3	Perfluorooctadecanoic Acid	0.12	ug/L	PQL		0.12	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluoro(2- ethoxyethane)sulfonic	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	10:2 Fluorotelomer sulfonate	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PFECA B	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorooctadecanoic Acid	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	2-(N-ethyl perfluoro-1- octanesulfonamido)-ethanol	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluoroundecanoic Acid	0.0020	UG/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	N-Methyl Perfluorooctane Sulfonamidoacetic Acid	0.0050	UG/L	PQL		0.0050	UJ	537 Modified		3535
CAP4Q23-EQBLK- BAILER-110923	11/09/2023 320-107233-6	Perfluorooctadecanoic Acid	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-EQBLK- BAILER-110923-Z	11/09/2023 320-107233-7	Perfluorooctadecanoic Acid	0.0020	ug/L	PQL		0.0020	UJ	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	R-PSDCA	0.0030	UG/L	PQL		0.0030	UJ	537 Modified		3535

Site: Fayetteville		Sampling Program:	CAP MW S	Sampl	ing 4Q2	3		Validat			
Validation Reason Co	de: Surrogates had r	relative percent recovery (RPR) values greater than the upper control limit. The reported result may be biased high									igh.
Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-LTW-03-111323	11/13/2023 320-107233-3	Hfpo Dimer Acid	5.8	UG/L	PQL		0.14	J	537 Modified		3535

Site:	Fayetteville
-------	--------------

CAP SW Sampling 4Q23

Validation Options: LABSTATS

Validation Reason Code:

Associated MS and/or MSD analysis had relative percent recovery (RPR) values higher than the upper control limit. The reported result may be biased high.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-WC-1-112323	11/23/2023 320-107480-1	Hfpo Dimer Acid	0.089 UG/L	PQL		0.0040	J	537 Modified		3535

Site: Fayetteville

Sampling Program: CAP S

CAP SW Sampling 4Q23

Validation Reason Code:

High relative percent difference (RPD) observed between field duplicate and parent sample. The reported result may be imprecise.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result U	nits 1	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-LOCK-DAM- SEEP-112223	11/22/2023 320-107648-3	PPF Acid	5.6 U	JG/L	PQL		0.23	J	537 Modified		3535
CAP4Q23-LOCK-DAM- SEEP-112223-D	11/22/2023 320-107648-4	PPF Acid	10 U	JG/L	PQL		0.23	J	537 Modified		3535
CAP4Q23-WC-1-112323	11/23/2023 320-107480-1	PF030A	0.023 u	ug/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-1-112323	11/23/2023 320-107480-1	PFO4DA	0.0054 u	ug/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-1-112323-I	D 11/23/2023 320-107480-7	PFO3OA	0.032 u	ug/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-1-112323-I	D 11/23/2023 320-107480-7	PFO4DA	0.0081 u	ug/L	PQL		0.0020	J	537 Modified		3535

CAP SW Sampling 4Q23

Validation Reason Code:

Only one surrogate has relative percent recovery (RPR) values outside control limits and the parameter is a PFC (Detects).

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	NVHOS, Acid Form	0.0057	UG/L	PQL		0.0030	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	PFO2HxA	0.19	ug/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	PPF Acid	0.22	UG/L	PQL		0.0050	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	PFMOAA	0.29	ug/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluorobutane Sulfonic Acid	0.0047	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Hydrolyzed PSDA	0.020	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	R-EVE	0.0074	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	PEPA	0.048	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Perfluoropentanoic	0.0051	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	Acid PMPA	0.23	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	PFOS	0.0020	UG/L	PQL		0.0020	J	537 Modified		3535

CAP MW Sampling 4Q23

Validation Options: LABSTATS

Validation Reason Code:

Uncertainty around the analysis of R-PSDA, Hydrolyzed PSDA and R-EVE; J-qualifier added to all detects in the data set, even if there was no matrix spike analyzed for that particular sample.

	particular sample.										
Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-PW-04-110923- Z	11/09/2023 320-107233-2	R-PSDA	0.14	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-PW-04-110923- Z	11/09/2023 320-107233-2	R-EVE	0.099	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-BLADEN-1DR- 010424	01/04/2024 320-108551-1	R-PSDA	0.012	UG/L	PQL		0.0020	J	537 Modified		3535
	01/04/2024 320-108551-1	R-EVE	0.0050	UG/L	PQL		0.0020	J	537 Modified		3535
	12/06/2023 320-107896-1	R-PSDA	0.0030	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-BLADEN- 120623	12/06/2023 320-107896-1	Hydrolyzed PSDA	0.0029	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-BLADEN- 120623	12/06/2023 320-107896-1	R-EVE	0.0020	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-LTW-03-111323	11/13/2023 320-107233-3	R-PSDA	0.87	UG/L	PQL		0.026	J	537 Modified		3535
CAP4Q23-LTW-03-111323	11/13/2023 320-107233-3	Hydrolyzed PSDA	6.5	UG/L	PQL		0.025	J	537 Modified		3535
CAP4Q23-LTW-03-111323	11/13/2023 320-107233-3	R-EVE	0.18	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-PW-04-110923	11/09/2023 320-107233-1	R-EVE	0.066	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-EQBLK-DV-	11/08/2023 320-106887-6	R-PSDA	0.0055	UG/L	PQL		0.0020	J	537 Modified		3535
110823 CAP4Q23-EQBLK-DV- 110823	11/08/2023 320-106887-6	Hydrolyzed PSDA	0.036	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-EQBLK-DV- 110823-Z	11/08/2023 320-106887-5	Hydrolyzed PSDA	0.0040	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-PIW-1D-110723	11/07/2023 320-106887-1	R-PSDA	0.32	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-PIW-1D-110723	11/07/2023 320-106887-1	R-EVE	0.22	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-PIW-1D-110723-	11/07/2023 320-106887-2	R-PSDA	0.19	UG/L	PQL		0.028	J	537 Modified		3535
Z CAP4Q23-PIW-1D-110723-	11/07/2023 320-106887-2	R-EVE	0.15	UG/L	PQL		0.031	J	537 Modified		3535
Z CAP4Q23-SMW-11- 110723	11/07/2023 320-106887-3	R-PSDA	0.13	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-SMW-11-	11/07/2023 320-106887-3	Hydrolyzed PSDA	0.074	UG/L	PQL		0.027	J	537 Modified		3535
110723 CAP4Q23-SMW-11- 110723	11/07/2023 320-106887-3	R-EVE	0.10	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-WC-3-112323	11/23/2023 320-107480-3	R-PSDA	0.0043	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-WC-3-112323	11/23/2023 320-107480-3	R-EVE	0.0027	UG/L	PQL		0.0020	J	537 Modified		3535

CAP SW Sampling 4Q23

Validation Options:

LABSTATS

Validation Reason Code:

Uncertainty around the analysis of R-PSDA, Hydrolyzed PSDA and R-EVE; J-qualifier added to all detects in the data set, even if there was no matrix spike analyzed for that particular sample.

	Date							Validation	Analytical		
Field Sample ID	Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Qualifier	Method	Pre-prep	Prep
RIVER-WATER-INTAKE2- 24-112323	11/23/2023 320-107480-5	R-PSDA	0.31	UG/L	PQL		0.0024	J	537 Modified		3535
	11/23/2023 320-107480-5	Hydrolyzed PSDA	0.14	UG/L	PQL		0.0020	J	537 Modified		3535
	11/23/2023 320-107480-5	R-EVE	0.25	UG/L	PQL		0.0027	J	537 Modified		3535
CAP4Q23-WC-2-112323	11/23/2023 320-107480-2	R-PSDA	0.0094	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-TARHEEL- 120623	12/06/2023 320-107896-2	R-PSDA	0.0033	UG/L	PQL		0.0020	J	537 Modified		3535
	12/06/2023 320-107896-2	Hydrolyzed PSDA	0.0026	UG/L	PQL		0.0020	J	537 Modified		3535
	11/22/2023 320-107648-2	R-PSDA	0.040	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-GBC-1-112223	11/22/2023 320-107648-2	R-EVE	0.020	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-LOCK-DAM- NORTH-112223	11/22/2023 320-107648-5	R-PSDA	0.22	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-LOCK-DAM- NORTH-112223	11/22/2023 320-107648-5	R-EVE	0.14	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-LOCK-DAM- SEEP-112223	11/22/2023 320-107648-3	R-PSDA	0.23	UG/L	PQL		0.0051	J	537 Modified		3535
CAP4Q23-LOCK-DAM- SEEP-112223	11/22/2023 320-107648-3	Hydrolyzed PSDA	0.25	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-LOCK-DAM- SEEP-112223	11/22/2023 320-107648-3	R-EVE	0.095	UG/L	PQL		0.0057	J	537 Modified		3535
CAP4Q23-LOCK-DAM- SEEP-112223-D	11/22/2023 320-107648-4	R-PSDA	0.27	UG/L	PQL		0.0052	J	537 Modified		3535
CAP4Q23-LOCK-DAM- SEEP-112223-D	11/22/2023 320-107648-4	Hydrolyzed PSDA	0.25	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-LOCK-DAM- SEEP-112223-D	11/22/2023 320-107648-4	R-EVE	0.087	UG/L	PQL		0.0057	J	537 Modified		3535
CAP4Q23-OLDOF-1-24- 112323	11/23/2023 320-107480-9	R-PSDA	0.019	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-OLDOF-1-24- 112323	11/23/2023 320-107480-9	Hydrolyzed PSDA	0.029	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-OLDOF-1-24- 112323	11/23/2023 320-107480-9	R-EVE	0.0090	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-OUTFALL-002- 112323	11/23/2023 320-107480-6	R-PSDA	0.054	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-OUTFALL-002- 112323	11/23/2023 320-107480-6	Hydrolyzed PSDA	0.042	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-OUTFALL-002- 112323	11/23/2023 320-107480-6	R-EVE	0.044	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-SMW-12- 110823	11/08/2023 320-107233-4	R-EVE	0.067	UG/L	PQL		0.031	J	537 Modified		3535

