Arnold&Porter

Brian D. Israel +1 202.942.6546 Direct Brian.Israel@arnoldporter.com

October 5, 2018

VIA E-MAIL

William F. Lane, Esq. General Counsel NC Department of Environmental Quality 217 West Jones Street Raleigh, NC 27603 Bill.Lane@ncdenr.gov

Francisco Benzoni, Esq. Assistant Attorney General Environmental Division NC Department of Justice 114 West Edenton Street Raleigh, NC 27603 fbenzoni@ncdoj.gov

Re: Chemours - Health and Toxicity Studies: Ames Tests

Dear Mr. Lane and Mr. Benzoni:

On behalf of Chemours, this letter and the accompanying documents are submitted in further response to DEQ's requests seeking certain information related to Chemours' Fayetteville Works facility, which Chemours has been providing on a rolling basis since July 2017.

Please find enclosed at Attachment 1 (Bates labeled CH-FW-DEQ-0058854 to CH-FW-DEQ-0059339) additional documents responsive to DEQ's request for information provided to the U.S. Environmental Protection Agency regarding either HFPO Dimer Acid (CAS No. 13252-13-6) or its ammonium salt (CAS No. 62037-80-3). This attachment contains the final reports from bacterial reverse mutation assays, commonly referred to as Ames assays, which Chemours recently conducted for 10 Table 3 PFAS compounds following OECD Guideline Number 471. The purpose of this assay

Arnold&Porter

October 5, 2018 Page 2

is to determine whether a test substance can cause mutations resulting from damage to the bacterial cell's DNAs. In mammals, mutations in DNA could potentially result in cancer, so this assay is useful as a predictor of carcinogenic potential of a substance. The results of these assays on the Table 3 compounds tested indicate that these 10 test substances were negative for the ability to induce reverse mutations (*i.e.*, they are not mutagenic) at selected loci of several strains of Salmonella typhimurium and at the tryptophan locus of Escherichia coli strain WP2 uvrA in the presence and absence of an exogenous metabolic activation system.¹

These documents supplement those Chemours has already produced in response to this request from DEQ. *See* Chemours's August 25, 2017 Production to DEQ (Bates labeled CH-FW-DEQ-0004100 to CH-FW-DEQ-0057599); Chemours's November 29, 2017 Production to DEQ (Bates labeled CH-FW-DEQ-0057900 to CH-FW-DEQ-0057965); Chemours's February 6, 2018 Production to DEQ (Bates labeled CH-FW-DEQ-0058402 to CH-FW-DEQ-0058853).

If you have any questions about this submission, please let me know.

Sincerely,

Brian D. Israel

Enclosure

cc: Linda Culpepper,

DEQ

John Savarese

Wachtell, Lipton, Rosen & Katz

Ralph Levene

Wachtell, Lipton, Rosen & Katz

¹ We understand the study reports note the chemical names and CAS numbers of the neutral acid form of the test substance. These generally correspond to the names and CAS numbers appearing in Table 3. Also enclosed is a summary of the study results that was shared with the US Environmental Protection Agency as a "FYI" submission. In the FYI submission, chemical names and CAS numbers listed for certain substances may not correspond directly to those identified in the study reports. This occurs in a limited number of cases when the sodium salt was identified in the FYI report as the test substance. Both the neutral acid and the salt readily disassociate into the same anion when dissolved in water, thus making the salt and the neutral acid toxicologically equivalent in this assay.

Arnold&Porter

October 5, 2018 Page 3

> Joel Gross Arnold & Porter Kaye Scholer

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

Sodium salt of Hydrolyzed N=0 TAF

<u>Author</u>

Emily Dakoulas, BS

Study Completion Date

29 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PF.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 51

1. STATEMENT OF COMPLIANCE

Study No. AF28PF.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

Em*j*ly Dakoulas, BS

Study Director

29AV6 2018

2. QUALITY ASSURANCE STATEMENT

Quality Assurance Statement

Study Information

Number: AF28PF.503.BTL

Compliance

Procedures, documentation, equipment and other records were examined in order to assure this study was performed in accordance with the regulation(s) listed below and conducted according to the protocol and relevant Standard Operating Procedures. Verification of the study protocol was performed and documented by Quality Assurance.

US EPA Good Laboratory Standards 40CFR 792

Inspections

Quality Assurance performed the inspections(s) below for this study.

Insp. Dates (From/To)		Phase Inspected	To Study Direc	To Study Director To Management		
13-Jun-2018	13-Jun-2018	Protocol Review	13-Jun-2018	13-Jun-2018		
13-Jun-2018	13-Jun-2018	Scoring	13-Jun-2018	13-Jun-2018		
02-Jul-2018	02-Jul-2018	Data/Draft Report	02-Jul-2018	02-Jul-2018		
23-Aug-2018	23-Aug-2018	Final Report	23-Aug-2018	23-Aug-2018		
23-Aug-2018	23-Aug-2018	Protocol Amendment Review	23-Aug-2018	23-Aug-2018		
28-Aug-2018	28-Aug-2018	Protocol Amendment Review	28-Aug-2018	28-Aug-2018		

The Final Report for this study describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

For a multisite study, test site QA Statements are located in the corresponding contributing scientist report.

E-signature

Quality Assurance: Carlos Bonilla 28-Aug-2018 6:48 pm GMT

Reason for signature: QA Approval

Printed by:Carlos Bonilla Printed on:28-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	16
11.	REFERENCES	17
12.	DATA TABLES	18
13.	APPENDIX I: Historical Control Data	26
14.	APPENDIX II: Study Protocol and Amendments	28
15	APPENDIX III: Common Technical Document Tables	18

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study No.: AF28PF.503.BTL

Sponsor No.: C30049

Test Substance

Identification: Sodium salt of Hydrolyzed N=0 TAF

CAS No.: 674-13-5

Purity: 99.9% (per protocol)

Molecular Weight: 202.02 g/mol

Description: White powder

Storage Conditions: Room temperature, protected from light

Receipt Date: 02 May 2018

Study Dates

Study Initiation Date: 23 May 2018

Experimental Starting Date (first day of

data collection): 23 May 2018

Experimental Start Date (first day test

substance administered to test system): 25 May 2018

Experimental Completion Date: 13 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, Sodium salt of Hydrolyzed N=0 TAF, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 μ g per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate Sodium salt of Hydrolyzed N=0 TAF was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendments are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver Sodium salt of Hydrolyzed N=0 TAF to the test system was water.

Vehicle	CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7732-18-5	Sigma-Aldrich	RNBF9658	Sterile- filtered	Mar 2019

To achieve a solution, the most concentrated dilution was sonicated at 31.3°C for 7 minutes in the mutagenicity assay. Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain	S9 Activation	Positive Control	Concentration (µg/plate)
TA98, TA1535		2-aminoanthracene	1.0
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	2.0
,	Rat	Lot No. STBD3302V Exp. Date 30-Nov-2019	
WP2 uvrA		CAS No. 613-13-8	15
		Purity 97.5%	
TA98		2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.) Lot No. S43858V Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%	1.0
TA100, TA1535	None	sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	
TA1537		9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Lot No. BCBK1177V Exp. Date 31-Mar-2019 CAS No. 52417-22-8 Purity 99.5%	75
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}$ C for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^{9} cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020) was purchased commercially from MolTox (Boone, NC).

Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983).

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and five dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

	Medium							
Component	Minimal ton agar	Minimal	Nutrient	Nutrient				
Component	Minimal top agar	bottom agar	bottom agar	broth				
	(Concentration in Medium						
BBL Select agar (W/V)	0.8% (W/V)							
Vogel-Bonner minimal medium E	1	1.5% (W/V)	1.5% (W/V)					
Sodium chloride	0.5% (W/V)							
L-histidine, D-biotin and	50 mM each							
L-tryptophan solution	30 mivi cacii							
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)							
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)				
Vogel-Bonner salt solution				Supplied at 20 mL/L				

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for $48 \text{ to } 72 \text{ hours at } 37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics			
1 or no code	Normal	Distinguished by a healthy microcolony lawn.			
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.			
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn resulting in a pronounced increase in the size of the microcolonies compared to the vehicle control plate.			
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.			
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.			
6	Obscured by Particulate	The background bacterial lawn cannot be accurately evaluated due to microscopic test substance particulate.			
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).			
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.			

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers.

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All *Salmonella* tester strain cultures must demonstrate the presence of the deep rough mutation (*rfa*) and the deletion in the *uvr*B gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 *uvr*A cultures must demonstrate the deletion in the *uvr*A gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

	95% Control Limits (99% Upper Limit)							
	TA98 TA100 TA1535 TA1537 WP2 uvrA							
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)			
+S9 10-34 (40) 66-122 (136) 4-20 (24) 3-15 (18) 13-41 (48)								
XX7'.1	C. 1 D.		1 ' 1 1'	1 000/	. 1 1' '/ 1			

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel 2007 (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

No deviations from the protocol or assay-method SOPs occurred during the conduct of this study.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

	Tester Strain						
Experiment	TA98	TA100	TA1535	TA1537	WP2 uvrA		
	Titer Value (x 10 ⁹ cells per mL)						
B1	1.2	1.0	1.4	1.4	2.8		
B2	1.4	1.0	1.3	1.5	3.4		

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

Neither precipitate nor toxicity was observed.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and $\underline{4}$. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 50.0, 150, 500, 1500 and 5000 μ g per plate.

Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Sodium salt of Hydrolyzed N=0 TAF did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

BioReliance Study No. AF28PF.503.BTL

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella Mutagenicity Test*, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PF.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PF

Date Plated: 5/25/2018

Evaluation Period: 5/29/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of Hydrolyzed N=0 TAF	5000 μg	11	1	0.8	10 ^A , 11 ^A
	11 0 1111	1500 μg	17	1	1.3	$18^{A}, 16^{A}$
		500 μg	13	2	1.0	11 ^A , 14 ^A
		150 µg	15	3	1.2	17 ^A , 13 ^A
		50.0 μg	15	0	1.2	$15^{A}, 15^{A}$
		15.0 μg	16	2	1.2	17^{A} , 14^{A}
		5.00 μg	12	1	0.9	11 ^A , 13 ^A
		1.50 μg	16	2	1.2	17 ^A , 14 ^A
	Water	100 μL	13	3		15^{A} , 11^{A}
	Sodium salt of					
TA100	Hydrolyzed N=0 TAF	5000 μg	97	11	1.1	89 ^A , 104 ^A
	1, 0 1111	1500 μg	100	4	1.1	$103^{A}, 97^{A}$
		500 μg	86	13	0.9	95 ^A , 76 ^A
		150 µg	89	13	1.0	98 ^A , 79 ^A
		50.0 μg	96	14	1.1	$86^{A}, 106^{A}$
		15.0 μg	102	1	1.1	101^{A} , 103^{A}
		5.00 μg	80	23	0.9	$64^{A}, 96^{A}$
		1.50 µg	100	1	1.1	99 ^A , 101 ^A
	Water	100 μL	91	2		92 ^A , 89 ^A
TA1535	Sodium salt of Hydrolyzed	5000 μg	12	4	1.2	9 ^A , 15 ^A
	N=0 TAF					A A
		1500 μg	9	2	0.9	$7^{A}, 10^{A}$
		500 μg	10	1	1.0	$11^{A}, 9^{A}$
		150 μg	11	4	1.1	$13^{A}, 8^{A}$
		50.0 μg	13	0	1.3	13 ^A , 13 ^A
		15.0 μg	9	0	0.9	9 ^A , 9 ^A
		5.00 μg	11	4	1.1	14 ^A , 8 ^A
	XX7 4	1.50 μg	9	1	0.9	9 ^A , 8 ^A
·-	Water	100 μL	10	1		$10^{A}, 9^{A}$

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PF.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PF

Date Plated: 5/25/2018

Evaluation Period: 5/29/2018

LAPOSUIC MICH	Exposure Method. I fate incorporation assay			Evaluation 1 chod. 3/29/2018			
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
	Sodium salt of						
TA1537	Hydrolyzed	5000 μg	9	3	1.1	11 ^A , 7 ^A	
	N=0 TAF						
		1500 μg	3	0	0.4	$3^{A}, 3^{A}$	
		500 μg	5	2	0.6	$3^{A}, 6^{A}$	
		150 μg	8	4	1.0	$5^{A}, 11^{A}$	
		50.0 μg	10	i I	1.3	$10^{A}, 9^{A}$	
		15.0 μg	9	1	1.1	10 ^A , 8 ^A	
		5.00 μg	9	3	1.1	7 ^A 11 ^A	
						7 ^A , 11 ^A 6 ^A , 8 ^A	
	***	1.50 μg	7	1	0.9	6,8	
	Water	100 μL	8	3		$6^{A}, 10^{A}$	
	Sodium salt of						
WP2uvrA	Hydrolyzed	5000 μg	28	6	1.0	$23^{A}, 32^{A}$	
	N=0 TAF			-		,	
	11 0 1111	1500 μg	31	0	1.1	$31^{A}, 31^{A}$	
		500 μg	32	4	1.1	35 ^A , 29 ^A	
			33	$\stackrel{7}{0}$	1.1	33 ^A , 33 ^A	
		150 μg				33 , 33	
		50.0 μg	34	11	1.2	41 ^A , 26 ^A	
		15.0 μg	38	4	1.4	$40^{A}, 35^{A}$	
		5.00 µg	28	5	1.0	$24^{A}, 31^{A}$	
		1.50 μg	24	1	0.9	$23^{A}, 24^{A}$	
	Water	100 μL	28	7		23 ^A , 33 ^A	
TA98	2NF	1.00 μg	55	0	4.2	55 ^A , 55 ^A	
TA100	SA	1.00 µg	582	6	6.4	586 ^A , 577 ^A	
TA1535	SA	1.00 µg	600	16	60.0	588 ^A , 611 ^A	
TA1537	9AAD	75.0 μg	505	28	63.1	485 ^A , 524 ^A	
WP2uvrA	MMS	1000 μg	414	14	14.8	404 ^A , 424 ^A	

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PF.503.BTL Experiment: B1 Exposure Method: Plate incorporation assay Study Code: AF28PF Date Plated: 5/25/2018 Evaluation Period: 5/29/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes		
TA98	Sodium salt of Hydrolyzed N=0 TAF	5000 μg	23	2	1.2	21 ^A , 24 ^A		
	N-U IAI	1500 μg	22	6	1.1	$17^{A}, 26^{A}$		
		500 μg	21	8	1.1	15 ^A 27 ^A		
		150 μg	19	4	1.0	15 ^A , 27 ^A 22 ^A , 16 ^A		
		50.0 μg	22	6	1.1	26 ^A , 17 ^A		
		15.0 μg	26	9	1.3	19 ^A , 32 ^A		
		5.00 μg	18	2	0.9	16 ^A , 19 ^A		
		3.00 μg 1.50 μg	22	4	1.1	19 ^A , 25 ^A		
	Water	1.50 μg 100 μL	20	4	1.1	23 ^A , 17 ^A		
		100 μL	20	7		23 , 17		
TA100	Sodium salt of Hydrolyzed N=0 TAF	5000 μg	108	2	1.1	106 ^A , 109 ^A		
	N-0 IAI	1500 μg	117	1	1.2	116 ^A , 117 ^A		
		500 μg	104	6	1.1	108 ^A , 99 ^A		
		150 μg	108	11	1.1	115 ^A , 100 ^A		
		50.0 μg	108	18	1.1	121 ^A , 95 ^A		
		15.0 μg	90	15	0.9	100 ^A , 79 ^A		
	, &		101	0	1.0	100°, 79 101 ^A , 101 ^A		
		1.50 μg	98	3	1.0	96 ^A , 100 ^A		
	Water	1.50 μg 100 μL	99	10	1.0	92 ^A , 106 ^A		
		100 μL		10		72 , 100		
TA1535	Sodium salt of Hydrolyzed N=0 TAF	5000 μg	10	2	0.8	11 ^A , 8 ^A		
	N-U IAF	1500	13	3	1.0	15 ^A , 11 ^A		
		1500 μg 500 μg	13 14	8	1.0 1.1	8 ^A , 19 ^A		
			14 16		1.1	16 ^A , 16 ^A		
		150 μg 50.0 μg	10 13	<i>0</i> 3	1.2	10, 10 11 ^A , 15 ^A		
		$15.0 \mu \text{g}$ 19 0 1.5			11 , 13 19 ^A , 19 ^A			
				0.8	7 ^A , 15 ^A			
		5.00 μg 1.50 μg	11 15	2	0.8 1.2	16 ^A , 13 ^A		
	Water		13 13	7	1.2	8 ^A , 18 ^A		
	water	100 μL	13	/		0,10		

A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PF.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PF

Date Plated: 5/25/2018

Evaluation Period: 5/29/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
	Sodium salt of						
TA1537	Hydrolyzed N=0 TAF	5000 μg	8	4	0.9	5 ^A , 10 ^A	
		1500 μg	7	0	0.8	$7^{A}, 7^{A}$	
		500 μg	12	2	1.3	$10^{A}, 13^{A}$	
		150 μg	6	5	0.7	$2^{A}, 9^{A}$	
		50.0 μg	10	4	1.1	$13^{A}, 7^{A}$	
		15.0 μg	11	5	1.2	14 ^A , 7 ^A	
		5.00 μg	7	0	0.8	$7^{A}, 7^{A}$	
		1.50 µg	10	1	1.1	$11^{A}, 9^{A}$	
	Water	100 μL	9	4		6^{A} , 11^{A}	
	Sodium salt of						
WP2uvrA	Hydrolyzed	5000 μg	34	3	1.2	$36^{A}, 32^{A}$	
	N=0 TAF						
		1500 μg	34	3	1.2	$36^{A}, 32^{A}$	
		500 μg	35	6	1.2	$39^{A}, 31^{A}$	
		150 µg	37	2	1.3	$35^{A}, 38^{A}$	
		50.0 μg	36	5	1.2	$39^{A}, 32^{A}$	
		15.0 μg	32	4	1.1	35 ^A , 29 ^A	
		5.00 µg	42	1	1.4	41 ^A , 43 ^A	
		1.50 µg	31	11	1.1	38 ^A , 23 ^A	
	Water	100 μL	29	4		32 ^A , 26 ^A	
TA98	2AA	1.00 µg	215	11	10.8	207 ^A , 223 ^A	
TA100	2AA	2.00 μg	536	33	5.4	559 ^A , 513 ^A	
TA1535	2AA	1.00 μg	83	6	6.4	$79^{A}, 87^{A}$	
TA1537	2AA	2.00 μg	56	21	6.2	$41^{A}, 70^{A}$	
WP2uvrA	2AA	15.0 μg	314	25	10.8	332 ^A , 296 ^A	