CAP SW Sampling 4Q23

Validation Options: LABSTATS

Validation Reason Code:

Uncertainty around the analysis of R-PSDA, Hydrolyzed PSDA and R-EVE; J-qualifier added to all detects in the data set, even if there was no matrix spike analyzed for that particular sample.

	partieular earripier											
Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep	
CAP4Q23-TARHEEL-24- 112423	11/24/2023 320-107480-8	R-PSDA	0.0020	UG/L	PQL		0.0020	J	537 Modified		3535	
CAP4Q23-WC-1-112323	11/23/2023 320-107480-1	R-PSDA	0.011	UG/L	PQL		0.0020	J	537 Modified		3535	
CAP4Q23-WC-1-112323	11/23/2023 320-107480-1	Hydrolyzed PSDA	0.028	UG/L	PQL		0.0020	J	537 Modified		3535	
CAP4Q23-WC-1-112323	11/23/2023 320-107480-1	R-EVE	0.0059	UG/L	PQL		0.0020	J	537 Modified		3535	
CAP4Q23-WC-1-112323-I	0 11/23/2023 320-107480-7	R-PSDA	0.013	UG/L	PQL		0.0020	J	537 Modified		3535	
CAP4Q23-WC-1-112323-I	D 11/23/2023 320-107480-7	Hydrolyzed PSDA	0.036	UG/L	PQL		0.0020	J	537 Modified		3535	
CAP4Q23-WC-1-112323-E	D 11/23/2023 320-107480-7	R-EVE	0.0066	UG/L	PQL		0.0020	J	537 Modified		3535	

Site:	Fayetteville
-------	--------------

Sampling Program: CAP GW

: CAP GW Sampling 4Q23

Validation Options: LABSTATS

Validation Reason Code:

The ion ratio for the compound differed from the expected ion ratio by more than 50%. The reported positive result has been qualified "J" and should be considered estimated.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-LTW-01-110323	3 11/03/2023 320-106773-1	Perfluoroheptanoic Acid	0.047 UG/L	PQL		0.025	J	537 Modified		3535

CAP SW Sampling 4Q23

Validation Options: LABSTATS

Validation Reason Code:

The preparation hold time for this sample was exceeded. The reported result may be biased low.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	R-EVE	0.028	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	R-PSDA	0.015	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Hydrolyzed PSDA	0.0046	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PFOS	0.0089	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PMPA	0.013	UG/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Hfpo Dimer Acid	0.0070	UG/L	PQL		0.0040	J	537 Modified		3535
CAP4Q23-LTW-03-111323	11/13/2023 320-107233-3	PFO2HxA	24	ug/L	PQL		0.069	J	537 Modified		3535
CAP4Q23-LTW-03-111323	11/13/2023 320-107233-3	PPF Acid	38	UG/L	PQL		0.31	J	537 Modified		3535
CAP4Q23-LTW-03-111323	11/13/2023 320-107233-3	PFMOAA	110	ug/L	PQL		0.51	J	537 Modified		3535
CAP4Q23-OW-33-110223	11/02/2023 320-106773-3	R-PSDA	0.25	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-OW-33-110223	11/02/2023 320-106773-3	Hydrolyzed PSDA	0.061	UG/L	PQL		0.027	J	537 Modified		3535
CAP4Q23-OW-33-110223	11/02/2023 320-106773-3	R-EVE	0.17	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-OW-33-110223- D	11/02/2023 320-106773-4	R-PSDA	0.23	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-OW-33-110223-	11/02/2023 320-106773-4	Hydrolyzed PSDA	0.048	UG/L	PQL		0.027	J	537 Modified		3535
CAP4Q23-OW-33-110223-	11/02/2023 320-106773-4	R-EVE	0.17	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-PIW-3D-110323	11/03/2023 320-106773-2	R-PSDA	0.75	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-PIW-3D-110323	11/03/2023 320-106773-2	Hydrolyzed PSDA	0.30	UG/L	PQL		0.027	J	537 Modified		3535
CAP4Q23-PIW-3D-110323	11/03/2023 320-106773-2	R-EVE	0.42	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-OW-28-110223	11/02/2023 320-106772-6	R-EVE	0.14	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-PIW-7D-110223	11/02/2023 320-106772-3	R-PSDA	0.51	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-PIW-7D-110223	11/02/2023 320-106772-3	Hydrolyzed PSDA	1.1	UG/L	PQL		0.027	J	537 Modified		3535
CAP4Q23-PIW-7D-110223	11/02/2023 320-106772-3	R-EVE	0.68	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-PIW-7S-110223	11/02/2023 320-106772-2	R-PSDA	0.91	UG/L	PQL		0.028	J	537 Modified		3535

Site: Fayetteville

Sampling Program: CAP

CAP GW Sampling 4Q23

Validation Options:

LABSTATS

Validation Reason Code:

The preparation hold time for this sample was exceeded. The reported result may be biased low.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Linito	Turne	MDL	PQL	Validation Qualifier	Analytical Method	Dro prop	Bron
CAP4Q23-PIW-7S-110223		Hydrolyzed PSDA		UG/L	Type PQL	MDL	0.027	J	537 Modified	Pre-prep	Prep 3535
								-			
CAP4Q23-PIW-7S-110223	11/02/2023 320-106772-2	R-EVE	1.2	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-PZ-22-110223	11/02/2023 320-106772-4	R-PSDA	0.51	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-PZ-22-110223	11/02/2023 320-106772-4	Hydrolyzed PSDA	1.6	UG/L	PQL		0.027	J	537 Modified		3535
CAP4Q23-PZ-22-110223	11/02/2023 320-106772-4	R-EVE	0.42	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-LTW-01-110323	11/03/2023 320-106773-1	R-PSDA	0.79	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-LTW-01-110323	11/03/2023 320-106773-1	Hydrolyzed PSDA	0.59	UG/L	PQL		0.027	J	537 Modified		3535
CAP4Q23-LTW-01-110323	11/03/2023 320-106773-1	R-EVE	0.53	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-LTW-02-110323	11/03/2023 320-106772-7	R-PSDA	0.52	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-LTW-02-110323	11/03/2023 320-106772-7	Hydrolyzed PSDA	1.5	UG/L	PQL		0.027	J	537 Modified		3535
CAP4Q23-LTW-02-110323	11/03/2023 320-106772-7	R-EVE	0.41	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-LTW-04-110223	11/02/2023 320-106772-5	R-PSDA	1.7	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-LTW-04-110223	11/02/2023 320-106772-5	Hydrolyzed PSDA	3.8	UG/L	PQL		0.027	J	537 Modified		3535
CAP4Q23-LTW-04-110223	11/02/2023 320-106772-5	R-EVE	1.7	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-LTW-05-110223	11/02/2023 320-106772-1	R-PSDA	0.95	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-LTW-05-110223	11/02/2023 320-106772-1	Hydrolyzed PSDA	1.9	UG/L	PQL		0.027	J	537 Modified		3535
CAP4Q23-LTW-05-110223	11/02/2023 320-106772-1	R-EVE	1.2	UG/L	PQL		0.031	J	537 Modified		3535
CAP4Q23-OW-28-110223	11/02/2023 320-106772-6	R-PSDA	0.23	UG/L	PQL		0.028	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PPF Acid	0.028	UG/L	PQL		0.0050	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PFMOAA	0.011	ug/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PFO2HxA	0.0098	ug/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PFO3OA	0.0032	ug/L	PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorohexane Sulfonic Acid	0.0050	UG/L	PQL		0.0020	J	537 Modified		3535