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PF.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PF

Date Plated: 6/6/2018

Evaluation Period: 6/13/2018

Mean Ratio Individual revertant Dose level Standard Strain Substance revertants treated / colony counts and Deviation per plate per plate solvent background codes Sodium salt of **TA98** Hydrolyzed $5000 \mu g$ 14 3 0.9 14^{A} , 17^{A} , 11^{A} N=0 TAF 17 21^A, 16^A, 14^A 1500 μg 4 1.1 15^A, 15^A, 15^A 11^A, 13^A, 19^A 15 0 1.0 500 μg 14 0.9 150 µg 4 19^{A} , 13^{A} , 6^{A} 7 0.9 13 $50.0 \mu g$ 19^{A} , 17^{A} , 10^{A} 5 Water $100 \mu L$ 15 Sodium salt of 84^A, 103^A, 86^A **TA100** 91 Hydrolyzed 10 0.9 $5000 \mu g$ N=0 TAF 78^A, 81^A, 103^A 87 14 0.9 $1500 \mu g$ 96^A, 100^A, 100^A 99 2 500 μg 1.0 89^A, 96^A, 76^A 87 10 0.9 150 μg 86^A, 93^A, 88^A 89 0.9 $50.0 \, \mu g$ 4 109^A, 87^A, 95^A Water $100 \mu L$ 97 11 Sodium salt of 10^{A} , 10^{A} , 17^{A} 4 0.9 TA1535 Hydrolyzed $5000 \mu g$ 12 N=0 TAF 19^{A} , 13^{A} , 8^{A} $1500 \mu g$ 13 6 1.0 11^A, 13^A, 14^A 500 μg 13 2 1.0 9^{A} , 8^{A} , 10^{A} 150 µg 9 1 0.7 13 4 1.0 15^{A} , 15^{A} , 8^{A} $50.0 \mu g$ 2 13^{A} , 15^{A} , 11^{A} Water $100 \mu L$ 13 Sodium salt of 6^{A} , 6^{A} , 10^{A} 7 2 1.0 TA1537 Hydrolyzed $5000 \mu g$ N=0 TAF 7^A, 7^A, 11^A 7^A, 9^A, 6^A 8 2 1500 μg 1.1 7 2 1.0 500 μg 2^{A} , 14^{A} , 9^{A} 8 6 1.1 150 µg 7 8^{A} , 7^{A} , 7^{A} 1 1.0 $50.0 \mu g$ 7 $6^{A}, 6^{A}, 10^{A}$ 2 Water $100 \mu L$

A: Automatic count

TABLE 3 (CONT.) **Confirmatory Mutagenicity Assay without S9 activation**

Study Number: AF28PF.503.BTL Study Code: AF28PF Date Plated: 6/6/2018 Experiment: B2 Exposure Method: Plate incorporation assay Evaluation Period: 6/13/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
WP2uvrA	Sodium salt of Hydrolyzed N=0 TAF	5000 μg	29	4 1.0		26 ^A , 27 ^A , 33 ^A
		1500 μg	30	1	1.0	$29^{A}, 29^{A}, 31^{A}$
		500 μg	33	10	1.1	25^{A} , 44^{A} , 29^{A}
		150 μg	29	4	1.0	26^{A} , 33^{A} , 27^{A}
		50.0 μg	26	9	0.9	$23^{A}, 36^{A}, 19^{A}$
	Water	100 μL	29	3		26 ^A , 30 ^A , 32 ^A
TA98	2NF	1.00 μg	64	4	4.3	65 ^A , 67 ^A , 59 ^A
TA100	SA	1.00 µg	754	44	7.8	804 ^A , 735 ^A , 723 ^A
TA1535	SA	1.00 µg	697	19	53.6	698 ^A , 677 ^A , 715 ^A
TA1537	9AAD	75.0 μg	612	130	87.4	536 ^A , 539 ^A , 762 ^A
WP2uvrA	MMS	1000 μg	482	11	16.6	494 ^A , 473 ^A , 478 ^A

Key to Positive Controls

2NF 2-nitrofluorene sodium azide SA 9-Aminoacridine 9AAD MMS

methyl methanesulfonate

A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PF.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PF

Date Plated: 6/6/2018

Evaluation Period: 6/13/

Evaluation Period: 6/13/2018 Mean Ratio Individual revertant Dose level Standard Strain Substance revertants treated / colony counts and per plate Deviation per plate solvent background codes Sodium salt of **TA98** Hydrolyzed 20 3 1.0 23^A, 21^A, 17^A $5000 \mu g$ N=0 TAF 23 1 1.2 22^A, 23^A, 24^A $1500 \mu g$ 18 0.9 19^{A} , 14^{A} , 21^{A} 4 500 μg 24^A, 32^A, 22^A 26 5 1.3 150 µg 2 19^A, 23^A, 23^A 22 1.1 $50.0 \mu g$ 23^A, 24^A, 14^A 20 6 Water $100 \mu L$ Sodium salt of 5 109^A, 119^A, 115^A **TA100** 1.1 Hydrolyzed 114 $5000 \mu g$ N=0 TAF 119^A, 117^A, 105^A 8 1.1 $1500 \mu g$ 114 114^A, 121^A, 120^A 133^A, 111^A, 128^A 1.1 500 μg 118 4 124 12 1.2 150 µg 99^A, 95^A, 104^A 99 5 0.9 $50.0 \, \mu g$ 5 101^A, 109^A, 109^A Water $100 \mu L$ 106 Sodium salt of 3 11^{A} , 16^{A} , 10^{A} TA1535 Hydrolyzed 5000 μg 12 0.8 N=0 TAF 15^{A} , 16^{A} , 14^{A} $1500 \mu g$ 15 1 0.9 10^A, 9^A, 22^A 17^A, 11^A, 19^A 500 μg 14 7 0.9 150 µg 16 4 1.0 8^{A} , 10^{A} , 15^{A} 11 4 0.7 $50.0 \mu g$ 15^{A} , 16^{A} , 17^{A} Water $100 \mu L$ 16 1 Sodium salt of 3^{A} , 15^{A} , 5^{A} 8 6 1.0 TA1537 Hydrolyzed $5000 \mu g$ N=0 TAF 7 3 0.9 9^{A} , 8^{A} , 3^{A} 1500 μg 11 6 7^{A} , 7^{A} , 18^{A} 500 μg 1.4 8^A, 11^A, 10^A 10 2 1.3 150 µg 2 $10^{A}, 7^{A}, 8^{A}$ 8 1.0 $50.0 \mu g$ $8^{A}, 8^{A}, 8^{A}$ 0 8 Water $100 \mu L$

A: Automatic count

TABLE 4 (CONT.) Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PF.503.BTL Study Code: AF28PF Experiment: B2 Date Plated: 6/6/2018

Exposure Method: Plate incorporation assay Evaluation Period: 6/13/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes		
WP2uvrA	Sodium salt of Hydrolyzed N=0 TAF	5000 μg	38	5	1.1	33 ^A , 43 ^A , 38 ^A		
		1500 μg	37	5	1.0	$32^{A}, 39^{A}, 41^{A}$		
		500 μg	40	2	1.1	$41^{A}, 40^{A}, 38^{A}$		
		150 μg	43	3	1.2	$46^{A}, 42^{A}, 41^{A}$		
		50.0 μg	29	6	0.8	$27^{A}, 24^{A}, 36^{A}$		
	Water	100 μL	36	3		35 ^A , 40 ^A , 34 ^A		
TA98	2AA	1.00 μg	207	10	10.4	198 ^A , 207 ^A , 217 ^A		
TA100	2AA	2.00 µg	768	47	7.2	719 ^A , 813 ^A , 771 ^A		
TA1535	2AA	1.00 μg	67	10	4.2	59 ^A , 64 ^A , 78 ^A		
TA1537	2AA	2.00 μg	42	20	5.3	$35^{A}, 65^{A}, 27^{A}$		
WP2uvrA	2AA	15.0 μg	157	49	4.4	162^{A} , 105^{A} , 203^{A}		

Key to Positive Controls

2AA 2-aminoanthracene

Key to Automatic & Manual Count Flags

M: Manual count

A: Automatic count

Historical Negative and Positive Control Values 2016

revertants per plate

	Control	Activation										
Strain		None						Rat Liver				
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL	
TA98	Neg	15	5	6	34	5-25	22	6	8	42	10-34	
	Pos	198	174	36	1826		287	159	47	1916		
TA 100	Neg	90	12	60	146	66-114	94	14	63	181	66-122	
TA100	Pos	629	159	186	1383		620	294	192	3483		
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20	
	Pos	541	164	34	1082		150	122	27	1114		
TA1537	Neg	8	3	1	21	2-14	9	3	2	23	3-15	
	Pos	368	227	21	1791		91	90	17	951		
WP2 uvrA	Neg	24	7	7	44	10-38	27	7	8	51	13-41	
	Pos	336	119	25	876		300	111	41	1059		

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendments

Sponsor: The Chemours Company

BioReliance Study No.: AF28PF.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

 Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add:

The doses will be 5000, 1500, 500, 150 and 50.0 µg per plate.

Reason: To specify the dose levels to be used for the confirmatory mutagenicity assay based on the toxicity and precipitate profiles observed in the initial toxicity-mutation assay.

Sponsor: The Chemours Company

BioReliance Study No.: AF28PF.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT

Sponsor Representative

Page 2 of 3

Sponsor: The Chemours Company

BioReliance Study No.: AF28PF.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Proderi

BioReliance Study Director

BioRehance Study Management

05-JUN-Z018 Date

Sponsor: The Chemours Company

BioReliance Study No.: AF28PF.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

1. Page 3, Section 6, Test Substance Information - CAS Number

Effective: Date of Study Director signature on this amendment

Original:

CAS Number: 674-13-4

Replace with:

CAS Number 674-13-5

Reason: To correct CAS Number of the test substance

Sponsor: The Chemours Company

BioReliance Study No.: AF28PF.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT

Sponsor Representative

28 - Aug-2018 Date

PROTOCOL AMENDMENT 2

Sponsor: The Chemours Company

BioReliance Study No.: AF28PF.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Emily Dakoulas, BS

BioReliance Study Director

Orche

BioReliance Study Management

Date

28-AUG-2014

Date

Protocol

Study Title

Bacterial Reverse Mutation Assay

Study Director

Emily Dakoulas, BS

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PF.503.BTL

Page 1 of 13

1. KEY PERSONNEL Sponsor Information:

Sponsor The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Shawn Gannon, Ph.D., DABT

Sponsor Number C30049

Sponsor's Authorized

Representative The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Phone: 302-773-1376

Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Study Director Emily Dakoulas, BS

BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality Luleayenwa (Lula) Aberra-Degu, RQAP-GLP

Assurance Representative BioReliance Corporation

Phone: 301-610-2667 Email: Luleayenwa.aberra-degu@sial.com

2. TEST SCHEDULE

Proposed Experimental Initiation Date 25-May-2018
Proposed Experimental Completion Date 21-June-2018
Proposed Report Date 06-July-2018

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

• US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

Release Date: 23Apr2018 Page 2 of 13 503.BTL

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. QUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed QA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator, Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director, Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 uvrA in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification Sodium salt of Hydrolyzed N=0 TAF

CAS No. 674-13-4

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

Purity 99.9% (no correction factor will be used for dose formulations)

Molecular Weight 202.02 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below; unless the test substance is used on another study.

Alex Petlick The Chemours Company 200 Powder Mill Rd Experimental Station E402/5317 Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be disearded after use.

7. TEST SYSTEM

The tester strains will include the *S. typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames *et al.* (1975) and the *E. coli* tester strain WP2 *uvr*A as described by Green and Muriel (1976). The genotypes of strains are as follows:

Histidine Mutation			Tryptophan Mutation	Adı	ditional Mu	tations
hisG46	hisC3076	hisD3052	<i>trp</i> E	LPS	Repair	R-factor
TA1535	TA1537	-	-	rfa	$\Delta uvrB$	-
TA100	-	TA98	-	rfa	$\Delta uvrB$	+R
-	-	-	WP2 uvrA	-	$\Delta uvrA$	-

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California, Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

Release Date: 23Apr2018 Page 4 of 13 503.BTL

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acetone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/mL for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test substance, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellet(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at 37±2°C.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from incubation at a density of approximately 10^9 cells/mL.

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dose level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MolTox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018 Page 5 of 13 503.BTL

100 mM phosphate buffer at pH 7.4

S9 Mix

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
B-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test substance.

Strain	Positive Control	S9	Concentrations (μg/plate)
Salmonella strains	2-aminoanthracene ^B	+	1.0 – 2.0
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20
TA98	2-nitrofluorene ^B	-	1.0
TA100, TA1535	sodium azide ^A	_	1.0
TA1537	9-aminoacridine ^B	-	75
WP2 uvrA	methyl methanesulfonate ^B		1,000

APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

RPrepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least eight concentrations of test substance, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 μg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 μg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 μg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test substance, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will be at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, 100 μL of tester strain and 50.0 μL of vehicle, test substance dilution or positive control will be added to 2.0 mL of molten selective top agar at 45±2°C. When necessary, aliquots of other than 50.0 μL of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test substance, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at 37±2°C. Plates that are not counted immediately following the incubation period will be stored at 2-8°C.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018

Page 7 of 13

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *uvr*B mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *uvr*A mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

	TA98	TA100	TA1535	TA1537	WP2 uvrA
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)
+89	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicity

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018

Page 8 of 13

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that less than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but lacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not he limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIOS	Deviation and audit reporting

12 REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- Test substance
- Vehicle
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- Test conditions
- Results
- · Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- Copy of the protocol and any amendment
- Contributing reports (if applicable)
- Information about the analyses that characterized the test substance, its stability and the stability and strength of the dosing preparations, if provided by the Sponsor
- · Statement of Compliance
- Quality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames, B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muriel, W.J. (1976). Mutagen testing using trp⁺ reversion in *Escherichia coli*. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the Salmonella Mutagenicity Test. Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997

Version No. 3

Release Date: 23Apr2018 Page 11 of 13 503.BTL

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT Sponsor Representative

8 May 2018 Date

Version No. 3 Release Date: 23Apr2018

Page 12 of 13

Study Director and Test Facility Management Approvals

 $\frac{3h_{AY}}{Date} \gg 8$ $\frac{22 - MAY - 18}{Date}$ Date

Version No. 3 Release Date: 23Apr2018

Page 13 of 13

15.	APPENDIX III: Common Technical Document Tables

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

Cytotoxic Effects: None Genotoxic Effects: None

Test Substance: Sodium salt of Hydrolyzed N=0 TAF

No. of Independent Assays: 2 **Study No.:** AF28PF.503.BTL

and 3 (B2)

No. of Replicate Cultures: 2 (B1) **No. Cells Analyzed/Culture:** 1.0 to 3.4 x 10⁸ cells per

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 25 May 2018 (B1) and

06 June 2018 (B2)

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revo	ertant Colony Co	unts (Mean ±SD) (B1: Initial t	coxicity-mutation	assay)
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	13 ± 3	91 ± 2	10 ± 1	8 ± 3	28 ± 7
Activation	Sodium salt of Hydrolyzed N=0 TAF	1.50	16 ± 2	100 ± 1	9 ± 1	7 ± 1	24 ± 1
	, ,	5.00	12 ± 1	80 ± 23	11 ± 4	9 ± 3	28 ± 5
		15.0	16 ± 2	102 ± 1	9 ± 0	9 ± 1	38 ± 4
		50.0	15 ± 0	96 ± 14	13 ± 0	10 ± 1	34 ± 11
		150	15 ± 3	89 ± 13	11 ± 4	8 ± 4	33 ± 0
		500	13 ± 2	86 ± 13	10 ± 1	5 ± 2	32 ± 4
		1500	17 ± 1	100 ± 4	9 ± 2	3 ± 0	31 ± 0
		5000	11 ± 1	97 ± 11	12 ± 4	9 ± 3	28 ± 6
	2NF	1.00	55 ± 0				
	SA	1.00		582 ± 6	600 ± 16		
	9AAD	75.0				505 ± 28	
	MMS	1000					414 ± 14
With	Water	100 μL/plate	20 ± 4	99 ± 10	13 ± 7	9 ± 4	29 ± 4
Activation	Sodium salt of Hydrolyzed N=0 TAF	1.50	22 ± 4	98 ± 3	15 ± 2	10 ± 1	31 ± 11
		5.00	18 ± 2	101 ± 0	11 ± 6	7 ± 0	42 ± 1
		15.0	26 ± 9	90 ± 15	19 ± 0	11 ± 5	32 ± 4
		50.0	22 ± 6	108 ± 18	13 ± 3	10 ± 4	36 ± 5
		150	19 ± 4	108 ± 11	16 ± 0	6 ± 5	37 ± 2
		500	21 ± 8	104 ± 6	14 ± 8	12 ± 2	35 ± 6
		1500	22 ± 6	117 ± 1	13 ± 3	7 ± 0	34 ± 3
		5000	23 ± 2	108 ± 2	10 ± 2	8 ± 4	34 ± 3
	2AA	1.00	215 ± 11		83 ± 6		
	2AA	2.00		536 ± 33		56 ± 21	
	2AA	15.0					314 ± 25
Key to Pos	itive Controls						
SA	sodium azide			2NF	2-nitrofluorene		
2AA	2-aminoanthracene			MMS	methyl methanesulfonate		
9AAD	9-Aminoacridine				-		

BioReliance Study No. AF28PF.503.BTL

Metabolic Activation	Test <u>Substance</u>	Dose Level (μg/plate)	Reverta	ant Colony Counts (N	Mean ±SD) (B2: Confi	rmatory Mutagenicity	Assay)
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	15 ± 5	97 ± 11	13 ± 2	7 ± 2	29 ± 3
Activation	Sodium salt of Hydrolyzed N=0 TAF	50.0	13 ± 7	89 ± 4	13 ± 4	7 ± 1	26 ± 9
		150	14 ± 4	87 ± 10	9 ± 1	8 ± 6	29 ± 4
		500	15 ± 0	99 ± 2	13 ± 2	7 ± 2	33 ± 10
		1500	17 ± 4	87 ± 14	13 ± 6	8 ± 2	30 ± 1
		5000	14 ± 3	91 ± 10	12 ± 4	7 ± 2	29 ± 4
	2NF	1.00	64 ± 4				
	SA	1.00		754 ± 44	697 ± 19		
	9AAD	75.0				612 ± 130	
	MMS	1000					482 ± 11
With	Water	100 μL/plate	20 ± 6	106 ± 5	16 ± 1	8 ± 0	36 ± 3
Activation	Sodium salt of Hydrolyzed N=0 TAF	50.0	22 ± 2	99 ± 5	11 ± 4	8 ± 2	29 ± 6
	,,	150	26 ± 5	124 ± 12	16 ± 4	10 ± 2	43 ± 3
		500	18 ± 4	118 ± 4	14 ± 7	11 ± 6	40 ± 2
		1500	23 ± 1	114 ± 8	15 ± 1	7 ± 3	37 ± 5
		5000	20 ± 3	114 ± 5	12 ± 3	8 ± 6	38 ± 5
	2AA	1.00	207 ± 10		67 ± 10		
	2AA	2.00		768 ± 47		42 ± 20	
	2AA	15.0					157 ± 49

Key to Positive Controls

SA sodium azide 2AA 2-aminoanthracene 9AAD 9-Aminoacridine 2NF 2-nitrofluorene MMS methyl methanesulfonate

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

PFECA F

Author

Emily Dakoulas, BS

Study Completion Date

22 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PG.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 49

1. STATEMENT OF COMPLIANCE

Study No. AF28PG.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

Emily Dakoulas, BS

Study Director

2. QUALITY ASSURANCE STATEMENT

Quality Assurance Statement

Study Information

Number: AF28PG.503.BTL

Compliance

Procedures, documentation, equipment and other records were examined in order to assure this study was performed in accordance with the regulation(s) listed below and conducted according to the protocol and relevant Standard Operating Procedures. Verification of the study protocol was performed and documented by Quality Assurance.

US EPA Good Laboratory Standards 40CFR 792

Inspections

Quality Assurance performed the inspections(s) below for this study.

Insp. Dates (From/To)		Phase Inspected	To Study Direct	To Study Director To Management		
19-Jun-2018	19-Jun-2018	Strain Characterization	19-Jun-2018	19-Jun-2018		
19-Jun-2018	25-Jun-2018	Protocol Review	25-Jun-2018	25-Jun-2018		
12-Jul-2018	12-Jul-2018	Data/Draft Report	12-Jul-2018	12-Jul-2018		
12-Jul-2018	12-Jul-2018	Protocol Amendment Review	12-Jul-2018	12-Jul-2018		
20-Aug-2018	20-Aug-2018	Final Report	20-Aug-2018	20-Aug-2018		

The Final Report for this study describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

For a multisite study, test site QA Statements are located in the corresponding contributing scientist report.

E-signature

Quality Assurance: Jeannie Eberle 21-Aug-2018 5:40 pm GMT

Reason for signature: QA Approval

Printed by:Jeannie Eberle Printed on:21-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	17
11.	REFERENCES	18
12.	DATA TABLES	19
13.	APPENDIX I: Historical Control Data	27
14.	APPENDIX II: Study Protocol and Amendment	29
15	APPENDIX III: Common Technical Document Tables	16

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study No.: AF28PG.503.BTL

Sponsor No.: C30049

Test Substance

Identification: PFECA F

Lot No.: AS473550

CAS No.: 377-73-1

Purity: 98.9% (per protocol)

Molecular Weight: 230.04 g/mol

Description: Clear colorless liquid

Storage Conditions: Room temperature, protected from light and under

argon

Receipt Date: 29 May 2018

Study Dates

Study Initiation Date: 06 June 2018

Experimental Starting Date (first day of

data collection): 07 June 2018

Experimental Start Date (first day test

substance administered to test system): 08 June 2018

Experimental Completion Date: 21 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

BioReliance Study No. AF28PG.503.BTL 5

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, PFECA F, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. A non-dose responsive increase of 1.5-fold, maximum increase was observed with tester strain WP2 *uvr*A in the presence of S9 activation. This response is not considered mutagenic, since the increase was not dose responsive and was within the 99% historical control limit. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 µg per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 33.3, 100, 333, 1000, 3333 and 5000 µg per plate. Neither precipitate nor toxicity was observed. The increase in WP2 *uvr*A in the presence of S9 activation did not replicate. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate PFECA F was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendment are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver PFECA F to the test system was water.

Vehicle	CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7732-18-5	Sigma-Aldrich	RNBF9658	Sterile-	Mar 2019
vv atc1	1132-10-3	Sigilia-Aldileli	RNBG4913	filtered	Dec 2019

Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain	S9 Activation	Positive Control	Concentration (µg/plate)
TA98, TA1535		2-aminoanthracene	1.0
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	2.0
,	Rat	Lot No. STBD3302V	
WP2 uvrA		Exp. Date 30-Nov-2019 CAS No. 613-13-8	15
WIZUVIA			13
	None	Purity 97.5% 2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.)	
TA98		Lot No. S43858V Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%	1.0
TA100, TA1535		sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	1.0
TA1537		9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Lot No. BCBK1177V Exp. Date 31-Mar-2019 CAS No. 52417-22-8 Purity 99.5%	75
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}\text{C}$ for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^9 cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020; Lot No. 3961, Exp. Date: 15 May 2020) was purchased

commercially from MolTox (Boone, NC). Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration		
β-nicotinamide-adenine dinucleotide phosphate	4 mM		
Glucose-6-phosphate	5 mM		
Potassium chloride	33 mM		
Magnesium chloride	8 mM		
Phosphate Buffer (pH 7.4)	100 mM		
S9 homogenate	10% (v/v)		

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983).

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and six dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

	Medium			
Component	Minimal top agar	Minimal	Nutrient	Nutrient
Component		bottom agar	bottom agar	broth
	Concentration in Medium			
BBL Select agar (W/V)	0.8% (W/V)			
Vogel-Bonner minimal medium E	1	1.5% (W/V)	1.5% (W/V)	
Sodium chloride	0.5% (W/V)			
L-histidine, D-biotin and	50 mM each			
L-tryptophan solution	30 milyi each			
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)			
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)
Vogel-Bonner salt solution				Supplied at 20 mL/L

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for $48 \text{ to } 72 \text{ hours at } 37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics			
1 or no code	Normal	Distinguished by a healthy microcolony lawn.			
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.			
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn resulting in a pronounced increase in the size of the microcolonies compared to the vehicle control plate.			
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.			
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.			
6	Obscured by Particulate	The background bacterial lawn cannot be accurately evaluated due to microscopic test substance particulate.			
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).			
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.			

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers.

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

95% Control Limits (99% Upper Limit)							
	TA98 TA100 TA1535 TA1537 WP2 <i>uvr</i> A						
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)		
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)		
W'4 C 1 D' 4 ' 4'C' 4' 1 ' 1 1' 41 000/ 4 11' '4 1							

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose		
LIMS Labware System	Test Substance Tracking		
Excel 2007 (Microsoft Corporation)	Calculations		
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table		
(Perceptive Instruments)	Creation		
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring		
BRIQS	Deviation and audit reporting		

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

No deviations from the protocol or assay-method SOPs occurred during the conduct of this study.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

	Tester Strain				
Experiment	TA98	TA100	TA1535	TA1537	WP2 uvrA
	Titer Value (x 10 ⁹ cells per mL)				
B1	1.5	1.0	1.4	1.5	3.5
B2	1.2	1.1	1.5	1.9	2.8

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

Neither precipitate nor toxicity was observed. A non-dose responsive increase of 1.5-fold, maximum increase was observed with tester strain WP2 *uvr*A in the presence of S9 activation. This response is not considered mutagenic, since the increase was not dose responsive and was within the 99% historical control limit.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and <u>4</u>. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 33.3, 100, 333, 1000, 3333 and 5000 μ g per plate.

Neither precipitate nor toxicity was observed. The increase in WP2 *uvr*A in the presence of S9 activation did not replicate.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, PFECA F did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella* Mutagenicity Test, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PG.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PG

Date Plated: 6/8/2018

Evaluation Period: 6/12/2018

Mean Ratio Individual revertant Dose level Standard Strain Substance revertants treated / colony counts and per plate Deviation per plate solvent background codes 13^A, 18^A **TA98** PFECA F $5000 \mu g$ 16 4 0.9 1500 μg 13 6 0.8 9^A, 17^A $10^{A}, 13^{A}$ 12 2 500 μg 0.7 17^A, 14^A 15^A, 16^A 2 150 µg 16 0.9 1 $50.0 \mu g$ 16 0.9 $21^{A}, 16^{A}$ 19 4 1.1 $15.0 \mu g$ $16^{A}, 8^{A}$ 12 6 0.7 $5.00 \mu g$ 21^A, 14^A 18 5 1.1 $1.50 \, \mu g$ 16^A, 18^A Water 17 1 $100 \mu L$ 71^A, 84^A **TA100** PFECA F $5000 \mu g$ 78 9 0.8 98^A, 73^A 18 0.9 $1500 \mu g$ 86 92^A, 103^A 500 μg 98 8 1.1 $100^{A}, 92^{A}$ 96 6 1.0 150 µg 89^A, 101^A 8 95 1.0 $50.0 \, \mu g$ $105^{A}, 96^{A}$ 101 6 1.1 $15.0 \mu g$ 86^A, 83^A 2 $5.00 \mu g$ 85 0.9 107^A, 68^A 28 $1.50 \mu g$ 88 0.9 91^A, 95^A Water $100 \, \mu L$ 93 3 $10^{A}, 10^{A}$ 10 0 PFECA F $5000 \mu g$ 0.8 **TA1535** 11^A, 13^A $1500 \mu g$ 12 1 1.0 13^A, 11^A 12 1 1.0 500 μg $8^{A}, 10^{A}$ 9 150 µg 1 0.8 15 3 1.3 17^A, 13^A $50.0 \, \mu g$ 12 3 1.0 $14^{A}, 10^{A}$ $15.0 \mu g$ $14^{A}, 15^{A}$ $5.00 \mu g$ 15 1 1.3 $9^{A}, 11^{A}$ $1.50 \mu g$ 10 1 0.8 Water 12 1 13^A, 11^A $100 \mu L$ $3^{A}, 11^{A}$ 7 TA1537 PFECA F $5000 \mu g$ 6 0.9 $11^{A}, 9^{A}$ 1500 μg 10 1 1.3 $8^{A}, 6^{A}$ 7 1 0.9 500 μg $11^{A}, 11^{A}$ 150 µg 11 0 1.4 8 2 1.0 $9^{A}, 6^{A}$ $50.0 \, \mu g$ 7^A, 3^A 8^A, 9^A 5 3 0.6 $15.0 \mu g$ 9 1 $5.00 \mu g$ 1.1 $8^{A}, 5^{A}$ 7 2 0.9 $1.50 \, \mu g$ 8 5^{A} , 10^{A} 4 Water $100 \mu L$

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PG.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PG

Date Plated: 6/8/2018

Evaluation Period: 6/12/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
WP2uvrA	PFECA F	5000 μg 1500 μg 500 μg 150 μg 50.0 μg 15.0 μg 5.00 μg 1.50 μg 100 μL	27 26 22 34 27 34 23 22 26	8 7 6 1 3 1 9 10	1.0 1.0 0.8 1.3 1.0 1.3 0.9	32 ^A , 21 ^A 31 ^A , 21 ^A 17 ^A , 26 ^A 33 ^A , 34 ^A 25 ^A , 29 ^A 33 ^A , 35 ^A 29 ^A , 16 ^A 15 ^A , 29 ^A 26 ^A , 25 ^A
TA98 TA100 TA1535 TA1537 WP2uvrA	2NF SA SA 9AAD MMS	1.00 μg 1.00 μg 1.00 μg 1.00 μg 75.0 μg 1000 μg	87 639 654 656 431	16 49 13 14 27	5.1 6.9 54.5 82.0 16.6	76 ^A , 98 ^A 604 ^A , 674 ^A 645 ^A , 663 ^A 666 ^A , 646 ^A 412 ^A , 450 ^A

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

^A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PG.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PG Date Plated: 6/8/2018 Evaluation Period: 6/12/2018

Mean Ratio Individual revertant Standard Dose level Strain Substance revertants treated / colony counts and Deviation per plate background codes per plate solvent 29^A, 16^A 17^A, 25^A 9 $5000 \mu g$ 23 1.0 **TA98** PFECA F 21 6 1.0 $1500 \mu g$ $23^{A}, 21^{A}$ 22 1.0 500 μg 1 23^A, 15^A 19 150 µg 6 0.9 $50.0 \, \mu g$ 18 0 0.8 $18^{A}, 18^{A}$ 21^A, 10^A 15^A, 9^A 16 8 0.7 $15.0 \mu g$ $5.00 \mu g$ 12 4 0.5 19^A, 15^A 3 $1.50 \mu g$ 17 0.8 24^A, 19^A Water 22 4 $100 \mu L$ 84^A, 103^A 105^A, 78^A 94 PFECA F 13 1.0 **TA100** $5000 \mu g$ 92 19 $1500 \mu g$ 1.0 $96^{A}, 90^{A}$ 93 500 μg 4 1.0 97^A, 96^A 150 µg 97 1 1.1 130^A, 128^A $50.0 \, \mu g$ 129 1 1.4 97^A, 113^A 79^A, 78^A 11 $15.0 \mu g$ 105 1.1 $5.00 \mu g$ 79 1 0.9 $92^{A}, 89^{A}$ 2 91 1.0 $1.50 \, \mu g$ 7 Water 92 87^A, 97^A $100 \mu L$ 5 $14^{A}, 7^{A}$ 11 **TA1535** PFECA F 0.9 $5000 \mu g$ 14^A, 15^A 1500 μg 15 1 1.3 $10^{A}, 13^{A}$ 12 2 1.0 500 μg 11^A, 15^A 3 150 µg 13 1.1 13^A, 13^A 0 $50.0 \mu g$ 13 1.1 $9^{A}, 10^{A}$ 10 1 0.8 $15.0 \mu g$ $8^{A}, 9^{A}$ $5.00 \mu g$ 9 1 0.8 $13^{A}, 10^{A}$ 12 2 1.0 $1.50 \, \mu g$ $11^{A}, 13^{A}$ 1 Water 100 µL 12 5^{A} , 10^{A} TA1537 PFECA F $5000 \mu g$ 8 4 0.9 $9^{A}, 6^{A}$ 8 2 1500 μg 0.9 8 4 $10^{A}, 5^{A}$ 0.9 500 μg 5^A, 13^A 9 150 µg 6 1.0 8 8^A, 7^A $50.0 \mu g$ 1 0.9 $11^{A}, 10^{A}$ 1 1.2 $15.0 \, \mu g$ 11 $6^{A}, 9^{A}$ 2 $5.00 \mu g$ 8 0.9 5^A, 13^A 9 6 1.0 $1.50 \, \mu g$ 9^A, 8^A 9 Water 1 100 μL

Key to Automatic & Manual Count Flags

M: Manual count

^A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PG.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PG

Date Plated: 6/8/2018

Evaluation Period: 6/12/2018

nou. I have meerpo	ration assay	Evaluation 1 chod. 6/12/2016					
Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes		
PFECA F	5000 μg 1500 μg 500 μg 150 μg 50.0 μg 15.0 μg 5.00 μg 1.50 μg 100 μL	34 42 32 31 33 35 31 32 28	1 8 1 1 11 4 3 6 7	1.2 1.5 1.1 1.1 1.2 1.3 1.1	33 ^A , 34 ^A 36 ^A , 47 ^A 32 ^A , 31 ^A 30 ^A , 32 ^A 40 ^A , 25 ^A 38 ^A , 32 ^A 33 ^A , 29 ^A 27 ^A , 36 ^A 33 ^A , 23 ^A		
2AA 2AA 2AA 2AA 2AA	1.00 μg 2.00 μg 1.00 μg 2.00 μg 15.0 μg	268 645 77 44 364	12 9 9 11 24	12.2 7.0 6.4 4.9 13.0	259 ^A , 276 ^A 638 ^A , 651 ^A 83 ^A , 70 ^A 52 ^A , 36 ^A 347 ^A , 381 ^A		
	Substance PFECA F Water 2AA 2AA 2AA 2AA	PFECA F 5000 μg 1500 μg 1500 μg 5000 μg 1500 μg 50.0 μg 15.0 μg 5.00 μg 1.50 μg 1.50 μg 2AA 2.00 μg 2AA 2.00 μg 2	Substance Dose level per plate Mean revertants per plate	Dose level per plate Mean revertants per plate Dose level per plate Standard Deviation	Substance Dose level per plate PFECA F 5000 μg 34 1 1.2		

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PG.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PG