Sampling Program: CAP

CAP SW Sampling 4Q23

Validation Options: LABSTATS

Validation Reason Code:

The preparation hold time for this sample was exceeded. The reported result may be biased low.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Un	its Type	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorobutanoic Acid	0.0051 UG	/L PQL		0.0050	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorobutane Sulfonic Acid	0.0088 UG	/L PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluoroheptanoic Acid	0.0037 UG	/L PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	PFOA	0.0057 UG	/L PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluoropentanoic Acid	0.011 UG	/L PQL		0.0020	J	537 Modified		3535
CAP4Q23-CFR-KINGS- 121423	12/14/2023 320-108081-1	Perfluorohexanoic Acid	0.011 UG	/L PQL		0.0020	J	537 Modified		3535

ADQM Data Review

Site: Chemours Fayetteville

<u>Project</u>: Seep Flow Through Cell Sampling 4Q23

Project Reviewer: Bridget Gavaghan

Sample Summary

Field Sample ID	Lab Sample ID	Sample Matrix	Filtered	Sample Date	Sample Time	Sample Purpose
SEEP-C-INFLUENT-24- 101423	320- 106033-1	Surface Water	N	10/14/2023	23:00	FS
SEEP-C-INFLUENT-24- 101423-D	320- 106033-2	Surface Water	N	10/14/2023	23:00	DUP
SEEP-C-EFFLUENT-24- 101423	320- 106033-3	Surface Water	N	10/14/2023	23:00	FS
SEEP-EB-101623	320- 106033-4	Blank Water	N	10/16/2023	12:05	EB
SEEP-FB-101623	320- 106033-5	Blank Water	Ν	10/16/2023	12:10	FB
SEEP-C-INFLUENT-TSS- 101623	320- 106033-6	Surface Water	Ν	10/16/2023	12:15	FS
SEEP-C-EFFLUENT-TSS- 101623	320- 106033-7	Surface Water	Ν	10/16/2023	12:20	FS
SEEP-C-INFLUENT-24- 102123	320- 106275-1	Surface Water	Ν	10/21/2023	23:00	FS
SEEP-C-EFFLUENT-24- 102123	320- 106275-2	Surface Water	Ν	10/21/2023	23:00	FS
SEEP-C-INFLUENT-TSS- 102323	320- 106275-3	Surface Water	Ν	10/23/2023	10:00	FS
SEEP-C-EFFLUENT-TSS- 102323	320- 106275-4	Surface Water	Ν	10/23/2023	10:05	FS
SEEP-C-INFLUENT-24- 103123	320- 106621-1	Surface Water	Ν	10/31/2023	16:00	FS
SEEP-C-EFFLUENT-24- 103123	320- 106621-2	Surface Water	N	10/31/2023	16:00	FS
SEEP-C-INFLUENT-TSS- 110123	320- 106621-3	Surface Water	N	11/01/2023	14:00	FS
SEEP-C-EFFLUENT-TSS- 110123	320- 106621-4	Surface Water	Ν	11/01/2023	14:05	FS
SEEP-C-INFLUENT-24- 110823	320- 106959-1	Surface Water	Ν	11/08/2023	16:00	FS
SEEP-C-INFLUENT-24- 110823-D	320- 106959-2	Surface Water	Ν	11/08/2023	16:00	DUP
SEEP-C-EFFLUENT-24- 110823	320- 106959-3	Surface Water	Ν	11/08/2023	16:00	FS
SEEP-EB-110923	320- 106959-4	Blank Water	Ν	11/09/2023	10:55	EB
SEEP-FB-110923	320- 106959-5	Blank Water	Ν	11/09/2023	11:00	FB
SEEP-C-INFLUENT-TSS- 110923	320- 106959-6	Surface Water	N	11/09/2023	11:05	FS
SEEP-C-EFFLUENT-TSS- 110923	320- 106959-7	Surface Water	Ν	11/09/2023	11:00	FS
SEEP-C-INFLUENT-24- 111523	320- 107262-1	Water	N	11/15/2023	16:00	FS
SEEP-C-EFFLUENT-24- 111523	320- 107262-2	Water	Ν	11/15/2023	16:00	FS
SEEP-C-INFLUENT-TSS- 111623	320- 107262-3	Surface Water	Ν	11/16/2023	10:05	FS
SEEP-C-EFFLUENT-TSS- 111623	320- 107262-4	Surface Water	Ν	11/16/2023	10:10	FS
SEEP-C-INFLUENT-24- 112223	320- 107478-1	Surface Water	N	11/22/2023	16:00	FS
SEEP-C-EFFLUENT-24- 112223	320- 107478-2	Surface Water	Ν	11/22/2023	16:00	FS

Field Sample ID	Lab Sample ID	Sample Matrix	Filtered	Sample Date	Sample Time	Sample Purpose
SEEP-C-INFLUENT-TSS- 112723	320- 107478-3	Surface Water	N	11/27/2023	12:40	FS
SEEP-C-EFFLUENT-TSS- 112723	320- 107478-4	Surface Water	N	11/27/2023	12:45	FS
SEEP-C-INFLUENT-24- 113023	320- 107704-1	Surface Water	N	11/30/2023	18:30	FS
SEEP-C-EFFLUENT-24- 113023	320- 107704-2	Surface Water	N	11/30/2023	18:30	FS
SEEP-C-INFLUENT-TSS- 120123	320- 107704-3	Surface Water	N	12/01/2023	09:15	FS
SEEP-C-EFFLUENT-TSS- 120123	320- 107704-4	Surface Water	Ν	12/01/2023	09:20	FS
SEEP-C-INFLUENT-24- 120723	320- 107929-1	Surface Water	N	12/07/2023	15:00	FS
SEEP-C-INFLUENT-24- 120723-D	320- 107929-2	Surface Water	Ν	12/07/2023	15:00	DUP
SEEP-C-EFFLUENT-24- 120723	320- 107929-3	Surface Water	Ν	12/07/2023	15:00	FS
SEEP-EB-120823	320- 107929-4	Blank Water	Ν	12/08/2023	12:15	EB
SEEP-FB-120823	320- 107929-5	Blank Water	N	12/08/2023	12:20	FB
SEEP-C-INFLUENT-TSS- 120823	320- 107929-6	Surface Water	N	12/08/2023	11:10	FS
SEEP-C-EFFLUENT-TSS- 120823	320- 107929-7	Surface Water	N	12/08/2023	11:15	FS
SEEP-C-INFLUENT-24- 121423	320- 108178-1	Surface Water	N	12/14/2023	15:00	FS
SEEP-C-EFFLUENT-24- 121423	320- 108178-2	Surface Water	N	12/14/2023	15:00	FS
SEEP-C-INFLUENT-TSS- 121523	320- 108178-3	Surface Water	N	12/15/2023	09:15	FS
SEEP-C-EFFLUENT-TSS- 121523	320- 108178-4	Surface Water	N	12/15/2023	09:20	FS
SEEP-A-INFLUENT-24- 121823	320- 108303-1	Surface Water	N	12/18/2023	11:00	FS
SEEP-A-EFFLUENT-24- 121823	320- 108303-2	Surface Water	N	12/18/2023	11:00	FS
SEEP-C-INFLUENT-24- 121823	320- 108303-3	Surface Water	N	12/18/2023	11:00	FS
SEEP-C-EFFLUENT-24- 121823	320- 108303-4	Surface Water	N	12/18/2023	11:00	FS
SEEP-D-INFLUENT-24- 121823	320- 108303-5	Surface Water	N	12/18/2023	11:00	FS
SEEP-D-EFFLUENT-24- 121823	320- 108303-6	Surface Water	N	12/18/2023	11:00	FS
SEEP-B-EFFLUENT-24- 121823	320- 108303-7	Surface Water	N	12/18/2023	11:00	FS
SEEP-B-INFLUENT-24- 121823	320- 108303-8	Surface Water	N	12/18/2023	11:00	FS
SEEP-A-INFLUENT-TSS- 122723	320- 108387-1	Surface Water	N	12/27/2023	10:50	FS
SEEP-B-INFLUENT-TSS- 122723	320- 108387-2	Surface Water	N	12/27/2023	11:15	FS
SEEP-C-INFLUENT-TSS- 122723	320- 108387-3	Surface Water	N	12/27/2023	11:25	FS
SEEP-D-INFLUENT-TSS- 122723	320- 108387-4	Surface Water	Ν	12/27/2023	11:40	FS