Date Plated: 6/19/2018

Evaluation Period: 6/21/2018

Strain	Substance	Dose level per plate	Mean revertants	Standard Deviation	Ratio treated /	Individual revertant colony counts and
		L F	per plate		solvent	background codes
TA98	PFECA F	5000 μg	9	3	0.5	7 ^A , 13 ^A , 7 ^A
1470	TTECAT	3333 μg	14	2	0.8	15 ^A , 11 ^A , 15 ^A
		1000 μg	16	4	0.9	11 ^A , 18 ^A , 18 ^A
		333 μg	14	ĺ	0.8	13 ^A , 15 ^A , 15 ^A
		100 μg	14	6	0.8	7 ^A , 17 ^A , 18 ^A
		33.3 μg	14	7	0.8	21 ^A , 14 ^A , 8 ^A
	Water	100 μL	17	1	***	16 ^A , 17 ^A , 17 ^A
TA100	PFECA F	5000 μg	81	10	0.9	72 ^A , 79 ^A , 91 ^A
171100	TILENT	3333 µg	83	8	0.9	89 ^A , 74 ^A , 86 ^A
		1000 μg	90	24	1.0	66 ^A , 91 ^A , 114 ^A
		333 µg	85	6	1.0	82 ^A , 81 ^A , 91 ^A
		100 μg	78	13	0.9	78 ^A , 65 ^A , 91 ^A
		33.3 μg	81	14	0.9	86 ^A , 92 ^A , 65 ^A
	Water	100 μL	89	6		95 ^A , 83 ^A , 88 ^A
TA1535	PFECA F	5000 μg	9	4	0.9	5 ^A , 13 ^A , 9 ^A
		3333 µg	9	3	0.9	9 ^A , 6 ^A , 11 ^A
		1000 μg	8	2	0.8	7^{A} , 10^{A} , 7^{A}
		333 µg	8	3	0.8	$11^{A}, 8^{A}, 6^{A}$
		100 μg	8	1	0.8	7 ^A , 7 ^A , 9 ^A 6 ^A , 10 ^A , 8 ^A
		33.3 μg	8	2	0.8	$6^{A}, 10^{A}, 8^{A}$
	Water	100 μL	10	3		$10^{A}, 13^{A}, 7^{A}$
TA1537	PFECA F	5000 μg	6	3	1.0	7 ^A , 9 ^A , 3 ^A
		3333 μg	5	3	0.8	$7^{A}, 7^{A}, 1^{A}$
		1000 μg	5	3	0.8	$7^{A}, 7^{A}, 2^{A}$
		333 µg	6	5	1.0	6^{A} , 11^{A} , 2^{A}
		100 μg	7	2	1.2	$9^{A}, 5^{A}, 6^{A}$
		33.3 μg	7	3	1.2	5^{A} , 10^{A} , 7^{A}
	Water	100 μL	6	0		$6^{A}, 6^{A}, 6^{A}$
WP2uvrA	PFECA F	5000 μg	27	2	0.8	25 ^A , 26 ^A , 29 ^A
		3333 μg	37	3	1.1	41 ^A , 35 ^A , 35 ^A
		1000 μg	31	7	0.9	$38^{A}, 25^{A}, 30^{A}$
		333 μg	32	7	0.9	$39^{A}, 26^{A}, 32^{A}$
		100 μg	34	7	1.0	$30^{A}, 42^{A}, 30^{A}$
		33.3 μg	39	7	1.1	$46^{A}, 38^{A}, 33^{A}$
	Water	100 μL	34	1		$35^{A}, 34^{A}, 33^{A}$

A: Automatic count

TABLE 3 (CONT.) Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PG.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PG

Date Plated: 6/19/2018

Evaluation Period: 6/21/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	2NF	1.00 µg	68	19	4.0	46 ^A , 76 ^A , 81 ^A
TA100	SA	1.00 µg	607	15	6.8	593 ^A , 622 ^A , 606 ^A
TA1535	SA	1.00 µg	611	19	61.1	593 ^A , 610 ^A , 630 ^A
TA1537	9AAD	75.0 μg	771	71	128.5	809 ^A , 815 ^A , 690 ^A
WP2uvrA	MMS	1000 μg	463	4	13.6	458 ^A , 466 ^A , 465 ^A

Key to Positive Controls

2NF 2-nitrofluorene SA sodium azide 9AAD 9-Aminoacridine MMS methyl methanesu

MMS methyl methanesulfonate

A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PG.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PG

Date Plated: 6/19/2018

Evaluation Period: 6/21/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	PFECA F	5000 μg	14	3	1.0	15 ^A , 11 ^A , 16 ^A
		3333 µg	13	6	0.9	$14^{A}, 7^{A}, 19^{A}$
		1000 μg	15	3	1.1	13^{A} , 18^{A} , 15^{A}
		333 µg	16	4	1.1	21^{A} , 13^{A} , 14^{A}
		100 μg	16	5	1.1	21^{A} , 16^{A} , 11^{A}
		33.3 μg	15	5	1.1	9^{A} , 19^{A} , 16^{A}
	Water	100 μL	14	1		14^{A} , 14^{A} , 13^{A}
TA100	PFECA F	5000 μg	107	7	1.1	100 ^A , 114 ^A , 108 ^A
		3333 μg	97	12	1.0	83 ^A , 101 ^A , 107 ^A
		1000 μg	104	9	1.1	106^{A} , 112^{A} , 95^{A}
		333 µg	107	18	1.1	97 ^A , 97 ^A , 128 ^A
		100 μg	104	16	1.1	101^{A} , 121^{A} , 90^{A}
		33.3 μg	93	8	0.9	93^{A} , 101^{A} , 86^{A}
	Water	100 μL	99	21		95 ^A , 81 ^A , 122 ^A
TA1535	PFECA F	5000 μg	11	2	1.0	10 ^A , 13 ^A , 9 ^A
		3333 μg	11	4	1.0	8^{A} , 15^{A} , 9^{A}
		1000 μg	15	3	1.4	13^{A} , 18^{A} , 14^{A}
		333 µg	11	4	1.0	8^{A} , 15^{A} , 10^{A}
		100 μg	12	6	1.1	6^{A} , 15^{A} , 16^{A}
		33.3 μg	8	2	0.7	$8^{A}, 6^{A}, 10^{A}$
	Water	100 μL	11	3		13^{A} , 11^{A} , 8^{A}
TA1537	PFECA F	5000 μg	6	3	1.2	5 ^A , 9 ^A , 3 ^A
		3333 μg	7	3	1.4	5^{A} , 10^{A} , 7^{A}
		1000 μg	7	4	1.4	$3^{A}, 10^{A}, 7^{A}$
		333 μg	7	1	1.4	6 ^A , 8 ^A , 6 ^A 7 ^A , 8 ^A , 6 ^A
		100 µg	7	1	1.4	$7^{A}, 8^{A}, 6^{A}$
		33.3 μg	5	1	1.0	6 ^A , 5 ^A , 5 ^A
	Water	100 μL	5	0		5 ^A , 5 ^A , 5 ^A
WP2uvrA	PFECA F	5000 μg	31	4	1.0	$36^{A}, 29^{A}, 29^{A}$
		3333 μg	34	7	1.1	$36^{A}, 26^{A}, 39^{A}$
		1000 μg	31	4	1.0	$34^{A}, 33^{A}, 26^{A}$
		333 µg	35	1	1.1	36 ^A , 34 ^A , 34 ^A
		100 μg	28	4	0.9	$30^{A}, 23^{A}, 30^{A}$
		33.3 μg	36	4	1.2	41 ^A , 33 ^A , 34 ^A
	Water	100 μL	31	6		24 ^A , 33 ^A , 36 ^A

A: Automatic count

TABLE 4 (CONT.) Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PG.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PG

Date Plated: 6/19/2018

Evaluation Period: 6/21/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	2AA	1.00 μg	223	19	15.9	212 ^A , 213 ^A , 245 ^A
TA100	2AA	2.00 μg	831	60	8.4	846 ^A , 882 ^A , 765 ^A
TA1535	2AA	1.00 µg	75	2	6.8	75^{A} , 73^{A} , 76^{A}
TA1537	2AA	2.00 µg	40	2	8.0	$43^{A}, 39^{A}, 39^{A}$
WP2uvrA	2AA	15.0 μg	307	18	9.9	318^{A} , 286^{A} , 318^{A}

Key to Positive Controls

2AA 2-aminoanthracene

^A: Automatic count

	13	APPE	VDIX I.	Historical	Control Data
--	----	------	---------	------------	--------------

Historical Negative and Positive Control Values 2016

revertants per plate

			Activation										
Strain	Control	None							Rat Liv	ver			
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL		
TA98	Neg	15	5	6	34	5-25	22	6	8	42	10-34		
1A98	Pos	198	174	36	1826		287	159	47	1916			
TA 100	Neg	90	12	60	146	66-114	94	14	63	181	66-122		
TA100	Pos	629	159	186	1383		620	294	192	3483			
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20		
1A1333	Pos	541	164	34	1082		150	122	27	1114			
TA1537	Neg	8	3	1	21	2-14	9	3	2	23	3-15		
1A1337	Pos	368	227	21	1791		91	90	17	951			
WP2 uvrA	Neg	24	7	7	44	10-38	27	7	8	51	13-41		
WFZ UVFA	Pos	336	119	25	876		300	111	41	1059			

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendment

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PG.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

 Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add:

The doses will be 5000, 3333, 1000, 333, 100 and 33.3 µg per plate

Reason: To specify the dose levels to be used for the confirmatory mutagenicity assay based on the toxicity and precipitate profiles observed in the initial toxicity-mutation assay.

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PG.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, PhD, DABT

Sponsor Representative

18 June

Date

Page 2 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PG.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Emily Dakoulas, BS Date
BioReliance Study Director

BioReliance Study Management Date

Protocol

Study Title Bacterial Reverse Mutation Assay

Study Director Emily Dakoulas, BS

Testing Facility BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number AF28PG.503.BTL

Page 1 of 13

1. KEY PERSONNEL

Sponsor Information:

Sponsor The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number C30049

Sponsor's Authorized

Representative The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899 Phone: 302-773-1376

Shawn Gannon, Ph.D., DABT

Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Study Director Emily Dakoulas, BS

BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality Luleayenwa (Lula) Aberra-Degu, RQAP-GLP

Assurance Representative BioReliance Corporation Phone: 301-610-2667

Email: Luleayenwa.aberra-degu@sial.com

2. TEST SCHEDULE

Proposed Experimental Initiation Date 31-May-2018
Proposed Experimental Completion Date 27-June-2018
Proposed Report Date 12-July-2018

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

Release Date: 23Apr2018 Page 2 of 13 503.BTL

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. QUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed QA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator, Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director, Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification PFECA F
CAS No. 377-73-1

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

With argon

Purity 98.9% (no correction factor will be used for dose formulations)

Molecular Weight 230.04 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below; unless the test substance is used on another study.

Alex Petlick The Chemours Company 200 Powder Mill Rd **Experimental Station** E402/5317 Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be discarded after use.

7. TEST SYSTEM

The tester strains will include the S. typhimurium histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames et al. (1975) and the E. coli tester strain WP2 uvr A as described by Green and Muriel (1976). The genotypes of strains are as follows:

	Hist	idine Mutatio	n	Tryptophan Mutation	Add	ditional Mu	tations
T	hisG46	hisC3076	hisD3052	trpE	LPS	Repair	R-factor
ľ	TA1535	TA1537	•	-	rfa	$\Delta uvrB$	-
r	TA100	-	TA98	-	rfa	$\Delta uvrB$	+R
	•	-	-	WP2 uvrA	-	$\Delta uvrA$	-

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California, Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

Page 4 of 13 503.BTL Release Date: 23Apr2018

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acetone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/ml. for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test substance, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellet(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}\text{C}$.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from incubation at a density of approximately 10^9 cells/mL.

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dose level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MolTox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018 Page 5 of 13 503.BTL

100 mM phosphate buffer at pH 7.4

S9 Mix

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test substance.

Strain	Positive Control	S9	Concentrations (µg/plate)
Salmonella strains	2-aminoanthracene ^B	+	1.0 - 2.0
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20
TA98	2-nitrofluorene ^B	_	1.0
TA100, TA1535	sodium azide ^A		1.0
TA1537	9-aminoacridine ^B	_	75
WP2 uvrA	methyl methanesulfonate ^B	_	1,000

APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

503.BTL

¹¹Prepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least eight concentrations of test substance, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 μg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 μg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 μg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test substance, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will be at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, $100 \,\mu\text{L}$ of tester strain and $50.0 \,\mu\text{L}$ of vehicle, test substance dilution or positive control will be added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When necessary, aliquots of other than $50.0 \,\mu\text{L}$ of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test substance, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at $37\pm2^{\circ}\text{C}$. Plates that are not counted immediately following the incubation period will be stored at $2-8^{\circ}\text{C}$.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018 Page 7 of 13 503.BTL

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *uvr*B mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *uvr*A mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

	TA98	95% Control Lim	TA1535	TA1537	WP2 uvrA
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicit

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018

Page 8 of 13

503.BTL

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that lcss than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but tacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not be limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIOS	Deviation and audit reporting

12. REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- Test substance
- Vehicle
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- Test conditions
- Results
- · Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- Copy of the protocol and any amendment
- Contributing reports (if applicable)
- Information about the analyses that characterized the test substance, its stability and the stability and strength of the dosing preparations, if provided by the Sponsor
- Statement of Compliance
- · Ouality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioRcliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames, B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muriel, W.J. (1976). Mutagen testing using trp* reversion in Escherichia coli. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the Salmonella Mutagenicity Test. Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonellal* microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

Version No. 3

Release Date: 23Apr2018 Page 11 of 13 503.BTL

8 May 2018 Date

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT Sponsor Representative

Version No. 3

Release Date: 23Apr2018

Page 12 of 13

503.BTL

Study Director and Test Facility Management Approvals

06700708 Date
05-50N-18
Date

Version No. 3

Release Date: 23Apr2018

Page 13 of 13

503.BTL

15.	APPENDIX III: Common Technical Document Tables				

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

Cytotoxic Effects: None Genotoxic Effects: None

No. of Independent Assays: 2 Study I

No. of Replicate Cultures: 2 (B1)

and 3 (B2)

Test Substance: PFECA F **Study No.:** AF28PG.503.BTL

No. Cells Analyzed/Culture: 1.0 to 3.5 x 10⁸ cells per

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 08 June 2018 (B1) and

19 June 2018 (B2)

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Reven	Revertant Colony Counts (Mean ±SD) (B1: Initial Toxicity-Mutation Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA	
Without	Water	100 μL/plate	17 ± 1	93 ± 3	12 ± 1	8 ± 4	26 ± 1	
Activation	PFECA F	1.50	18 ± 5	88 ± 28	10 ± 1	7 ± 2	22 ± 10	
		5.00	12 ± 6	85 ± 2	15 ± 1	9 ± 1	23 ± 9	
		15.0	19 ± 4	101 ± 6	12 ± 3	5 ± 3	34 ± 1	
		50.0	16 ± 1	95 ± 8	15 ± 3	8 ± 2	27 ± 3	
		150	16 ± 2	96 ± 6	9 ± 1	11 ± 0	34 ± 1	
		500	12 ± 2	98 ± 8	12 ± 1	7 ± 1	22 ± 6	
		1500	13 ± 6	86 ± 18	12 ± 1	10 ± 1	26 ± 7	
		5000	16 ± 4	78 ± 9	10 ± 0	7 ± 6	27 ± 8	
	2NF	1.00	87 ± 16					
	SA	1.00		639 ± 49	654 ± 13			
	9AAD	75.0				656 ± 14		
	MMS	1000					431 ± 27	
With	Water	100 μL/plate	22 ± 4	92 ± 7	12 ± 1	9 ± 1	28 ± 7	
Activation	PFECA F	1.50	17 ± 3	91 ± 2	12 ± 2	9 ± 6	32 ± 6	
		5.00	12 ± 4	79 ± 1	9 ± 1	8 ± 2	31 ± 3	
		15.0	16 ± 8	105 ± 11	10 ± 1	11 ± 1	35 ± 4	
		50.0	18 ± 0	129 ± 1	13 ± 0	8 ± 1	33 ± 11	
		150	19 ± 6	97 ± 1	13 ± 3	9 ± 6	31 ± 1	
		500	22 ± 1	93 ± 4	12 ± 2	8 ± 4	32 ± 1	
		1500	21 ± 6	92 ± 19	15 ± 1	8 ± 2	42 ± 8	
		5000	23 ± 9	94 ± 13	11 ± 5	8 ± 4	34 ± 1	
	2AA	1.00	268 ± 12		77 ± 9			
	2AA	2.00		645 ± 9		44 ± 11		
	2AA	15.0					364 ± 24	

Key to Positive Controls

SA sodium azide 2AA 2-aminoanthracene 9AAD 9-Aminoacridine 2NF 2-nitrofluorene MMS methyl methanesulfonate

BioReliance Study No. AF28PG.503.BTL

Metabolic Activation	Test <u>Substance</u>	Dose Level (μg/plate)	Revertant Colony Counts (Mean ±SD) (B2: Confirmatory Mutagenicity Assay)					
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA	
Without	Water	100 μL/plate	17 ± 1	89 ± 6	10 ± 3	6 ± 0	34 ± 1	
Activation	PFECA F	33.3	14 ± 7	81 ± 14	8 ± 2	7 ± 3	39 ± 7	
		100	14 ± 6	78 ± 13	8 ± 1	7 ± 2	34 ± 7	
		333	14 ± 1	85 ± 6	8 ± 3	6 ± 5	32 ± 7	
		1000	16 ± 4	90 ± 24	8 ± 2	5 ± 3	31 ± 7	
		3333	14 ± 2	83 ± 8	9 ± 3	5 ± 3	37 ± 3	
		5000	9 ± 3	81 ± 10	9 ± 4	6 ± 3	27 ± 2	
	2NF	1.00	68 ± 19					
	SA	1.00		607 ± 15	611 ± 19			
	9AAD	75.0				771 ± 71		
	MMS	1000					463 ± 4	
With	Water	100 μL/plate	14 ± 1	99 ± 21	11 ± 3	5 ± 0	31 ± 6	
Activation	PFECA F	33.3	15 ± 5	93 ± 8	8 ± 2	5 ± 1	36 ± 4	
		100	16 ± 5	104 ± 16	12 ± 6	7 ± 1	28 ± 4	
		333	16 ± 4	107 ± 18	11 ± 4	7 ± 1	35 ± 1	
		1000	15 ± 3	104 ± 9	15 ± 3	7 ± 4	31 ± 4	
		3333	13 ± 6	97 ± 12	11 ± 4	7 ± 3	34 ± 7	
		5000	14 ± 3	107 ± 7	11 ± 2	6 ± 3	31 ± 4	
	2AA	1.00	223 ± 19		75 ± 2			
	2AA	2.00		831 ± 60		40 ± 2		
	2AA	15.0					307 ± 18	

Key to Positive Controls

SA sodium azide 2AA 2-aminoanthracene 9AAD 9-Aminoacridine 2NF 2-nitrofluorene MMS methyl methanesulfonate

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

PFECA A

Author

Emily Dakoulas, BS

Study Completion Date

21 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PH.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 47

1. STATEMENT OF COMPLIANCE

Study No. AF28PH.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

<u> 212062018</u>

Emily Dakoulas, B

Study Director

2. QUALITY ASSURANCE STATEMENT

Printed by:Curtos Booillo Printed on:21-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	16
11.	REFERENCES	17
12.	DATA TABLES	18
13.	APPENDIX I: Historical Control Data	25
14.	APPENDIX II: Study Protocol and Amendment	27
15	APPENDIX III: Common Technical Document Tables	11

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive

Rockville, MD 20850

BioReliance Study No.: AF28PH.503.BTL

Sponsor No.: C30049

Test Substance

Identification: PFECA A

CAS No.: 863090-89-5

Purity: 98% (per protocol)

Molecular Weight: 280.05 g/mol

Description: Clear colorless liquid

Storage Conditions: Room temperature, protected from light

Receipt Date: 03 Apr 2018

Study Dates

Study Initiation Date: 29 May 2018

Experimental Starting Date (first day of

data collection): 30 May 2018

Experimental Start Date (first day test

substance administered to test system): 31 May 2018

Experimental Completion Date: 18 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, PFECA A, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 µg per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate PFECA A was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendment are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver PFECA A to the test system was water.

Vehicle	e CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7732-18-5	Sigma-Aldrich	RNBF9658	Sterile- filtered	Mar 2019

Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain	S9 Activation	Positive Control	Concentration (µg/plate)	
TA98, TA1535		2-aminoanthracene	1.0	
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	2.0	
,	Rat	Lot No. STBD3302V		
WP2 uvrA		Exp. Date 30-Nov-2019 CAS No. 613-13-8	15	
WIZUVIA			13	
		Purity 97.5% 2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.)		
TA98		Lot No. S43858V Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%	1.0	
TA100, TA1535	N	sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	1.0	
TA1537	None	9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Lot No. BCBK 1177V		75
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000	

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}\text{C}$ for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^9 cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020; Lot No. 3961, Exp. Date: 15 May 2020) was purchased

commercially from MolTox (Boone, NC). Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983).

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and five dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

	Medium					
Component	Minimal top agar	Minimal	Nutrient	Nutrient		
Component	Millillar top agai	bottom agar	bottom agar	broth		
	(Concentration is	n Medium			
BBL Select agar (W/V)	0.8% (W/V)					
Vogel-Bonner minimal medium E	1	1.5% (W/V)	1.5% (W/V)			
Sodium chloride	0.5% (W/V)					
L-histidine, D-biotin and	50 mM each					
L-tryptophan solution	50 min each					
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)					
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)		
Vogel-Bonner salt solution				Supplied at 20 mL/L		

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for $48 \text{ to } 72 \text{ hours at } 37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics
1 or no code	Normal	Distinguished by a healthy microcolony lawn.
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn resulting in a pronounced increase in the size of the microcolonies compared to the vehicle control plate.
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.
6	Obscured by Particulate	The background bacterial lawn cannot be accurately evaluated due to microscopic test substance particulate.
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers (see <u>Deviations</u>).

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

	95% Control Limits (99% Upper Limit)							
	TA98 TA100 TA1535 TA1537 WP2 uvrA							
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)			
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)			
XX7'.1	C. 1 D.		1 ' 1 1'	1 000/	. 1 1' '/ 1			

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A > 50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose		
LIMS Labware System	Test Substance Tracking		
Excel 2007 (Microsoft Corporation)	Calculations		
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table		
(Perceptive Instruments)	Creation		
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring		
BRIQS	Deviation and audit reporting		

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

Following deviation from assay-method SOPs occurred during the conduct of this study.

Event No. 326527: Laboratory technician recorded the wrong lot number in the raw data for oxoid nutrient broth used for confirmation of tester strain genotype. The lot number recorded was for bottom agar. The Study Director determined no Impact as the strain characterization results were within the historical control range for the titers.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

Experiment	Tester Strain						
	TA98	TA100	TA1535	TA1537	WP2 uvrA		
	Titer Value (x 10 ⁹ cells per mL)						
B1	1.3	1.4	1.1	1.4	3.1		
B2	1.3	1.2	1.3	1.7	2.9		

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

Neither precipitate nor toxicity was observed.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and <u>4</u>. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 50.0, 150, 500, 1500 and 5000 μ g per plate.

Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, PFECA A did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

BioReliance Study No. AF28PH.503.BTL

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella* Mutagenicity Test, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PH.503.BTLStudy Code: AF28PHExperiment: B1Date Plated: 5/31/2018Exposure Method: Plate incorporation assayEvaluation Period: 6/5/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	PFECA A	5000 μg	13	2	0.8	14 ^A , 11 ^A
		1500 μg	13	0	0.8	$13^{A}, 13^{A}$
		500 μg	10	2	0.6	8 ^A , 11 ^A
		150 μg	14	5	0.8	$17^{A}, 10^{A}$
		50.0 μg	13	6	0.8	$9^{A}, 17^{A}$
		15.0 μg	13	5	0.8	9 ^A , 17 ^A 9 ^A , 16 ^A
		5.00 μg	19	1	1.1	$18^{A}, 19^{A}$
		1.50 µg	8	1	0.5	$7^{A}, 9^{A}$
	Water	100 μL	17	8		$11^{A}, 22^{A}$
TA100	PFECA A	5000 μg	76	11	1.0	68 ^A , 84 ^A
		1500 μg	66	2	0.9	$64^{A}, 67^{A}$
		500 μg	<i>78</i>	3	1.1	80 ^A , 76 ^A 90 ^A , 80 ^A
		150 µg	85	7	1.1	$90^{A}, 80^{A}$
		50.0 μg	76	18	1.0	63 ^A , 89 ^A
		15.0 μg	68	11	0.9	$76^{A}, 60^{A}$
		5.00 μg	63	15	0.9	$73^{A}, 52^{A}$
		1.50 μg	68	3	0.9	$70^{A}, 66^{A}$
	Water	100 μL	74	8		$68^{A}, 80^{A}$
TA1535	PFECA A	5000 μg	12	6	1.2	8 ^A , 16 ^A 6 ^A , 7 ^A
		1500 μg	7	1	0.7	$6^{A}, 7^{A}$
		500 μg	14	0	1.4	14 ^A , 14 ^A
		150 µg	11	6	1.1	$15^{A}, 6^{A}$
		50.0 μg	12	7	1.2	$17^{A}, 7^{A}$
		15.0 μg	7	1	0.7	$8^{A}, 6^{A}$
		5.00 μg	12	3	1.2	$10^{A}, 14^{A}$
		1.50 μg	8	4	0.8	$5^{A}, 11^{A}$
	Water	100 μL	10	0		$10^{A}, 10^{A}$
TA1537	PFECA A	5000 μg	7	3	0.9	5 ^A , 9 ^A
		1500 μg	9	1	1.1	$10^{A}, 8^{A}$
		500 μg	7	0	0.9	$7^{A}, 7^{A}$
		150 μg	7	0	0.9	7^{A} 7^{A}
		50.0 μg	8	2	1.0	$9^{A}, 6^{A}$
		15.0 μg	6	4	0.8	$8^{A}, 3^{A}$
		5.00 μg	9	0	1.1	$9^{A}, 9^{A}$
		1.50 μg	6	0	0.8	9 ^A , 6 ^A 8 ^A , 3 ^A 9 ^A , 9 ^A 6 ^A , 6 ^A
	Water	100 μL	8	2		$6^{A}, 9^{A}$

Key to Automatic Count Flags

BioReliance Study No. AF28PH.503.BTL

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PH.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PH

Date Plated: 5/31/2018

Evaluation Period: 6/5/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
WP2uvrA	PFECA A Water	5000 μg 1500 μg 500 μg 150 μg 50.0 μg 15.0 μg 5.00 μg 1.50 μg 100 μL	25 21 23 27 36 30 24 32 24	3 3 7 1 8 4 11 8	1.0 0.9 1.0 1.1 1.5 1.3 1.0	23 ^A , 27 ^A 23 ^A , 19 ^A 25 ^A , 21 ^A 32 ^A , 22 ^A 35 ^A , 36 ^A 35 ^A , 24 ^A 21 ^A , 26 ^A 24 ^A , 39 ^A 30 ^A , 18 ^A
TA98 TA100 TA1535 TA1537 WP2uvrA	2NF SA SA 9AAD MMS	1.00 μg 1.00 μg 1.00 μg 75.0 μg 1000 μg	88 676 669 520 306	29 136 2 61 22	5.2 9.1 66.9 65.0 12.8	108 ^A , 67 ^A 580 ^A , 772 ^A 667 ^A , 670 ^A 477 ^A , 563 ^A 321 ^A , 290 ^A

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PH.503.BTLStudy Code: AF28PHExperiment: B1Date Plated: 5/31/2018Exposure Method: Plate incorporation assayEvaluation Period: 6/5/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	PFECA A	5000 μg	15	3	1.1	13 ^A , 17 ^A
		1500 μg	17	2	1.2	15 ^A , 18 ^A
		500 μg	12	2	0.9	13 ^A , 10 ^A
		150 µg	18	1	1.3	17 ^A , 18 ^A
		50.0 μg	14	1	1.0	17 ^A , 18 ^A 14 ^A , 13 ^A
		15.0 μg	20	6	1.4	24 ^A , 15 ^A
		5.00 μg	14	4	1.0	11 ^A , 17 ^A
		1.50 µg	18	2	1.3	$19^{A}, 16^{A}$
	Water	100 μL	14	1		13^{A} , 14^{A}
TA100	PFECA A	5000 μg	94	3	1.1	92 ^A , 96 ^A
		1500 μg	94	6	1.1	$98^{A}, 90^{A}$
		500 μg	84	17	1.0	96 ^A , 72 ^A
		150 µg	87	7	1.0	$92^{A}, 82^{A}$
		50.0 μg	88	5	1.0	84 ^A , 91 ^A
		15.0 μg	98	14	1.2	$108^{A}, 88^{A}$
		5.00 μg	99	18	1.2	86 ^A , 111 ^A
		1.50 µg	84	8	1.0	$90^{A}, 78^{A}$
	Water	100 μL	85	19		98 ^A , 71 ^A
TA1535	PFECA A	5000 μg	16	3	1.0	18 ^A , 14 ^A
		1500 μg	17	1	1.1	17 ^A , 16 ^A
		500 μg	11	1	0.7	$10^{A}, 11^{A}$
		150 μg	14	6	0.9	$18^{A}, 10^{A}$
		50.0 μg	11	1	0.7	$10^{A}, 11^{A}$
		15.0 μg	11	3	0.7	$9^{A}, 13^{A}$
		5.00 μg	12	6	0.8	$16^{A}, 7^{A}$
		1.50 µg	11	o	0.7	11 ^A , 11 ^A
	Water	100 μL	16	1		15 ^A , 17 ^A
TA1537	PFECA A	5000 μg	5	0	0.7	5 ^A , 5 ^A 6 ^A , 6 ^A
		1500 μg	6	0	0.9	$6^{A}, 6^{A}$
		500 μg	12	3	1.7	$14^{A}, 10^{A}$
		150 µg	10	2	1.4	8 ^A , 11 ^A
		50.0 μg	9	2	1.3	$7^{A}, 10^{A}$
		15.0 μg	9	1	1.3	$10^{A}, 8^{A}$
		5.00 μg	8	1	1.1	7 ^A , 8 ^A 6 ^A , 8 ^A
		1.50 µg	7	1	1.0	$6^{A}, 8^{A}$
	Water	100 μL	7	1		$7^{A}, 6^{A}$

A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PH.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PH

Date Plated: 5/31/2018

Evaluation Period: 6/5/2018

Emposer Tire	nou. I late meerpe	Turion desay	Evaluation Fortion: 0/5/2010				
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
WP2uvrA	PFECA A Water	5000 μg 1500 μg 500 μg 150 μg 50.0 μg 15.0 μg 5.00 μg 1.50 μg 100 μL	28 29 24 35 29 31 33 36 34	2 6 0 4 5 1 8 18 6	0.8 0.9 0.7 1.0 0.9 0.9 1.0 1.1	29 ^A , 26 ^A 24 ^A , 33 ^A 24 ^A , 24 ^A 38 ^A , 32 ^A 32 ^A , 25 ^A 32 ^A , 30 ^A 38 ^A , 27 ^A 49 ^A , 23 ^A 38 ^A , 30 ^A	
TA98 TA100 TA1535 TA1537 WP2uvrA	2AA 2AA 2AA 2AA 2AA	1.00 μg 2.00 μg 1.00 μg 2.00 μg 15.0 μg	352 716 127 89 180	81 129 48 33 20	25.1 8.4 7.9 12.7 5.3	409 ^A , 295 ^A 624 ^A , 807 ^A 93 ^A , 161 ^A 112 ^A , 65 ^A 166 ^A , 194 ^A	

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PH.503.BTL Study Code: AF28PH
Experiment: B2 Date Plated: 6/12/2018
Exposure Method: Plate incorporation assay Evaluation Period: 6/18/2018

Exposure Memou. Frace incorporation assay			Evaluation 1 chod. 0/16/2016				
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
TA98	PFECA A	5000 μg	17	1	1.3	18 ^A , 16 ^A , 16 ^A	
		1500 μg	9	1	0.7	$8^{A}, 8^{A}, 10^{A}$	
		500 μg	10	2	0.8	$8^{A}, 11^{A}, 11^{A}$	
		150 µg	12	3	0.9	16^{A} , 11^{A} , 10^{A}	
		50.0 μg	7	3	0.5	$7^{A}, 5^{A}, 10^{A}$	
	Water	100 μL	13	6		$13^{A}, 8^{A}, 19^{A}$	
TA100	PFECA A	5000 μg	92	2	1.1	93 ^A , 90 ^A , 92 ^A	
		1500 µg	90	9	1.1	99 ^A , 82 ^A , 88 ^A	
		500 μg	86	11	1.1	88 ^A , 96 ^A , 75 ^A	
		150 µg	79	2	1.0	79 ^A , 78 ^A , 81 ^A	
		50.0 μg	89	7	1.1	83 ^A , 97 ^A , 88 ^A	
	Water	100 μL	81	13		92 ^A , 84 ^A , 66 ^A	
TA1535	PFECA A	5000 μg	8	1	0.7	9 ^A , 8 ^A , 7 ^A	
		1500 μg	9	1	0.8	$8^{A}, 10^{A}, 9^{A}$	
		500 μg	10	4	0.8	$7^{A}, 9^{A}, 14^{A}$	
		150 µg	13	4	1.1	15^{A} , 16^{A} , 9^{A}	
		50.0 μg	8	2	0.7	$9^{A}, 6^{A}, 8^{A}$	
	Water	100 μL	12	6		$8^{A}, 18^{A}, 9^{A}$	
TA1537	PFECA A	5000 μg	6	2	1.0	5 ^A , 5 ^A , 8 ^A 5 ^A , 5 ^A , 5 ^A	
		1500 μg	5	0	0.8	$5^{A}, 5^{A}, 5^{A}$	
		500 μg	4	2	0.7	5 ^A , 1 ^A , 5 ^A	
		150 µg	7	1	1.2	7^{A} , 6^{A} , 7^{A}	
		50.0 μg	5	2	0.8	$3^{A}, 6^{A}, 6^{A}$	
	Water	100 μL	6	2		3 ^A , 6 ^A , 6 ^A 6 ^A , 5 ^A , 8 ^A	
WP2uvrA	PFECA A	5000 μg	29	7	1.0	$23^{A}, 36^{A}, 27^{A}$	
		1500 μg	26	7	0.9	$30^{A}, 18^{A}, 29^{A}$	
		500 μg	32	7	1.1	25^{A} , 38^{A} , 33^{A}	
		150 µg	38	6	1.3	$31^{A}, 42^{A}, 40^{A}$	
		50.0 μg	27	5	0.9	22 ^A , 32 ^A , 27 ^A	
	Water	100 μL	29	5		$35^{A}, 26^{A}, 27^{A}$	

A: Automatic count

TABLE 3 (CONT.) Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PH.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PH

Date Plated: 6/12/2018

Evaluation Period: 6/18/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	2NF	1.00 μg	64	9	4.9	55 ^A , 72 ^A , 65 ^A
TA100	SA	1.00 µg	663	33	8.2	633 ^A , 657 ^A , 698 ^A
TA1535	SA	1.00 µg	626	75	52.2	$705^{A}, 619^{A}, 555^{A}$
TA1537	9AAD	75.0 μg	730	154	121.7	$903^{A}, 606^{A}, 682^{A}$
WP2uvrA	MMS	1000 μg	468	47	16.1	446 ^A , 437 ^A , 522 ^A