Field Sample ID	Lab Sample ID	Sample Matrix	Filtered	Sample Date	Sample Time	Sample Purpose
SEEP-A-EFFLUENT-TSS- 122723	320- 108387-5	Surface Water	N	12/27/2023	10:55	FS
SEEP-B-EFFLUENT-TSS- 122723	320- 108387-6	Surface Water	N	12/27/2023	11:20	FS
SEEP-C-EFFLUENT-TSS- 122723	320- 108387-7	Surface Water	N	12/27/2023	11:30	FS
SEEP-D-EFFLUENT-TSS- 122723	320- 108387-8	Surface Water	N	12/27/2023	11:45	FS
SEEP-A-INFLUENT-24- 122623	320- 108388-1	Surface Water	N	12/26/2023	23:00	FS
SEEP-A-EFFLUENT-24- 122623	320- 108388-2	Surface Water	N	12/26/2023	23:00	FS
SEEP-C-INFLUENT-24- 122623	320- 108388-3	Surface Water	N	12/26/2023	23:00	FS
SEEP-C-EFFLUENT-24- 122623	320- 108388-4	Surface Water	N	12/26/2023	23:00	FS
SEEP-D-INFLUENT-24- 122623	320- 108388-5	Surface Water	N	12/26/2023	23:00	FS
SEEP-D-EFFLUENT-24- 122723	320- 108388-6	Surface Water	N	12/27/2023	13:00	FS
SEEP-B-EFFLUENT-24- 122723	320- 108388-7	Surface Water	N	12/27/2023	13:00	FS
SEEP-B-INFLUENT-24- 122623	320- 108388-8	Surface Water	N	12/26/2023	23:00	FS

* FS=Field Sample
 DUP=Field Duplicate
 FB=Field Blank
 EB=Equipment Blank
 TB=Trip Blank

Analytical Protocol

Lab Name	Lab Method	Parameter Category	Sampling Program
Eurofins Environ Testing Northern Cali	Cl. Spec. Table 3 Compound SOP	Per- and Polyfluorinated Alkyl Substances (PFAS)	Seep Flow Through Cell Sampling 2023
Eurofins Environ Testing Northern Cali	SM 2540 D	Total Suspended Solids	Seep Flow Through Cell Sampling 2023

ADQM Data Review Checklist

ltem	Description	Yes	No*	DVM Narrative Report	Laboratory Report	Exception Report (ER) #
A	Did samples meet laboratory acceptability requirements upon receipt (i.e., intact, within temperature, properly preserved, and no headspace where applicable)?	х				
В	Were samples received by the laboratory in agreement with the associated chain of custody?	х				
С	Was the chain of custody properly completed by the laboratory and/or field team?	х				
D	Were samples prepped/analyzed by the laboratory within method holding times?		х	х	х	
E	Were data review criteria met for method blanks, LCSs/LCSDs, MSs/MSDs, PDSs, SDs, replicates, surrogates, sample results within calibration range, total/dissolved samples, field duplicates, field/equipment/trip blanks?		x	×	х	
F	Were all data usable and not R qualified?	Х				
ER#	Description					
Other	QA/QC Items to Note:					

* See DVM Narrative Report, Laboratory Report, and/or ER # for further details as indicated.

The electronic data submitted for this project were reviewed via the Data Verification Module (DVM)

process. Overall, the data are acceptable for use without qualification, except as noted on the attached

DVM Narrative Report.

The lab reports due to a large page count are stored on a network shared drive and are available to be

posted on external shared drives, or on a flash drive.

Data Verification Module (DVM)

The DVM is an internal review process used by the ADQM group to assist with the determination of data usability. The electronic data deliverables received from the laboratory are loaded into the Locus EIM[™] database and processed through a series of data quality checks, which are a combination of software, Locus EIM[™] database Data Verification Module (DVM), and manual reviewer evaluations. The data are evaluated against the following data usability checks:

- Field and laboratory blank contamination
- US EPA hold time criteria
- Missing Quality Control (QC) samples
- Matrix spike (MS)/matrix spike duplicate (MSD) recoveries and the relative percent differences (RPDs) between these spikes
- Laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) recoveries and the RPD between these spikes
- Surrogate spike recoveries for organic analyses
- Difference/RPD between field duplicate sample pairs
- RPD between laboratory replicates for inorganic analyses
- Difference/percent difference between total and dissolved sample pairs

There are two qualifier fields in EIM:

Laboratory Qualifier is the qualifier assigned by the laboratory and may not reflect the usability of the data. This qualifier may have many different meanings and can vary between labs and over time within the same lab. Please refer to the laboratory report for a description of the laboratory qualifiers. As they are laboratory descriptors they are not to be used when evaluating the data.

Validation Qualifier is the 3rd party formal validation qualifier if this was performed. Otherwise this field contains the qualifier resulting from the ADQM DVM review process. This qualifier assesses the usability of the data and may not equal the laboratory qualifier. The DVM applies the following data evaluation qualifiers to analysis results, as warranted:

Qualifier	Definition
В	Not detected substantially above the level reported in the laboratory or field
	blanks.
R	Unusable result. Analyte may or may not be present in the sample.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected. Reporting limit may not be accurate or precise.

The **Validation Status Code** field is set to "DVM" if the ADQM DVM process has been performed. If the DVM has not been run, the field will be blank.

If the DVM has been run (Validation Status Code equals "DVM"), use the Validation Qualifier.

If the data have been validated by a third party, the field **"Validated By"** will be set to the validator (e.g., ESI for Environmental Standards, Inc.).

DVM Narrative Report

Site: Fayetteville

Sampling Program:

Seep Flow Through Cell Sampling 2023

Validation Options:

LABSTATS

Validation Reason Code:

The analysis hold time for this sample was exceeded. The reporting limit may be biased low.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	Perfluoro(2- ethoxyethane)sulfonic	0.0067	UG/L	PQL		0.0067	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PFECA B	0.027	UG/L	PQL		0.027	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PS Acid	0.020	UG/L	PQL		0.020	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	R-PSDCA	0.017	UG/L	PQL		0.017	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PFO5DA	0.078	ug/L	PQL		0.078	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	EVE Acid	0.017	UG/L	PQL		0.017	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PFECA-G	0.048	UG/L	PQL		0.048	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	Perfluoro(2- ethoxyethane)sulfonic	0.0067	UG/L	PQL		0.0067	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PFECA B	0.027	UG/L	PQL		0.027	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	R-PSDCA		UG/L	PQL		0.017	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PS Acid		UG/L	PQL		0.020	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	EVE Acid		UG/L	PQL		0.017	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PFECA-G	0.048	UG/L	PQL		0.048	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	Perfluoro(2- ethoxyethane)sulfonic	0.0067	UG/L	PQL		0.0067	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	Hydrolyzed PSDA	0.038	UG/L	PQL		0.038	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	R-PSDCA	0.017	UG/L	PQL		0.017	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	R-EVE		UG/L	PQL		0.072	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PS Acid	0.020	UG/L	PQL		0.020	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PFECA B	0.027	UG/L	PQL		0.027	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PFO5DA	0.078	ug/L	PQL		0.078	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	EVE Acid	0.017	UG/L	PQL		0.017	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PFECA-G	0.048	UG/L	PQL		0.048	UJ	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

Site:	Fayetteville
-------	--------------

Sampling Program: Seep Flow Through Cell Sampling 2023

Validation Options: LABSTATS

Validation Reason Code:

Code: The analysis hold time for this sample was exceeded. The reporting limit may be biased low.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
SEEP-D-EFFLUENT-TSS- 121823	12/18/2023 320-108306-8	Total Suspended Solids	1.0 MG/L	MDL	1.0	3.0	UJ	SM 2540 D-2015		

Site:	Fayetteville
-------	--------------

Seep Flow Through Cell Sampling 2023

Validation Options: LABSTATS

Validation Reason Code:

High relative percent difference (RPD) observed between field duplicate and parent sample. The reported result may be imprecise.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Uni	s Type	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
SEEP-C-NEW-102623	10/26/2023 320-106424-1	NVHOS, Acid Form	0.038 UG	L PQL		0.015	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-NEW-D-102623	10/26/2023 320-106424-2	NVHOS, Acid Form	0.056 UG	L PQL		0.015	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	Hydrolyzed PSDA	0.063 UG	L PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	Hydrolyzed PSDA	0.13 UG	L PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 110823	11/08/2023 320-106959-1	Hydrolyzed PSDA	0.13 UG	L PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 110823-D	11/08/2023 320-106959-2	Hydrolyzed PSDA	0.067 UG	L PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

Site:	Fayetteville
-------	--------------

Seep Flow Through Cell Sampling 2023

Validation Options: LABSTATS

Validation Reason Code:

High relative percent difference (RPD) observed between MS and MSD samples. The reported result may be imprecise.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result L	Jnits	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
SEEP-C-INFLUENT-24- 111523	11/15/2023 320-107262-1	R-PSDA	0.11 l	UG/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 111523	11/15/2023 320-107262-1	Hydrolyzed PSDA	0.046 l	UG/L	PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 111523	11/15/2023 320-107262-1	R-EVE	0.085 l	UG/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 111523	11/15/2023 320-107262-1	PFO4DA	0.40	ug/L	PQL		0.059	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

Site: Fayetteville

Sampling Program: Seep

Seep Flow Through Cell Sampling 2023

Validation Options: LABSTATS

Validation Reason Code:

Uncertainty around the analysis of R-PSDA, Hydrolyzed PSDA and R-EVE; J-qualifier added to all detects in the data set, even if there was no matrix spike analyzed for that particular sample.