Key to Positive Controls

2NF 2-nitrofluorene SA sodium azide 9AAD 9-Aminoacridine

MMS methyl methanesulfonate

A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PH.503.BTL Experiment: B2 Exposure Method: Plate incorporation assay Study Code: AF28PH Date Plated: 6/12/2018 Evaluation Period: 6/18/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	PFECA A	5000 μg	14	3	1.2	16 ^A , 15 ^A , 11 ^A
1A30	I FECA A	1500 μg	13	3	1.1	13 ^A 11 ^A 16 ^A
		500 μg	18	4	1.5	22 ^A 15 ^A 16 ^A
		150 μg	14	3	1.2	13 ^A , 11 ^A , 16 ^A 22 ^A , 15 ^A , 16 ^A 15 ^A , 16 ^A , 11 ^A
		50.0 μg	11	4	0.9	15 ^A , 8 ^A , 9 ^A
	Water	100 μL	12	3		$10^{A}, 10^{A}, 15^{A}$
TA100	PFECA A	5000 μg	113	9	1.2	103 ^A , 119 ^A , 116 ^A
	-	1500 µg	107	9	1.2	104 ^A , 99 ^A , 117 ^A
		500 μg	98	2	1.1	$100^{A}, 96^{A}, 97^{A}$
		150 µg	91	8	1.0	89 ^A , 100 ^A , 84 ^A
		50.0 μg	92	7	1.0	$100^{A}, 88^{A}, 87^{A}$
	Water	100 μL	92	3		$91^{A}, 90^{A}, 96^{A}$
TA1535	PFECA A	5000 μg	12	5	0.9	17 ^A , 10 ^A , 8 ^A
		1500 μg	13	6	1.0	$13^{A}, 7^{A}, 18^{A}$
		500 μg	9	1	0.7	$9^{A}, 9^{A}, 8^{A}$
		150 µg	17	3	1.3	17^{A} , 14^{A} , 19^{A}
		50.0 μg	13	5	1.0	9^{A} , 13^{A} , 18^{A}
	Water	100 μL	13	2		11 ^A , 13 ^A , 14 ^A
TA1537	PFECA A	5000 μg	6	4	1.0	$2^{A}, 6^{A}, 10^{A}$
		1500 μg	5	2	0.8	$6^{A}, 6^{A}, 3^{A}$
		500 μg	7	3	1.2	$9^{A}, 9^{A}, 3^{A}$
		150 µg	9	4	1.5	$13^{A}, 6^{A}, 7^{A}$
		50.0 μg	4	2	0.7	$6^{A}, 3^{A}, 2^{A}$
	Water	100 μL	6	2		7 ^A , 7 ^A , 3 ^A
WP2uvrA	PFECA A	5000 μg	33	7	0.9	$29^{A}, 29^{A}, 41^{A}$
		1500 μg	33	3	0.9	$32^{A}, 36^{A}, 30^{A}$
		500 μg	34	5	1.0	$39^{A}, 30^{A}, 32^{A}$
		150 µg	38	4	1.1	42 ^A , 35 ^A , 36 ^A
		50.0 μg	35	5	1.0	41 ^A , 33 ^A , 32 ^A
	Water	100 μL	35	1		35 ^A , 35 ^A , 34 ^A
TA98	2AA	1.00 µg	216	3	18.0	217^{A} , 218^{A} , 213^{A}
TA100	2AA	$2.00~\mu g$	844	225	9.2	$1100^{A}, 679^{A}, 754^{A}$
TA1535	2AA	1.00 µg	78	11	6.0	91 ^A , 72 ^A , 72 ^A
TA1537	2AA	$2.00~\mu g$	43	4	7.2	39 ^A , 46 ^A , 44 ^A
WP2uvrA	2AA	15.0 μg	248	24	7.1	274 ^A , 242 ^A , 228 ^A

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

13	API	PEND	IX I. I	Historica	l Control	Data

Historical Negative and Positive Control Values 2016

revertants per plate

1 1											
		Activation									
Strain	Control	None				Rat Liver					
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL
TA00	Neg	15	5	6	34	5-25	22	6	8	42	10-34
TA98	Pos	198	174	36	1826		287	159	47	1916	
TA100	Neg	90	12	60	146	66-114	94	14	63	181	66-122
	Pos	629	159	186	1383		620	294	192	3483	
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20
1A1333	Pos	541	164	34	1082		150	122	27	1114	
TA 1527	Neg	8	3	1	21	2-14	9	3	2	23	3-15
TA1537	Pos	368	227	21	1791		91	90	17	951	
WP2 uvrA	Neg	24	7	7	44	10-38	27	7	8	51	13-41
WFZ UVFA	Pos	336	119	25	876		300	111	41	1059	

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendment

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PH.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

 Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add:

The doses will be 5000, 1500, 500, 150 and 50.0 µg per plate.

Reason: To specify the dose levels to be used for the mutagenicity assay based on the toxicity and precipitate profiles observed in the initial toxicity-mutation assay.

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PH.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT Sponsor Representative

Page 2 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company					
BioReliance Study No.: AF28PH.503.BTL; Sp	oonsor No.: C30049				
Title: Bacterial Reverse Mutation Assay					
Study Director and Test Facility Management Approvals:					
Emily Dakoulas, BS BioReliance Study Director	Date 082013018				
BioReliance Study Management	08-JUN-18 Date				

Protocol

Study Title Bacterial Reverse Mutation Assay

Study Director Emily Dakoulas, BS

Testing Facility BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number AF28PH.503.BTL

1. KEY PERSONNEL

Sponsor Information: Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Shawn Gannon, Ph.D., DABT

Sponsor Number C30049

Sponsor's Authorized

Representative The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Phone: 302-773-1376

Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Study Director Emily Dakoulas, BS

BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality

Luleayenwa (Lula) Aberra-Degu, RQAP-GLP Assurance Representative

BioReliance Corporation Phone: 301-610-2667

Email: Luleayenwa.aberra-degu@sial.com

2. TEST SCHEDULE

31-May-2018 Proposed Experimental Initiation Date 26-June-2018 Proposed Experimental Completion Date 11-July-2018 Proposed Report Date

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

• US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final): Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

503.BTL Page 2 of 13 Release Date: 23Apr2018

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. OUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed QA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator, Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director, Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 uvrA in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification PFECA A

CAS No. 863090-89-5

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

Purity 98% (no correction factor will be used for dose formulations)

Molecular Weight 280.05 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below; unless the test substance is used on another study.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Wilmington, DE 19803 Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be discarded after use.

7 TEST SYSTEM

The tester strains will include the *S. typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames *et al.* (1975) and the *E. coli* tester strain WP2 *uvr*A as described by Green and Muriel (1976). The genotypes of strains are as follows:

His	Histidine Mutation Tryptophan Mutation			Additional Mutations			
hisG46	hisC3076	hisD3052	trpE	LPS	Repair	R-factor	
TA1535	TA1537	-	-	rfa	ΔuvrB	-	
TA100	-	TA98	-	rfa	$\Delta uvrB$	+R	
_	-	-	WP2 uvrA	-	$\Delta uvrA$	-	

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California, Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

Release Date: 23Apr2018 Page 4 of 13 503.BTL

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acetone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/mL for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test substance, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellet(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}$ C.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from incubation at a density of approximately 10⁹ cells/mL.

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dose level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MolTox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018 Page 5 of 13 503.BTL

100 mM phosphate buffer at pH 7.4

S9 Mix

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test substance.

Strain	Positive Control	S9	Concentrations (μg/plate)
Salmonella strains	2-aminoanthracene ^B	+	1.0 - 2.0
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20
TA98	2-nitrofluorene ^B	_	1.0
TA100, TA1535	sodium azide ^A		1.0
TA1537	9-aminoacridine ^B	_	75
WP2 uvrA	methyl methanesulfonate ^B	_	1,000

APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

503.BTL

^BPrepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 *uvr*A will be exposed to vehicle alone and at least eight concentrations of test substance, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 μg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 μg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 μg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test substance, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will be at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, 100 µL of tester strain and 50.0 µL of vehicle, test substance dilution or positive control will be added to 2.0 mL of molten selective top agar at 45±2°C. When necessary, aliquots of other than 50.0 µL of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test substance, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at 37±2°C. Plates that are not counted immediately following the incubation period will be stored at 2-8°C.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018 Page 7 of 13 503.BTL

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *uvr*B mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *uvr*A mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

	95% Control Limits (99% Upper Limit)							
	TA98	TA100	TA1535	TA1537	WP2 uvrA			
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)			
+59	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)			
	Study Director are acceptable	justification, va	lues includin	g the 99% con	trol limit and			

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicity

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018

Page 8 of 13

503.BTL

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that less than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but lacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not be limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIOS	Deviation and audit reporting

12. REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- Test substance
- Vehicle
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- Test conditions
- Results
- · Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- Copy of the protocol and any amendment
- Contributing reports (if applicable)
- Information about the analyses that characterized the test substance, its stability and the stability and strength of the dosing preparations, if provided by the Sponsor
- · Statement of Compliance
- Quality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames, B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muriel, W.J. (1976). Mutagen testing using trp⁺ reversion in *Escherichia coli*. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the Salmonella Mutagenicity Test. Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonellal* microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

Version No. 3

Release Date: 23Apr2018

Page 11 of 13

503.BTL

BioReliance Study Number: AF28PH.503.BTL

Sponsor Number: C30049

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT Sponsor Representative

8 May 2018 Date

Version No. 3

Release Date: 23Apr2018

Page 12 of 13

503.BTL

BioReliance Study Number: AF28PH.503.BTL Sponsor Number: C30049

Study Director and Test Facility Management Approvals

Date

Date

Date

Version No. 3

Release Date: 23Apr2018

Page 13 of 13

503.BTL

15.	APPENDIX III: Common Technical Document Tables

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

Cytotoxic Effects: None Genotoxic Effects: None

No. of Independent Assays: 2

No. of Replicate Cultures: 2 (B1)

and 3 (B2)

Test Substance: PFECA A
Study No.: AF28PH.503.BTL

No. Cells Analyzed/Culture: 1.1 to 3.1 x 10⁸ cells per

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 31 May 2018 (B1) and

12 June 2018 (B2)

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B1: Initial Toxicity-Mutation Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	17 ± 8	74 ± 8	10 ± 0	8 ± 2	24 ± 8
Activation	PFECA A	1.50	8 ± 1	68 ± 3	8 ± 4	6 ± 0	32 ± 11
		5.00	19 ± 1	63 ± 15	12 ± 3	9 ± 0	24 ± 4
		15.0	13 ± 5	68 ± 11	7 ± 1	6 ± 4	30 ± 8
		50.0	13 ± 6	76 ± 18	12 ± 7	8 ± 2	36 ± 1
		150	14 ± 5	85 ± 7	11 ± 6	7 ± 0	27 ± 7
		500	10 ± 2	78 ± 3	14 ± 0	7 ± 0	23 ± 3
		1500	13 ± 0	66 ± 2	7 ± 1	9 ± 1	21 ± 3
		5000	13 ± 2	76 ± 11	12 ± 6	7 ± 3	25 ± 3
	2NF	1.00	88 ± 29				
	SA	1.00		676 ± 136	669 ± 2		
	9AAD	75.0				520 ± 61	
	MMS	1000					306 ± 22
With	Water	100 μL/plate	14 ± 1	85 ± 19	16 ± 1	7 ± 1	34 ± 6
Activation	PFECA A	1.50	18 ± 2	84 ± 8	11 ± 0	7 ± 1	36 ± 18
		5.00	14 ± 4	99 ± 18	12 ± 6	8 ± 1	33 ± 8
		15.0	20 ± 6	98 ± 14	11 ± 3	9 ± 1	31 ± 1
		50.0	14 ± 1	88 ± 5	11 ± 1	9 ± 2	29 ± 5
		150	18 ± 1	87 ± 7	14 ± 6	10 ± 2	35 ± 4
		500	12 ± 2	84 ± 17	11 ± 1	12 ± 3	24 ± 0
		1500	17 ± 2	94 ± 6	17 ± 1	6 ± 0	29 ± 6
		5000	15 ± 3	94 ± 3	16 ± 3	5 ± 0	28 ± 2
	2AA	1.00	352 ± 81		127 ± 48		
	2AA	2.00		716 ± 129		89 ± 33	
	2AA	15.0					180 ± 20
Key to Posi	tive Controls						

SA sodium azide
2AA 2-aminoanthracene
9AAD 9-Aminoacridine
2NF 2-nitrofluorene
MMS methyl methanesulfonate

BioReliance Study No. AF28PH.503.BTL

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B2: Confirmatory mutagenicity assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	13 ± 6	81 ± 13	12 ± 6	6 ± 2	29 ± 5
Activation	PFECA A	50.0	7 ± 3	89 ± 7	8 ± 2	5 ± 2	27 ± 5
		150	12 ± 3	79 ± 2	13 ± 4	7 ± 1	38 ± 6
		500	10 ± 2	86 ± 11	10 ± 4	4 ± 2	32 ± 7
		1500	9 ± 1	90 ± 9	9 ± 1	5 ± 0	26 ± 7
		5000	17 ± 1	92 ± 2	8 ± 1	6 ± 2	29 ± 7
	2NF	1.00	64 ± 9				
	SA	1.00		663 ± 33	626 ± 75		
	9AAD	75.0				730 ± 154	
	MMS	1000					468 ± 47
With	Water	100 μL/plate	12 ± 3	92 ± 3	13 ± 2	6 ± 2	35 ± 1
Activation	PFECA A	50.0	11 ± 4	92 ± 7	13 ± 5	4 ± 2	35 ± 5
		150	14 ± 3	91 ± 8	17 ± 3	9 ± 4	38 ± 4
		500	18 ± 4	98 ± 2	9 ± 1	7 ± 3	34 ± 5
		1500	13 ± 3	107 ± 9	13 ± 6	5 ± 2	33 ± 3
		5000	14 ± 3	113 ± 9	12 ± 5	6 ± 4	33 ± 7
	2AA	1.00	216 ± 3		78 ± 11		
	2AA	2.00		844 ± 225		43 ± 4	
	2AA	15.0					248 ± 24

Key to Positive Controls

SA sodium azide 2AA 2-aminoanthracene 9AAD 9-Aminoacridine 2NF 2-nitrofluorene

MMS methyl methanesulfonate

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

PFECA G

Author

Emily Dakoulas, BS

Study Completion Date

21 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PJ.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 47

1. STATEMENT OF COMPLIANCE

Study No. AF28PJ.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

Emily Dakoulas, BS

Date

Study Director

2. QUALITY ASSURANCE STATEMENT

Quality Assurance Statement

Study Information

Number: AF28PJ.503.BTL

Compliance

Procedures, documentation, equipment and other records were examined in order to assure this study was performed in accordance with the regulation(s) listed below and conducted according to the protocol and relevant Standard Operating Procedures. Verification of the study protocol was performed and documented by Quality Assurance.

US EPA Good Laboratory Standards 40CFR 792

Inspections

Quality Assurance performed the inspections(s) below for this study.

Insp. Dates (From/To)		Phase Inspected	To Study Direct	or To Management
13-Jun-2018	13-Jun-2018	Strain Characterization	14-Jun-2018	14-Jun-2018
13-Jun-2018	09-Jul-2018	Protocol Review	09-Jul-2018	09-Jul-2018
06-Jul-2018	06-Jul-2018	Data/Draft Report	06-Jul-2018	06-Jul-2018
17-Aug-2018	17-Aug-2018	Final Report	17-Aug-2018	17-Aug-2018
17-Aug-2018	17-Aug-2018	Protocol Amendment Review	17-Aug-2018	17-Aug-2018

The Final Report for this study describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

For a multisite study, test site QA Statements are located in the corresponding contributing scientist report.

E-signature

Quality Assurance: Alan Tarwater 21-Aug-2018 6:29 pm GM7

Reason for signature: QA Approval

Printed by:Alan Tarwater Printed on:21-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	16
11.	REFERENCES	17
12.	DATA TABLES	18
13.	APPENDIX I: Historical Control Data	25
14.	APPENDIX II: Study Protocol and Amendment	27
15	APPENDIX III: Common Technical Document Tables	11

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study No.: AF28PJ.503.BTL

Sponsor No.: C30049

Test Substance

Identification: PFECA G

CAS No.: 801212-59-9

Purity: 99% (per protocol)

Molecular Weight: 380.06 g/mol

Description: Clear colorless liquid

Storage Conditions: Room temperature, protected from light

Receipt Date: 03 Apr 2018

Study Dates

Study Initiation Date: 24 May 2018

Experimental Starting Date (first day of

data collection): 25 May 2018

Experimental Start Date (first day test

substance administered to test system): 31 May 2018

Experimental Completion Date: 18 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, PFECA G, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 µg per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate PFECA G was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendment are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver PFECA G to the test system was water.

Vehicle	CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7732-18-5	Sigma-Aldrich	RNBF9658	Sterile- filtered	Mar 2019

Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light. To achieve a solution, the most concentrated dilution was sonicated at 36.1 to 32.8°C for 17 to 26 minutes in each assay.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain	S9 Activation	Positive Control	Concentration (µg/plate)
TA98, TA1535		2-aminoanthracene	1.0
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	2.0
,	Rat	Lot No. STBD3302V	
WP2 uvrA		Exp. Date 30-Nov-2019 CAS No. 613-13-8	15
WIZUVIA		Purity 97.5%	13
TA 00		2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.) Lot No. S43858V	1.0
TA98		Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%	1.0
TA100, TA1535	N	sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	1.0
TA1537	None	9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Lot No. BCBK1177V Exp. Date 31-Mar-2019 CAS No. 52417-22-8 Purity 99.5%	75
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}\text{C}$ for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^9 cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020; Lot No. 3961, Exp. Date: 15 May 2020) was purchased

commercially from MolTox (Boone, NC). Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983).

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and five dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

		Mediu	n	
Component	Minimal top agar	Minimal	Nutrient	Nutrient
Component	Millilliai top agai	bottom agar	bottom agar	broth
		Concentration is	n Medium	
BBL Select agar (W/V)	0.8% (W/V)			
Vogel-Bonner minimal medium E	1	1.5% (W/V)	1.5% (W/V)	
Sodium chloride	0.5% (W/V)			
L-histidine, D-biotin and	50 mM each			
L-tryptophan solution	30 mivi cacii			
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)			
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)
Vogel-Bonner salt solution				Supplied at 20 mL/L

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for 48 to 72 hours at $37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics
1 or no code	Normal	Distinguished by a healthy microcolony lawn.
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn resulting in a pronounced increase in the size of the microcolonies compared to the vehicle control plate.
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.
6	Obscured by The background bacterial lawn cannot be accurately evaluate Particulate due to microscopic test substance particulate.	
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers.

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

	95% Control Limits (99% Upper Limit)				
	TA98	TA100	TA1535	TA1537	WP2 uvrA
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)
	\ /	00-122 (130)	4-20 (24)	\ /	13-41 (46)

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel 2007 (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

No deviations from the protocol or assay-method SOPs occurred during the conduct of this study.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

	Tester Strain								
Experiment	TA98	WP2 uvrA							
		Titer Value (x 10 ⁹ cells per mL)							
B1	1.3 1.4 1.1 1.4								
B2	1.3 1.1 1.5 1.8 2.9								

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

Neither precipitate nor toxicity was observed.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and $\underline{4}$. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 50.0, 150, 500, 1500 and 5000 μ g per plate.

Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, PFECA G did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

BioReliance Study No. AF28PJ.503.BTL

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella* Mutagenicity Test, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PJ.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PJ

Date Plated: 5/31/2018

Evaluation Period: 6/4/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	evertants Standard Deviation		Individual revertant colony counts and background codes
TA98	PFECA G	5000 μg	9	1	0.8	9 ^A , 8 ^A
		1500 μg	10	4	0.8	$13^{A}, 7^{A}$
		500 μg	13	2	1.1	$14^{A}, 11^{A}$
		150 μg	13	2	1.1	11 ^A , 14 ^A
		50.0 μg	12	1	1.0	11 ^A , 13 ^A
		15.0 μg	14	6	1.2	$18^{A}, 10^{A}$
		5.00 μg	15	1	1.3	$14^{A}, 15^{A}$
		1.50 µg	16	4	1.3	$19^{A}, 13^{A}$
	Water	100 μL	12	8		$18^{A}, 6^{A}$
TA100	PFECA G	5000 μg	84	5	1.2	$80^{A}, 87^{A}$
		1500 μg	87	4	1.2	89 ^A , 84 ^A
		500 μg	86	6	1.2	$90^{A}, 82^{A}$
		150 µg	86	8	1.2	$80^{A}, 92^{A}$
		50.0 μg	81	1	1.1	$80^{A}, 81^{A}$
		15.0 μg	74	8	1.0	$79^{A}, 68^{A}$
		5.00 μg	74	13	1.0	64 ^A , 83 ^A
		1.50 µg	92	5	1.3	95 ^A , 88 ^A
	Water	100 μL	73	1		73 ^A , 72 ^A
TA1535	PFECA G	5000 μg	11	6	1.0	15 ^A , 7 ^A
		1500 μg	14	4	1.3	17 ^A , 11 ^A
		500 μg	19	12	1.7	$10^{A}, 27^{A}$
		150 μg	9	3	0.8	$7^{A}, 11^{A}$
		50.0 μg	14	4	1.3	11 ^A , 17 ^A
		15.0 μg	14	0	1.3	14 ^A , 14 ^A
		5.00 μg	7	1	0.6	$7^{A}, 6^{A}$
		1.50 µg	12	1	1.1	$11^{A}, 13^{A}$
	Water	100 μL	11	4		8 ^A , 14 ^A
TA1537	PFECA G	5000 μg	7	1	1.0	$7^{A}, 6^{A}$
		1500 μg	7	5	1.0	$3^{A}, 10^{A}$
		500 μg	10	1	1.4	$10^{A}, 9^{A}$
		150 μg	5	0	0.7	5 ^A , 5 ^A 5 ^A , 10 ^A 9 ^A , 5 ^A 7 ^A , 9 ^A 5 ^A , 8 ^A 6 ^A , 8 ^A
		50.0 μg	8	4	1.1	$5^{A}, 10^{A}$
		15.0 μg	7	3	1.0	$9^{A}, 5^{A}$
		5.00 μg	8	1	1.1	$7^{A}, 9^{A}$
		1.50 μg	7	2	1.0	$5^{A}, 8^{A}$
	Water	100 μL	7	1		$6^{A}, 8^{A}$

Key to Automatic Count Flags

BioReliance Study No. AF28PJ.503.BTL

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PJ.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PJ

Date Plated: 5/31/2018

Evaluation Period: 6/4/2018

Strain	Substance	revertants		Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
WP2uvrA	WP2uvrA PFECA G 5 1 5 1 5 1 Water		17 28 30 34 41 39 41 35 30	2 6 4 1 11 0 8 7 6	0.6 0.9 1.0 1.1 1.4 1.3 1.4 1.2	18 ^A , 15 ^A 23 ^A , 32 ^A 33 ^A , 27 ^A 35 ^A , 33 ^A 48 ^A , 33 ^A 39 ^A , 39 ^A 47 ^A , 35 ^A 30 ^A , 40 ^A 34 ^A , 26 ^A	
TA98 TA100 TA1535 TA1537 WP2uvrA	2NF SA SA 9AAD MMS	1.00 μg 1.00 μg 1.00 μg 75.0 μg 1000 μg	85 756 679 362 513	18 55 33 156 43	7.1 10.4 61.7 51.7 17.1	72 ^A , 97 ^A 717 ^A , 795 ^A 656 ^A , 702 ^A 251 ^A , 472 ^A 482 ^A , 543 ^A	

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PJ.503.BTL Experiment: B1 Exposure Method: Plate incorporation assay Study Code: AF28PJ Date Plated: 5/31/2018 Evaluation Period: 6/4/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	PFECA G	5000 μg	19	3	0.7	21 ^A , 17 ^A
11100	TILCHG	1500 μg	26	13	1.0	16 ^A , 35 ^A
		500 μg	24	2	0.9	25 ^A , 22 ^A
		150 μg	17	0	0.7	25 ^A , 22 ^A 17 ^A , 17 ^A
		50.0 μg	22	1	0.8	$21^{A}, 22^{A}$
		15.0 μg	20	4	0.8	$17^{A}, 22^{A}$
		5.00 μg	19	7	0.7	17 ^A , 22 ^A 24 ^A , 14 ^A
		1.50 µg	18	1	0.7	19 ^A , 17 ^A
	Water	100 μL	26	6		$30^{A}, 22^{A}$
TA100	PFECA G	5000 μg	117	27	1.3	136 ^A , 98 ^A
		1500 µg	107	11	1.2	$115^{A}, 99^{A}$
		500 μg	97	5	1.1	93 ^A , 100 ^A
		150 μg	97	20	1.1	83 ^A , 111 ^A
		50.0 μg	103	6	1.1	83 ^A , 111 ^A 99 ^A , 107 ^A
		15.0 μg	84	23	0.9	$68^{A}, 100^{A}$
		5.00 μg	87	9	1.0	$80^{A}, 93^{A}$
		1.50 µg	95	6	1.0	91 ^A , 99 ^A
	Water	100 μL	91	4		$88^{A}, 93^{A}$
TA1535	PFECA G	5000 μg	14	4	1.4	16 ^A , 11 ^A
		1500 μg	14	1	1.4	$13^{A}, 14^{A}$
		500 μg	12	4	1.2	9 ^A , 14 ^A
		150 μg	12	6	1.2	16 ^A , 7 ^A
		50.0 μg	9	0	0.9	$9^{A}, 9^{A}$
		15.0 μg	12	1	1.2	$11^{A}, 13^{A}$
		5.00 μg	14	4	1.4	$11^{A}, 16^{A}$
		1.50 µg	9	2	0.9	$7^{A}, 10^{A}$
	Water	100 μL	10	1		$10^{A}, 9^{A}$
TA1537	PFECA G	5000 μg	7	1	1.0	$8^{A}, 6^{A}$
		1500 μg	8	4	1.1	$10^{A}, 5^{A}$
		500 μg	8	4	1.1	5 ^A , 11 ^A
		150 μg	12	4	1.7	$9^{A}, 15^{A}$
		50.0 μg	7	6	1.0	11 ^A , 3 ^A
		15.0 μg	10	4	1.4	$13^{A}, 7^{A}$
		5.00 μg	3	3	0.4	1 ^A , 5 ^A
		1.50 µg	6	4	0.9	3 ^A , 8 ^A 6 ^A , 8 ^A
	Water	100 μL	7	1		$6^{A}, 8^{A}$

A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PJ.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PJ Date Plated: 5/31/2018 Evaluation Period: 6/4/2018

Strain	Substance	Dose level per plate	Mean revertants per plate Standard Deviation		Ratio treated / solvent	Individual revertant colony counts and background codes
WP2uvrA	PFECA G	5000 μg 1500 μg 500 μg 150 μg 50.0 μg 15.0 μg	34 29 29 38 33 30	2 2 6 7 1	1.0 0.9 0.9 1.1 1.0 0.9	35 ^A , 32 ^A 27 ^A , 30 ^A 33 ^A , 24 ^A 33 ^A , 43 ^A 32 ^A , 34 ^A 35 ^A , 25 ^A 34 ^A , 33 ^A
	Water	5.00 μg 1.50 μg 100 μL	34 41 34	1 4 12	1.0 1.2	34, 33 38 ^A , 44 ^A 42 ^A , 25 ^A
TA98 TA100 TA1535 TA1537 WP2uvrA	2AA 2AA 2AA 2AA 2AA	1.00 μg 2.00 μg 1.00 μg 2.00 μg 15.0 μg	234 709 90 53 286	23 320 11 16 19	9.0 7.8 9.0 7.6 8.4	250 ^A , 218 ^A 482 ^A , 935 ^A 82 ^A , 97 ^A 64 ^A , 41 ^A 272 ^A , 299 ^A

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PJ.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PJ

Date Plated: 6/13/2018

Evaluation Period: 6/18/2018

Exposure me	nou. I lute incorpe	•	Mean		Ratio	Individual revertant
Strain	Substance	Dose level	revertants	Standard	treated /	colony counts and
		per plate	per plate per plate Devia		solvent	background codes
						<u> </u>
TA98	PFECA G	5000 μg	24	2	1.1	$24^{A}, 26^{A}, 22^{A}$
		1500 μg	34	8	1.5	$28^{A}, 30^{A}, 43^{A}$
		500 μg	28	2	1.3	27^{A} , 30^{A} , 28^{A}
		150 µg	20	4	0.9	$24^{A}, 21^{A}, 16^{A}$
		50.0 μg	20	4	0.9	24^{A} , 17^{A} , 20^{A}
	Water	100 μL	22	3		$19^{A}, 22^{A}, 24^{A}$
TA100	PFECA G	5000 μg	99	15	1.1	87 ^A , 116 ^A , 93 ^A
		1500 μg	98	11	1.1	$110^{A}, 88^{A}, 97^{A}$
		500 μg	92	6	1.0	$88^{A}, 99^{A}, 89^{A}$
		150 µg	96	10	1.0	103^{A} , 100^{A} , 85^{A}
		50.0 μg	95	13	1.0	99^{A} , 105^{A} , 80^{A}
	Water	100 μL	92	3		94 ^A , 88 ^A , 93 ^A
TA1535	PFECA G	5000 μg	17	5	1.5	21 ^A , 12 ^A , 19 ^A
		1500 μg	19	2	1.7	$19^{A}, 20^{A}, 17^{A}$
		500 μg	17	5	1.5	14^{A} , 14^{A} , 22^{A}
		150 µg	14	7	1.3	17^{A} , 19^{A} , 6^{A}
		50.0 μg	13	3	1.2	17 ^A , 11 ^A , 12 ^A
	Water	100 μL	11	6		6^{A} , 10^{A} , 17^{A}
TA1537	PFECA G	5000 μg	10	4	0.8	$11^{A}, 6^{A}, 14^{A}$
		1500 μg	11	3	0.8	14^{A} , 10^{A} , 9^{A}
		500 μg	12	3	0.9	10^{A} , 10^{A} , 15^{A}
		150 µg	9	2	0.7	$10^{A}, 6^{A}, 10^{A}$
		50.0 μg	11	4	0.8	15 ^A , 11 ^A , 7 ^A
	Water	100 μL	13	2		15^{A} , 12^{A} , 12^{A}
WP2uvrA	PFECA G	5000 μg	33	4	1.1	$30^{A}, 33^{A}, 37^{A}$
		1500 μg	32	4	1.0	$30^{A}, 30^{A}, 37^{A}$
		500 μg	32	1	1.0	$31^{A}, 32^{A}, 33^{A}$
		150 μg	30	3	1.0	$27^{A}, 30^{A}, 32^{A}$
		50.0 μg	29	5	0.9	35 ^A , 28 ^A , 25 ^A
	Water	100 μL	31	4		$33^{A}, 33^{A}, 26^{A}$

A: Automatic count

TABLE 3 (CONT.) Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PJ.503.BTL Study Code: AF28PJ Date Plated: 6/13/2018 Experiment: B2 Exposure Method: Plate incorporation assay Evaluation Period: 6/18/2018

r	<u></u> -						
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
TA98	2NF	1.00 µg	82	12	3.7	69 ^A , 85 ^A , 92 ^A	
TA100	SA	1.00 µg	498	11	5.4	$490^{A}, 493^{A}, 510^{A}$	
TA1535	SA	1.00 µg	<i>768</i>	44	69.8	724^{A} , 768^{A} , 812^{A}	
TA1537	9AAD	75.0 μg	727	56	55.9	755^{A} , 763^{A} , 662^{A}	
WP2uvrA	MMS	1000 μg	516	38	16.6	508 ^A , 483 ^A , 557 ^A	

Key to Positive Controls

2NF 2-nitrofluorene SA sodium azide 9AAD 9-Aminoacridine MMS

methyl methanesulfonate

A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PJ.503.BTL Experiment: B2 Exposure Method: Plate incorporation assay Study Code: AF28PJ Date Plated: 6/13/2018 Evaluation Period: 6/18/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	PFECA G	5000 μg	28	5	1.0	22 ^A , 31 ^A , 31 ^A
1 A 9 o	FFECA G	3000 μg 1500 μg	31	<i>7</i>	1.0 1.1	37 ^A , 31 ^A , 24 ^A
		1300 μg 500 μg	31	3	1.1 1.1	33 ^A , 33 ^A , 27 ^A
		150 μg	36	5	1.3	36 ^A , 31 ^A , 41 ^A
		50.0 μg	39	8	1.4	33 ^A , 48 ^A , 36 ^A
	Water	100 μL	27	5	1.7	22 ^A , 28 ^A , 32 ^A
TA100	PFECA G	5000 μg	122	3	1.1	121 ^A , 119 ^A , 125 ^A
111100	TILETT	1500 μg	110	15	1.0	93 ^A , 113 ^A , 123 ^A
		500 μg	125	8	1.1	116 ^A , 130 ^A , 130 ^A
		150 µg	119	9	1.0	111 ^A , 128 ^A , 118 ^A
		50.0 μg	106	4	0.9	104^{A} , 110^{A} , 103^{A}
	Water	100 μL	115	15		100^{A} , 129^{A} , 115^{A}
TA1535	PFECA G	5000 μg	12	2	1.0	12 ^A , 14 ^A , 11 ^A
		1500 μg	13	2	1.1	12 ^A , 15 ^A , 11 ^A
		500 μg	15	4	1.3	17^{A} , 17^{A} , 10^{A}
		150 μg	14	2	1.2	16 ^A , 12 ^A , 14 ^A
		50.0 μg	11	2	0.9	$11^{A}, 12^{A}, 9^{A}$
	Water	100 μL	12	3		15 ^A , 10 ^A , 12 ^A
TA1537	PFECA G	5000 μg	16	4	1.1	19 ^A , 17 ^A , 12 ^A
		1500 μg	14	2	1.0	14^{A} , 15^{A} , 12^{A}
		500 μg	17	2	1.2	19^{A} , 16^{A} , 17^{A}
		150 µg	14	2	1.0	16^{A} , 15^{A} , 12^{A}
		50.0 μg	14	3	1.0	12^{A} , 12^{A} , 17^{A}
	Water	100 μL	14	4		17 ^A , 10 ^A , 14 ^A
WP2uvrA	PFECA G	5000 μg	37	5	1.1	42 ^A , 37 ^A , 32 ^A
		1500 μg	36	6	1.1	41^{A} , 36^{A} , 30^{A}
		500 μg	37	3	1.1	$35^{A}, 37^{A}, 40^{A}$
		150 µg	38	4	1.2	43 ^A , 36 ^A , 35 ^A
		50.0 μg	38	3	1.2	$41^{A}, 37^{A}, 35^{A}$
	Water	100 μL	33	6		32 ^A , 40 ^A , 28 ^A
TA98	2AA	1.00 µg	246	33	9.1	279 ^A , 244 ^A , 214 ^A
TA100	2AA	$2.00~\mu g$	680	19	5.9	$702^{A}, 672^{A}, 666^{A}$
TA1535	2AA	1.00 µg	83	16	6.9	84 ^A , 98 ^A , 67 ^A
TA1537	2AA	2.00 μg	72	9	5.1	62 ^A , 77 ^A , 78 ^A
WP2uvrA	2AA	15.0 μg	333	20	10.1	311 ^A , 338 ^A , 349 ^A

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

13	A PPI	ENDIX	I. Historical	l Control Data

Historical Negative and Positive Control Values 2016

revertants per plate

		Activation										
Strain	Control			None	е				Rat Liv	ver		
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL	
TA00	Neg	15	5	6	34	5-25	22	6	8	42	10-34	
TA98	Pos	198	174	36	1826		287	159	47	1916		
TA 100	Neg	90	12	60	146	66-114	94	14	63	181	66-122	
TA100	Pos	629	159	186	1383		620	294	192	3483		
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20	
1A1333	Pos	541	164	34	1082		150	122	27	1114		
TA1527	Neg	8	3	1	21	2-14	9	3	2	23	3-15	
TA1537	Pos	368	227	21	1791		91	90	17	951		
WP2 uvrA	Neg	24	7	7	44	10-38	27	7	8	51	13-41	
WFZ UVFA	Pos	336	119	25	876		300	111	41	1059		

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendment

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PJ.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

 Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add:

The doses will be 5000, 1500, 500, 150 and 50.0 µg per plate

Reason: To specify the dose levels to be used for the confirmatory mutagenicity assay based on the toxicity and precipitate profiles observed in the initial toxicity-mutation assay.