Field Semple ID	Date Sempled Lob Semple ID	Analyta	Deput Lin	:to 7		MDL	PQL	Validation Qualifier	Analytical		Drop
Field Sample ID	Sampled Lab Sample ID	Analyte	Result Un		Гуре	MDL	PQL	Qualifier	Method	Pre-prep	Prep
SEEP-D-INFLUENT-24- 121823	12/18/2023 320-108303-5	R-PSDA	0.36 UG	6/L I	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-D-INFLUENT-24- 121823	12/18/2023 320-108303-5	Hydrolyzed PSDA	0.55 UG	G/L I	PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-D-INFLUENT-24- 121823	12/18/2023 320-108303-5	R-EVE	0.31 UG	6/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-D-INFLUENT-24- 122623	12/26/2023 320-108388-5	R-PSDA	0.18 UG	3/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-D-INFLUENT-24- 122623	12/26/2023 320-108388-5	Hydrolyzed PSDA	0.26 UG	G/L I	PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-D-INFLUENT-24- 122623	12/26/2023 320-108388-5	R-EVE	0.16 UG	6/L I	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-NEW-102623	10/26/2023 320-106424-1	R-PSDA	0.096 UG	6/L I	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-NEW-102623	10/26/2023 320-106424-1	Hydrolyzed PSDA	0.070 UG	6/L	PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-NEW-102623	10/26/2023 320-106424-1	R-EVE	0.098 UG	6/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-NEW-D-102623	10/26/2023 320-106424-2	R-PSDA	0.10 UG	6/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-NEW-D-102623	10/26/2023 320-106424-2	Hydrolyzed PSDA	0.057 UG	6/L I	PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-NEW-D-102623	10/26/2023 320-106424-2	R-EVE	0.11 UG	6/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121823	12/18/2023 320-108303-3	R-PSDA	0.14 UG	G/L I	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121823	12/18/2023 320-108303-3	R-EVE	0.11 UG	G/L I	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 122623	12/26/2023 320-108388-3	R-PSDA	0.25 UG	G/L I	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 122623	12/26/2023 320-108388-3	R-EVE	0.27 UG	G/L I	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-B-INFLUENT-24- 121823	12/18/2023 320-108303-8	R-PSDA	1.5 UG	G/L I	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-B-INFLUENT-24- 121823	12/18/2023 320-108303-8	Hydrolyzed PSDA	7.8 UG	G/L I	PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-B-INFLUENT-24- 121823	12/18/2023 320-108303-8	R-EVE	0.97 UG	6/L I	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-B-INFLUENT-24- 122623	12/26/2023 320-108388-8	R-PSDA	0.94 UG	6/L I	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-B-INFLUENT-24- 122623	12/26/2023 320-108388-8	Hydrolyzed PSDA	4.8 UG	6/L	PQL		0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-B-INFLUENT-24- 122623	12/26/2023 320-108388-8	R-EVE	0.61 UG	3/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-A-EFFLUENT-24- 121823	12/18/2023 320-108303-2	R-PSDA	0.014 UG	G/L I	PQL		0.0020	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

Site: Fayetteville

Sampling Program:

Seep Flow Through Cell Sampling 2023

Validation Options:

LABSTATS

Validation Reason Code:

Uncertainty around the analysis of R-PSDA, Hydrolyzed PSDA and R-EVE; J-qualifier added to all detects in the data set, even if there was no matrix spike analyzed for that particular sample.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result Uni	ts Ty	be M	DL PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
SEEP-A-EFFLUENT-24-	12/18/2023 320-108303-2	Hydrolyzed PSDA	0.036 UG	• •		0.0020	J	Cl. Spec. Table 3		PFAS_DI_Prep
121823 SEEP-A-EFFLUENT-24-	12/18/2023 320-108303-2	R-EVE	0.0036 UG	L PG	ı	0.0020	J	Compound SOP Cl. Spec. Table 3		PFAS_DI_Prep
121823	12/10/2023 320-106303-2					0.0020	-	Compound SOP		FFA5_DI_FIep
SEEP-A-EFFLUENT-24- 122623	12/26/2023 320-108388-2	R-PSDA	0.0075 UG	'L PG	L	0.0020	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-A-EFFLUENT-24- 122623	12/26/2023 320-108388-2	Hydrolyzed PSDA	0.024 UG	L PG	L	0.0020	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-A-EFFLUENT-24- 122623	12/26/2023 320-108388-2	R-EVE	0.0034 UG	L PG	L	0.0020	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-A-INFLUENT-24- 121823	12/18/2023 320-108303-1	R-PSDA	0.98 UG	'L PG	L	0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-A-INFLUENT-24- 121823	12/18/2023 320-108303-1	Hydrolyzed PSDA	2.1 UG	L PG	L	0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-A-INFLUENT-24- 121823	12/18/2023 320-108303-1	R-EVE	0.17 UG	L PG	L	0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-A-INFLUENT-24- 122623	12/26/2023 320-108388-1	R-PSDA	0.54 UG	L PG	L	0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-A-INFLUENT-24- 122623	12/26/2023 320-108388-1	Hydrolyzed PSDA	1.5 UG	L PC	L	0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-A-INFLUENT-24- 122623	12/26/2023 320-108388-1	R-EVE	0.26 UG	L PG	L	0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 101423	10/14/2023 320-106033-1	R-PSDA	0.22 UG	L PG	L	0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 101423	10/14/2023 320-106033-1	Hydrolyzed PSDA	0.080 UG	L PG	L	0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 101423	10/14/2023 320-106033-1	R-EVE	0.14 UG	L PG	L	0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 101423-D	10/14/2023 320-106033-2	R-PSDA	0.18 UG	L PG	L	0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 101423-D	10/14/2023 320-106033-2	Hydrolyzed PSDA	0.078 UG	L PG	L	0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 101423-D	10/14/2023 320-106033-2	R-EVE	0.18 UG	L PG	L	0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 102123	10/21/2023 320-106275-1	R-PSDA	0.19 UG	L PG	L	0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 102123	10/21/2023 320-106275-1	Hydrolyzed PSDA	0.080 UG	'L PG	L	0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 102123	10/21/2023 320-106275-1	R-EVE	0.16 UG	'L PG	L	0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 103123	10/31/2023 320-106621-1	R-PSDA	0.19 UG	L PG	L	0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 103123	10/31/2023 320-106621-1	Hydrolyzed PSDA	0.069 UG	L PG	L	0.038	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 103123	10/31/2023 320-106621-1	R-EVE	0.14 UG	L PG	L	0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

Seep Flow Through Cell Sampling 2023

Validation Options: LABSTATS

Uncertainty around the analysis of R-PSDA, Hydrolyzed PSDA and R-EVE; J-qualifier added to all detects in the data set, even if there was no matrix spike analyzed for that

	Date							Validation	Analytical		
Field Sample ID	Sampled Lab Sample ID	Analyte	Result U	Inits	Туре	MDL	PQL	Qualifier	Method	Pre-prep	Prep
EEP-C-INFLUENT-24- 10823	11/08/2023 320-106959-1	R-PSDA	0.21 U	JG/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
EEP-C-INFLUENT-24- 10823	11/08/2023 320-106959-1	R-EVE	0.16 U	JG/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
EEP-C-INFLUENT-24- 10823-D	11/08/2023 320-106959-2	R-PSDA	0.14 U	JG/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
EEP-C-INFLUENT-24- 10823-D	11/08/2023 320-106959-2	R-EVE	0.13 U	JG/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
EEP-C-INFLUENT-24- 12223	11/22/2023 320-107478-1	R-PSDA	0.13 U	JG/L	PQL		0.014	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
EEP-C-INFLUENT-24- 12223	11/22/2023 320-107478-1	Hydrolyzed PSDA	0.041 U	JG/L	PQL		0.0076	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
EEP-C-INFLUENT-24- 12223	11/22/2023 320-107478-1	R-EVE	0.077 U	JG/L	PQL		0.014	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
EEP-C-INFLUENT-24- 13023	11/30/2023 320-107704-1	R-PSDA	0.11 U	JG/L	PQL		0.0035	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
EEP-C-INFLUENT-24- 13023	11/30/2023 320-107704-1	Hydrolyzed PSDA	0.030 U	JG/L	PQL		0.0020	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
EEP-C-INFLUENT-24- 13023	11/30/2023 320-107704-1	R-EVE	0.074 U	JG/L	PQL		0.0036	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep

Site: Fayetteville

Seep Flow Through Cell Sampling 2023

Validation Options: LABSTATS

Validation Reason Code:

The analysis hold time for this sample was exceeded. The reported result may be biased low.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
SEEP-D-INFLUENT-TSS- 121823	12/18/2023 320-108306-4	Total Suspended Solids	39	MG/L	MDL	2.5	7.5	J	SM 2540 D-2015		
SEEP-C-INFLUENT-TSS- 121823	12/18/2023 320-108306-3	Total Suspended Solids	36	MG/L	MDL	2.5	7.5	J	SM 2540 D-2015		
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	Hydro-PS Acid	0.075	ug/L	PQL		0.0061	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	Hydro-EVE Acid	0.076	UG/L	PQL		0.014	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	NVHOS, Acid Form	0.065	UG/L	PQL		0.015	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PFMOAA	6.2	ug/L	PQL		0.080	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	R-PSDA	0.098	UG/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PFO2HxA	2.8	ug/L	PQL		0.027	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PFO3OA	0.75	ug/L	PQL		0.039	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PFO4DA	0.31	ug/L	PQL		0.059	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PEPA	0.22	UG/L	PQL		0.020	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	PMPA	0.86	UG/L	PQL		0.62	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 121423	12/14/2023 320-108178-1	Hfpo Dimer Acid	1.1	UG/L	PQL		0.081	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	Hydro-PS Acid	0.059	ug/L	PQL		0.0061	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	Hydro-EVE Acid	0.090	UG/L	PQL		0.014	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	NVHOS, Acid Form	0.15	UG/L	PQL		0.015	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PFO2HxA	2.5	ug/L	PQL		0.027	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PFO3OA	0.70	ug/L	PQL		0.039	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PFO4DA	0.30	ug/L	PQL		0.059	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PFO5DA	0.083	ug/L	PQL		0.078	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PFMOAA	5.8	ug/L	PQL		0.080	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	R-EVE	0.11	UG/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PEPA	0.25	UG/L	PQL		0.020	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
											D

Site: Fayetteville

Sampling Program:

Seep Flow Through Cell Sampling 2023

Validation Options:

LABSTATS

Validation Reason Code:

The analysis hold time for this sample was exceeded. The reported result may be biased low.

Field Sample ID	Date Sampled Lab Sample ID	Analyte	Result	l Inite	Туре	MDL	PQL	Validation Qualifier	Analytical Method	Pre-prep	Prep
•		-			••	NIDL				i ie-hieh	•
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	R-PSDA	0.14	UG/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	PMPA	1.1	UG/L	PQL		0.62	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723-D	12/07/2023 320-107929-2	Hfpo Dimer Acid	1.1	UG/L	PQL		0.081	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	Hydro-PS Acid	0.071	ug/L	PQL		0.0061	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	Hydro-EVE Acid	0.094	UG/L	PQL		0.014	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	NVHOS, Acid Form	0.19	UG/L	PQL		0.015	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PFMOAA	6.0	ug/L	PQL		0.080	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	R-EVE	0.14	UG/L	PQL		0.072	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PEPA	0.26	UG/L	PQL		0.020	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PFO2HxA	2.7	ug/L	PQL		0.027	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PFO3OA	0.74	ug/L	PQL		0.039	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PFO4DA	0.28	ug/L	PQL		0.059	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	R-PSDA	0.17	UG/L	PQL		0.071	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	PMPA	1.1	UG/L	PQL		0.62	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-C-INFLUENT-24- 120723	12/07/2023 320-107929-1	Hfpo Dimer Acid	1.1	UG/L	PQL		0.081	J	Cl. Spec. Table 3 Compound SOP		PFAS_DI_Prep
SEEP-B-INFLUENT-TSS- 121823	12/18/2023 320-108306-2	Total Suspended Solids	49	MG/L	MDL	2.9	8.6	J	SM 2540 D-2015		
SEEP-A-EFFLUENT-TSS- 121823	12/18/2023 320-108306-5	Total Suspended Solids	36	MG/L	MDL	2.2	6.7	J	SM 2540 D-2015		
SEEP-A-INFLUENT-TSS- 121823	12/18/2023 320-108306-1	Total Suspended Solids	120	MG/L	MDL	5.0	15	J	SM 2540 D-2015		
SEEP-B-EFFLUENT-TSS- 121823	12/18/2023 320-108306-6	Total Suspended Solids	14	MG/L	MDL	1.0	3.0	J	SM 2540 D-2015		
SEEP-C-EFFLUENT-TSS- 121823	12/18/2023 320-108306-7	Total Suspended Solids	9.5	MG/L	MDL	1.0	3.0	J	SM 2540 D-2015		

Site: Fayetteville

Sampling Program:

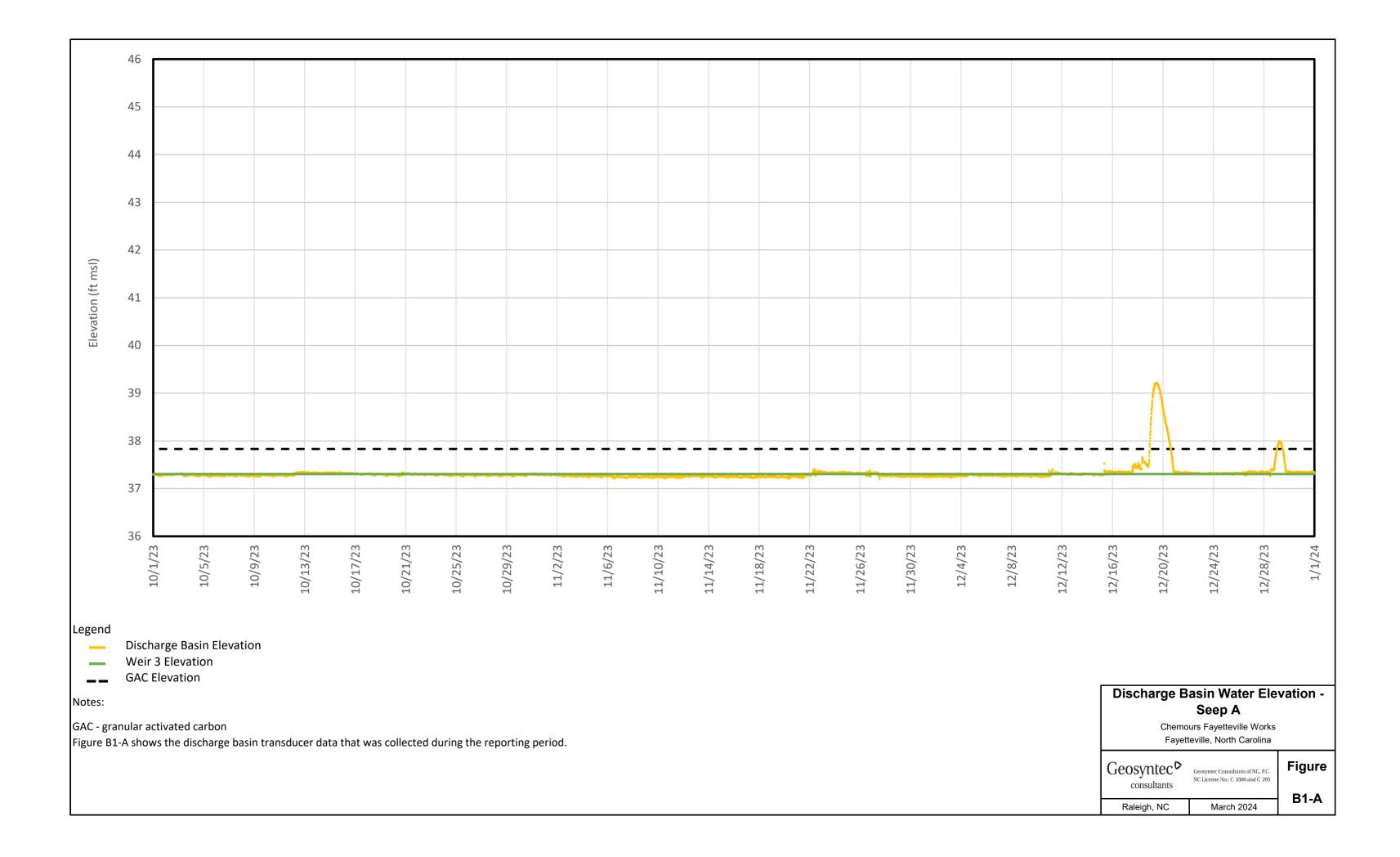
Seep Flow Through Cell Sampling 2023

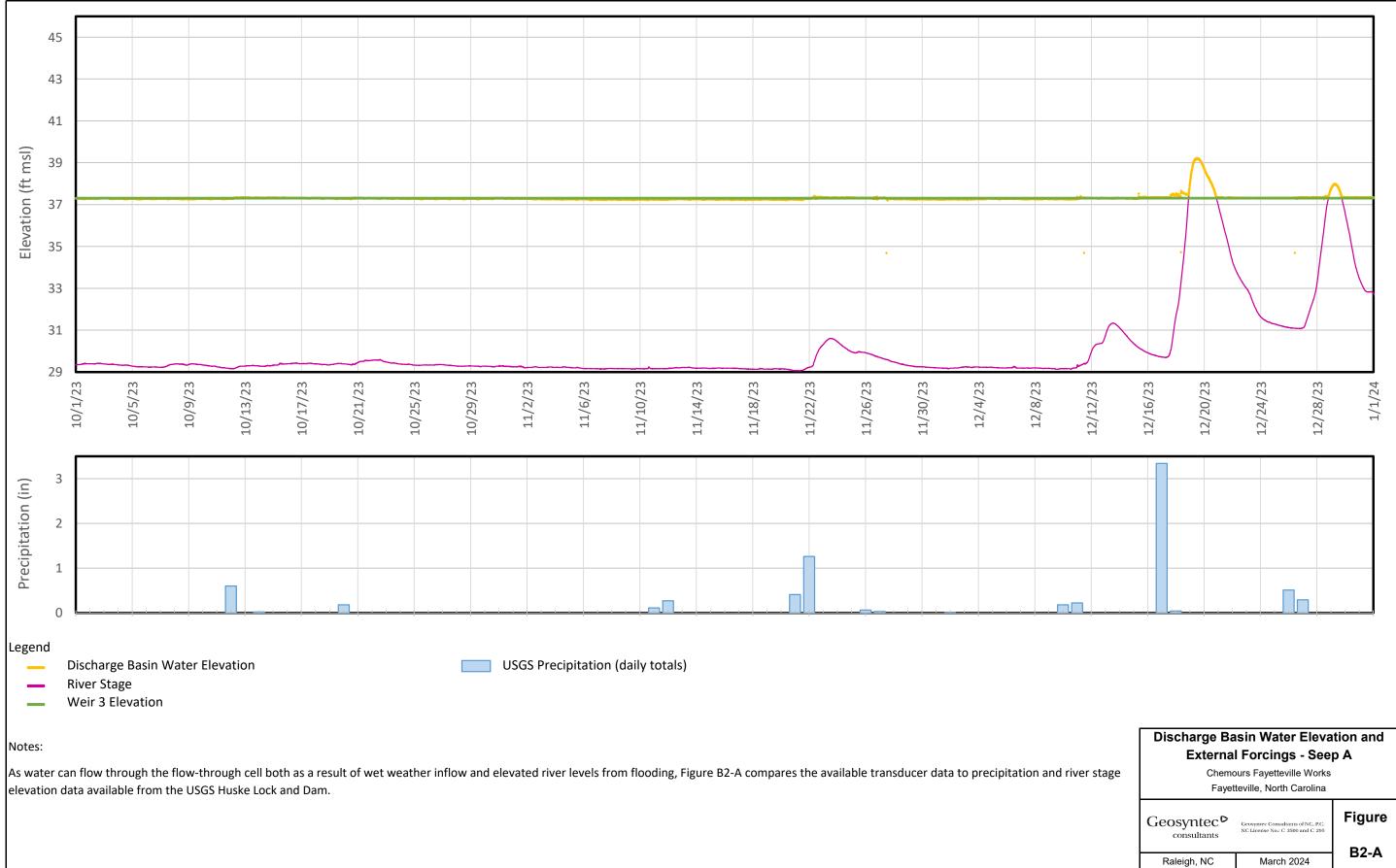
Validation Options: LABSTATS

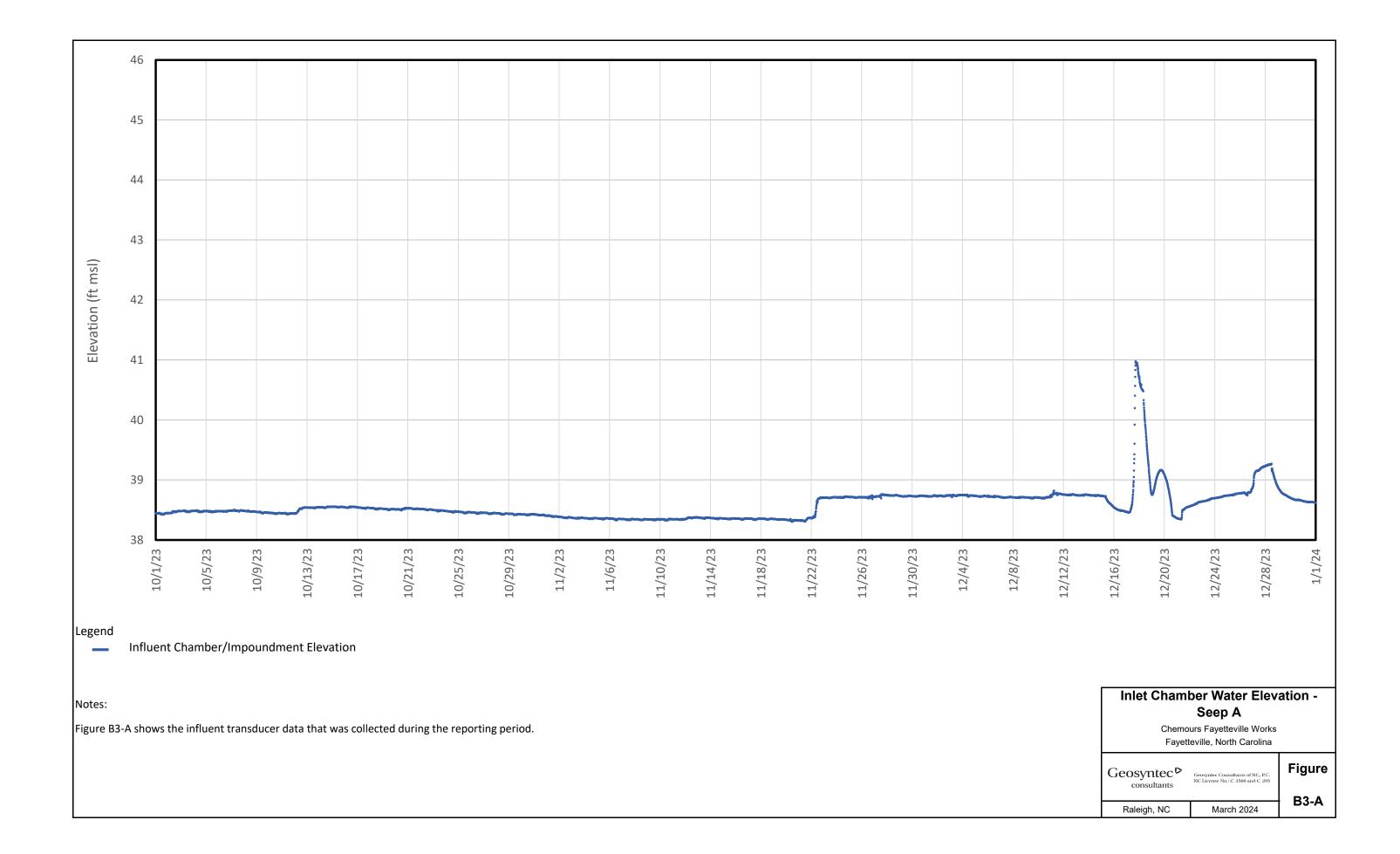
Validation Reason Code:

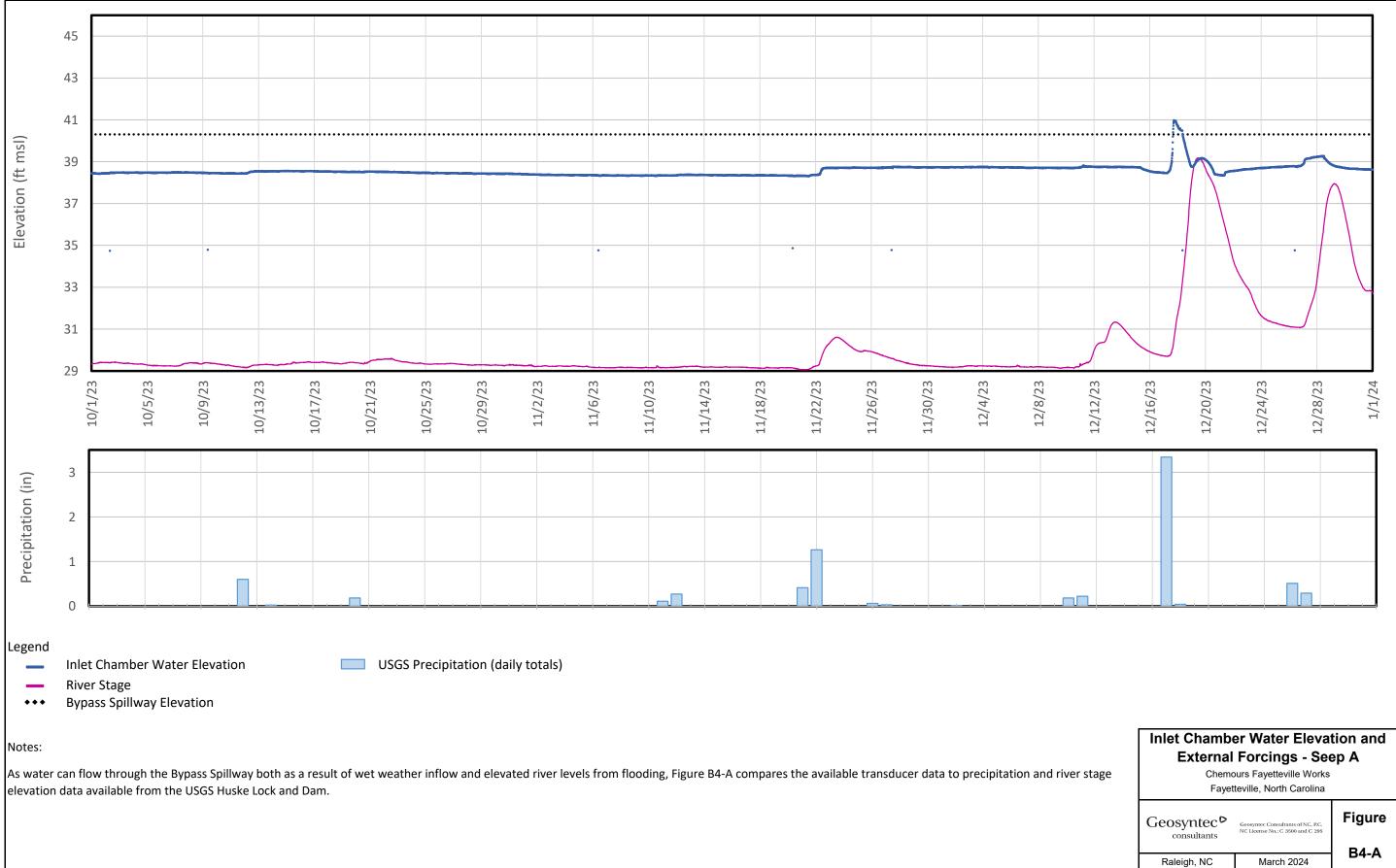
The result is estimated since the concentration is between the method detection limit and practical quantitation limit.

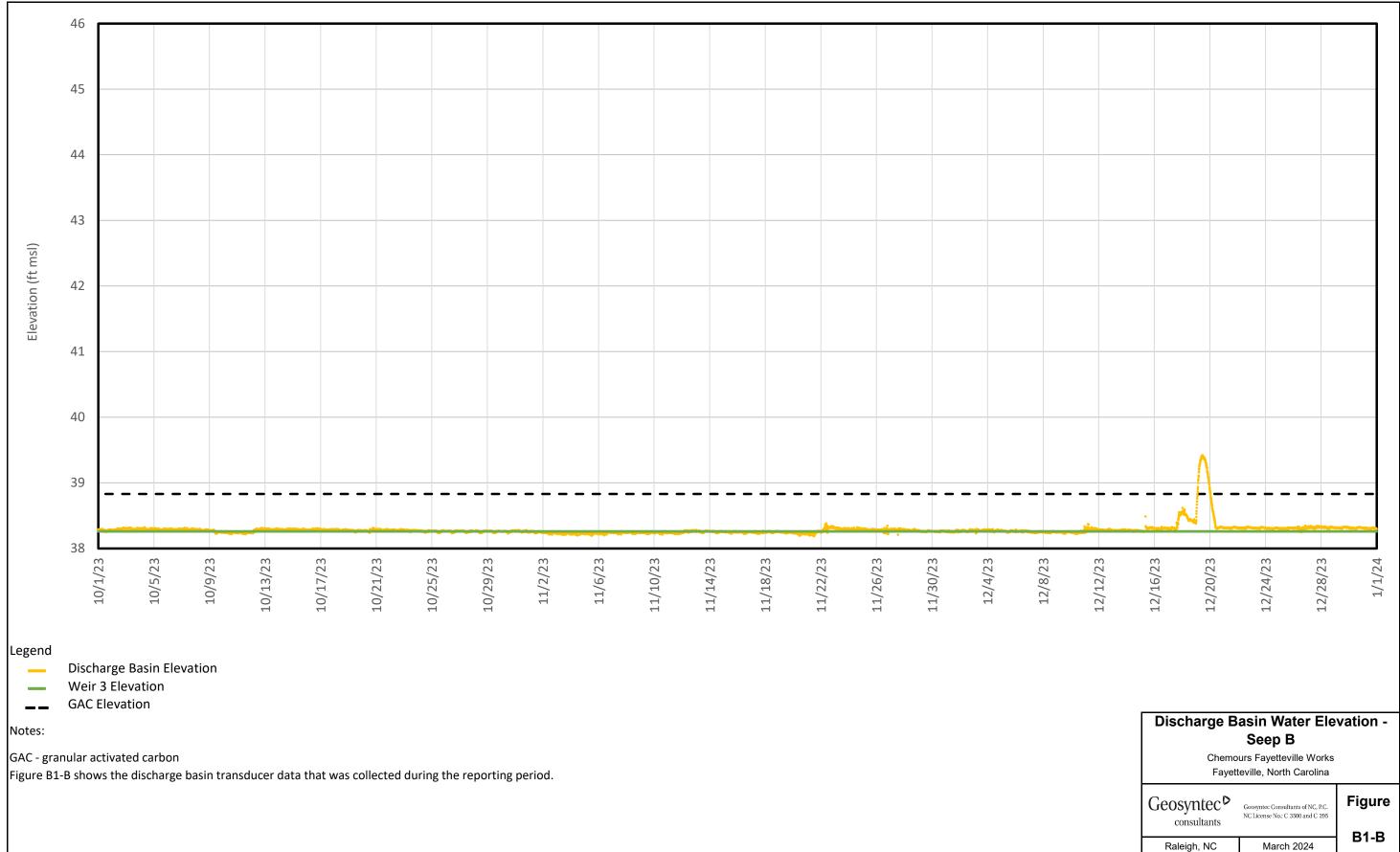
	Date							Validation	Analytical		
Field Sample ID	Sampled Lab Sample ID	Analyte	Result	Units	Туре	MDL	PQL	Qualifier	Method	Pre-prep	
SEEP-B-EFFLUENT-TSS- 122723	12/27/2023 320-108387-6	Total Suspended Solids	1.0	MG/L	MDL	1.0	3.0	J	SM 2540 D-2015		
SEEP-C-EFFLUENT-TSS- 110923	11/09/2023 320-106959-7	Total Suspended Solids	3.2	MG/L	MDL	1.1	4.0	J	SM 2540 D		
SEEP-C-EFFLUENT-TSS- 111623	11/16/2023 320-107262-4	Total Suspended Solids	1.6	MG/L	MDL	1.1	4.0	J	SM 2540 D		
SEEP-C-EFFLUENT-TSS- 121523	12/15/2023 320-108178-4	Total Suspended Solids	2.8	MG/L	MDL	1.1	4.0	J	SM 2540 D		
SEEP-C-INFLUENT-TSS- 101623	10/16/2023 320-106033-6	Total Suspended Solids	3.2	MG/L	MDL	1.1	4.0	J	SM 2540 D		
SEEP-C-INFLUENT-TSS- 110123	11/01/2023 320-106621-3	Total Suspended Solids	2.4	MG/L	MDL	1.1	4.0	J	SM 2540 D		
SEEP-D-INFLUENT-TSS- 122723	12/27/2023 320-108387-4	Total Suspended Solids	1.7	MG/L	MDL	1.0	3.0	J	SM 2540 D-2015		




Geosyntec Consultants of NC, P.C. NC License No.: C-3500 and C-295


Appendix B


FTC Transducer Data Reduction


TR0795C