Page 1 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PJ.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT Sponsor Representative

Page 2 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PJ.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Emily Dakoulas, BS

BioReliance Study Director

BioReliance Study Management

Date

08- JUN-2018

Date

Protocol

Study Title Bacterial Reverse Mutation Assay

Study Director Emily Dakoulas, BS

Testing Facility BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number AF28PJ.503.BTL

1. KEY PERSONNEL

Sponsor Information: Sponsor

The Chemours Company 1007 Market Street D-3008

Wilmington, DE 19899

Sponsor Number C30049

Sponsor's Authorized

Representative

Shawn Gannon, Ph.D., DABT The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899 Phone: 302-773-1376

Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Study Director

Emily Dakoulas, BS BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality

Assurance Representative

Lulcayenwa (Lula) Aberra-Degu, RQAP-GLP

BioReliance Corporation Phone: 301-610-2667

Email: Luleayenwa.aberra-degu@sial.com

2. TEST SCHEDULE

Proposed Experimental Initiation Date 31-May-2018
Proposed Experimental Completion Date 27-June-2018

Proposed Report Date 12-July-2018

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

• US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

Release Date: 23Apr2018 Page 2 of 13 503.BTL

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. QUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed QA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator, Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director. Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 uvrA in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification PFECA G
CAS No. 801212-59-9

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

Purity 99% (no correction factor will be used for dose formulations)

Molecular Weight 380.06 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below; unless the test substance is used on another study.

Alex Petlick The Chemours Company 200 Powder Mill Rd Experimental Station E402/5317

Wilmington, DE 19803 Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be discarded after use.

7. TEST SYSTEM

The tester strains will include the S. typhimurium histidine auxotrophs TA98. TA100, TA1535 and TA1537 as described by Ames et al. (1975) and the E. coli tester strain WP2 uvrA as described by Green and Muriel (1976). The genotypes of strains are as follows:

Hi	stidine Mutatio	n	Tryptophan Mutation	Ad	ditional Mu	tations
hisG46	hisC3076	hisD3052	trpE	LPS	Repair	R-factor
TA1535	TA1537	-	-	rfa	ΔuvrB	-
TA100	-	TA98	-	rfa	$\Delta uvrB$	+R
_	-	_	WP2 uvrA	-	$\Delta uvrA$	-

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California. Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria. Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

Release Date: 23Apr2018 Page 4 of 13 503.BTL

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acctone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/mL for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test substance, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellet(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}$ C.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from incubation at a density of approximately 10^9 cells/ml..

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dose level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MolTox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018 Page 5 of 13 503.BTL

100 mM phosphate buffer at pH 7.4

S9 Mix

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
B-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test substance.

Strain	Positive Control	S9	Concentrations (µg/plate)
Salmonella strains	2-aminoanthracene ^B	+	1.0 - 2.0
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20
ΤΛ98	2-nitrofluorene ^B	_	1.0
TA100, TA1535	sodium azide ^A	-	1.0
TA1537	9-aminoacridine ^B	_	75
WP2 uvrA	methyl methanesulfonate ^B	_	1,000

APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

503.BTL

^BPrepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least eight concentrations of test substance, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 µg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 µg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 µg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test substance, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will be at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, 100 μ L of tester strain and 50.0 μ L of vehicle, test substance dilution or positive control will be added to 2.0 mL of molten selective top agar at 45±2°C. When necessary, aliquots of other than 50.0 μ L of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test substance, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at 37±2°C. Plates that are not counted immediately following the incubation period will be stored at 2-8°C.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018 Page 7 of 13 503.BTL

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *uvrB* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *uvrA* mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

	95% Control Limits (99% Upper Limit)							
	TA98	TA100	TA1535	TA1537	WP2 uvrA			
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)			
+89	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)			
With	With Study Director justification, values including the 99% control limit and							
above	are acceptable							

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicity

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018

Page 8 of 13

503.BTL

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that less than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but lacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not be limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kave Lah Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

12. REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- · Test substance
- Vehiele
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- Test conditions
- Results
- · Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- Copy of the protocol and any amendment
- Contributing reports (if applicable)
- Information about the analyses that characterized the test substance, its stability and the stability and strength of the dosing preparations, if provided by the Sponsor
- Statement of Compliance
- Quality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames, B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muriel, W.J. (1976). Mutagen testing using trp⁺ reversion in *Escherichia coli*. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the Salmonella Mutagenicity Test. Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

Version No. 3

Release Date: 23Apr2018 Page 11 of 13 503.BTL

8 May 2018 Date

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT Sponsor Representative

Version No. 3

Release Date: 23Apr2018

Page 12 of 13

503.BTL

Study Director and Test Facility Management Approvals

Bio Reliance Study Management

24 - MAY-18
Date

Version No. 3 Release Date: 23Apr2018

Page 13 of 13

503.BTL

15.	APPENDIX III: Common Technical Document Tables

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

Cytotoxic Effects: None Genotoxic Effects: None

No. of Independent Assays: 2

No. of Replicate Cultures: 2 (B1)

and 3 (B2)

Test Substance: PFECA G Study No.: AF28PJ.503.BTL

No. Cells Analyzed/Culture: 1.1 to 3.1 x 10⁸ cells per

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 31 May 2018 (B1) and

13 June 2018 (B2)

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B1: Initial Toxicity-Mutation Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	12 ± 8	73 ± 1	11 ± 4	7 ± 1	30 ± 6
Activation	PFECA G	1.50	16 ± 4	92 ± 5	12 ± 1	7 ± 2	35 ± 7
		5.00	15 ± 1	74 ± 13	7 ± 1	8 ± 1	41 ± 8
		15.0	14 ± 6	74 ± 8	14 ± 0	7 ± 3	39 ± 0
		50.0	12 ± 1	81 ± 1	14 ± 4	8 ± 4	41 ± 11
		150	13 ± 2	86 ± 8	9 ± 3	5 ± 0	34 ± 1
		500	13 ± 2	86 ± 6	19 ± 12	10 ± 1	30 ± 4
		1500	10 ± 4	87 ± 4	14 ± 4	7 ± 5	28 ± 6
		5000	9 ± 1	84 ± 5	11 ± 6	7 ± 1	17 ± 2
	2NF	1.00	85 ± 18				
	SA	1.00		756 ± 55	679 ± 33		
	9AAD	75.0				362 ± 156	
	MMS	1000					513 ± 43
With	Water	100 μL/plate	26 ± 6	91 ± 4	10 ± 1	7 ± 1	34 ± 12
Activation	PFECA G	1.50	18 ± 1	95 ± 6	9 ± 2	6 ± 4	41 ± 4
		5.00	19 ± 7	87 ± 9	14 ± 4	3 ± 3	34 ± 1
		15.0	20 ± 4	84 ± 23	12 ± 1	10 ± 4	30 ± 7
		50.0	22 ± 1	103 ± 6	9 ± 0	7 ± 6	33 ± 1
		150	17 ± 0	97 ± 20	12 ± 6	12 ± 4	38 ± 7
		500	24 ± 2	97 ± 5	12 ± 4	8 ± 4	29 ± 6
		1500	26 ± 13	107 ± 11	14 ± 1	8 ± 4	29 ± 2
		5000	19 ± 3	117 ± 27	14 ± 4	7 ± 1	34 ± 2
	2AA	1.00	234 ± 23		90 ± 11		
	2AA	2.00		709 ± 320		53 ± 16	
	2AA	15.0					286 ± 19

Key to Positive Controls

SA sodium azide
2AA 2-aminoanthracene
9AAD 9-Aminoacridine
2NF 2-nitrofluorene

MMS methyl methanesulfonate

BioReliance Study No. AF28PJ.503.BTL

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B2: Confirmatory Mutagenicity Assay)					
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA	
Without	Water	100 μL/plate	22 ± 3	92 ± 3	11 ± 6	13 ± 2	31 ± 4	
Activation	PFECA G	50.0	20 ± 4	95 ± 13	13 ± 3	11 ± 4	29 ± 5	
		150	20 ± 4	96 ± 10	14 ± 7	9 ± 2	30 ± 3	
		500	28 ± 2	92 ± 6	17 ± 5	12 ± 3	32 ± 1	
		1500	34 ± 8	98 ± 11	19 ± 2	11 ± 3	32 ± 4	
		5000	24 ± 2	99 ± 15	17 ± 5	10 ± 4	33 ± 4	
	2NF	1.00	82 ± 12					
	SA	1.00		498 ± 11	768 ± 44			
	9AAD	75.0				727 ± 56		
	MMS	1000					516 ± 38	
With	Water	100 μL/plate	27 ± 5	115 ± 15	12 ± 3	14 ± 4	33 ± 6	
Activation	PFECA G	50.0	39 ± 8	106 ± 4	11 ± 2	14 ± 3	38 ± 3	
		150	36 ± 5	119 ± 9	14 ± 2	14 ± 2	38 ± 4	
		500	31 ± 3	125 ± 8	15 ± 4	17 ± 2	37 ± 3	
		1500	31 ± 7	110 ± 15	13 ± 2	14 ± 2	36 ± 6	
		5000	28 ± 5	122 ± 3	12 ± 2	16 ± 4	37 ± 5	
	2AA	1.00	246 ± 33		83 ± 16			
	2AA	2.00		680 ± 19		72 ± 9		
	2AA	15.0					333 ± 20	

Key to Positive Controls

SA sodium azide
2AA 2-aminoanthracene
9AAD 9-Aminoacridine
2NF 2-nitrofluorene

MMS methyl methanesulfonate

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

Sodium salt of Hydrolyzed TAF n=4

Author

Emily Dakoulas, BS

Study Completion Date

22 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PK.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 49

1. STATEMENT OF COMPLIANCE

Study No. AF28PK.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

Emily Dakoulas, BS

Study Director

2. QUALITY ASSURANCE STATEMENT

Quality Assurance Statement

Study Information

Number: AF28PK.503.BTL

Compliance

Procedures, documentation, equipment and other records were examined in order to assure this study was performed in accordance with the regulation(s) listed below and conducted according to the protocol and relevant Standard Operating Procedures. Verification of the study protocol was performed and documented by Quality Assurance.

US EPA Good Laboratory Standards 40CFR 792

Inspections

Quality Assurance performed the inspections(s) below for this study.

nsp. Dates (From/To) Phase Inspected	To Study Director To Management
--------------------------------------	---------------------------------

20-Jun-2018	20-Jun-2018	Scoring	20-Jun-2018	20-Jun-2018
20-Jun-2018	27-Jun-2018	Protocol Review	28-Jun-2018	28-Jun-2018
09-Jul-2018	09-Jul-2018	Data/Draft Report	09-Jul-2018	09-Jul-2018
17-Aug-2018	17-Aug-2018	Final Report	17-Aug-2018	17-Aug-2018
17-Aug-2018	17-Aug-2018	Protocol Amendment Review	17-Aug-2018	17-Aug-2018

The Final Report for this study describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

For a multisite study, test site QA Statements are located in the corresponding contributing scientist report.

E-signature

Quality Assurance: Jeannie Eberle 21-Aug-2018 5:34 pm GMT

Reason for signature: QA Approval

Printed by:Jeannie Eberle Printed on:21-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	17
11.	REFERENCES	18
12.	DATA TABLES	19
13.	APPENDIX I: Historical Control Data	27
14.	APPENDIX II: Study Protocol and Amendment	29
15	APPENDIX III: Common Technical Document Tables	46

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study No.: AF28PK.503.BTL

Sponsor No.: C30049

Test Substance

Identification: Sodium salt of Hydrolyzed TAF n=4

CAS No.: 39492-91-6

Purity: 99% (per protocol)

Molecular Weight: 466.04 g/mol

Description: Off-white solid

Storage Conditions: Room temperature, protected from light

Receipt Date: 02 May 2018

Study Dates

Study Initiation Date: 30 May 2018

Experimental Starting Date (first day of

data collection): 30 May 2018

Experimental Start Date (first day test

substance administered to test system): 01 June 2018

Experimental Completion Date: 20 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, Sodium salt of Hydrolyzed TAF n=4, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 µg per plate. No precipitate was observed. Toxicity was observed at 5000 µg per plate with tester strains TA100 and TA1535 in the presence and absence of S9 activation. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 µg per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 15.0, 50.0, 150, 500, 1500 and 5000 µg per plate. No precipitate was observed. Toxicity was observed at 5000 µg per plate with tester strains TA100 and TA1535 in the presence and absence of S9 activation. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate Sodium salt of Hydrolyzed TAF n=4 was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendment are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver Sodium salt of Hydrolyzed TAF n=4 to the test system was water.

Vehicle	CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7732-18-5	Sigma-Aldrich	RNBF9658	Sterile- filtered	Mar 2019

To achieve a solution, the most concentrated dilution was sonicated at 20.9 to 33.8°C for 2 minutes in each assay. Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain	S9 Activation	Positive Control	Concentration (µg/plate)
TA98, TA1535		2-aminoanthracene	1.0
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	
WP2 uvrA	Rat	Lot No. STBD3302V Exp. Date 30-Nov-2019 CAS No. 613-13-8 Purity 97.5%	15
TA98		2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.) Lot No. S43858V Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%	1.0
TA100, TA1535	None	sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	1.0
TA1537		9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Lot No. BCBK1177V Exp. Date 31-Mar-2019 CAS No. 52417-22-8 Purity 99.5%	75
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}\text{C}$ for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^9 cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020; Lot No. 3961, Exp. Date: 15 May 2020) was purchased

commercially from MolTox (Boone, NC). Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration		
β-nicotinamide-adenine dinucleotide phosphate	4 mM		
Glucose-6-phosphate	5 mM		
Potassium chloride	33 mM		
Magnesium chloride	8 mM		
Phosphate Buffer (pH 7.4)	100 mM		
S9 homogenate	10% (v/v)		

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983).

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and six dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

	Medium					
Component	Minimal top agar	Minimal	Nutrient	Nutrient		
Component	willilliai top agai	bottom agar	bottom agar	broth		
		Concentration in Medium				
BBL Select agar (W/V)	0.8% (W/V)					
Vogel-Bonner minimal medium E		1.5% (W/V)	1.5% (W/V)			
Sodium chloride	0.5% (W/V)					
L-histidine, D-biotin and	50 mM each					
L-tryptophan solution	30 milyi cacii					
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)					
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)		
Vogel-Bonner salt solution				Supplied at 20 mL/L		

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for $48 \text{ to } 72 \text{ hours at } 37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics			
1 or no code	Normal	Distinguished by a healthy microcolony lawn.			
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.			
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn resulting in a pronounced increase in the size of the microcolonies compared to the vehicle control plate.			
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.			
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.			
6	Obscured by Particulate	The background bacterial lawn cannot be accurately evaluated due to microscopic test substance particulate.			
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).			
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.			

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers.

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

	95% Control Limits (99% Upper Limit)						
	TA98 TA100 TA1535 TA1537 WP2 <i>uvr</i> A						
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)		
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)		
W'.1 C(1 D') ' 'C' (' 1 1 1 1 1 000/) 11' ' 1							

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel 2007 (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

No deviations from the protocol or assay-method SOPs occurred during the conduct of this study.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

	Tester Strain						
Experiment	TA98	TA100	TA1535	TA1537	WP2 uvrA		
	Titer Value (x 10 ⁹ cells per mL)						
B1	1.2	1.2 1.1 1.5 1.6 2.8					
B2	1.3	1.0	1.3	1.0	2.7		

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

No precipitate was observed. Toxicity was observed at 5000 µg per plate with tester strains TA100 and TA1535 in the presence and absence of S9 activation.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and $\underline{4}$. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate.

No precipitate was observed. Toxicity was observed at 5000 µg per plate with tester strains TA100 and TA1535 in the presence and absence of S9 activation. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Sodium salt of Hydrolyzed TAF n=4 did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella Mutagenicity Test*, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PK.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PK

Date Plated: 6/1/2018

Evaluation Period: 6/5/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of Hydrolyzed TAF n=4	5000 μg	11	4	0.8	13 ^A , 8 ^A
		1500 μg	15	2	1.1	$13^{A}, 16^{A}$
		500 μg	14	6	1.0	$18^{A}, 10^{A}$
		150 µg	15	5	1.1	$18^{A}, 11^{A}$
		50.0 μg	14	5	1.0	$10^{A}, 17^{A}$
		15.0 μg	17	1	1.2	$16^{A}, 18^{A}$
		5.00 μg	17	0	1.2	17 ^A , 17 ^A
		1.50 µg	12	6	0.9	$16^{A}, 7^{A}$
	Water	100 μL	14	6		$18^{A}, 10^{A}$
	Sodium salt of					
TA100	Hydrolyzed TAF n=4	5000 μg	73	15	0.9	$83^{A} 3, 62^{A} 3$
	17M H 4	1500 μg	72	23	0.9	$88^{A}, 56^{A}$
		500 μg	85	16	1.0	74 ^A , 96 ^A
		150 μg	86	4	1.0	83 ^A , 89 ^A
		50.0 μg	94	10	1.1	101 ^A , 87 ^A
		15.0 μg	79	18	0.9	92 ^A , 66 ^A
		5.00 μg	87	11	1.0	79 ^A , 95 ^A
		1.50 µg	84	0	1.0	84 ^A , 84 ^A
	Water	100 μL	84	11		$76^{A}, 92^{A}$
TA1535	Sodium salt of Hydrolyzed	5000 μg	7	0	0.5	7 ^A 3, 7 ^A 3
	TAF n=4	. 0				•
		1500 μg	8	0	0.6	$8^{A}, 8^{A}$
		500 μg	15	0	1.1	$15^{A}, 15^{A}$
		150 μg	11	1	0.8	$11^{A}, 10^{A}$
		50.0 μg	10	0	0.7	$10^{A}, 10^{A}$
		15.0 μg	9	1	0.6	$8^{A}, 10^{A}$
		5.00 μg	8	1	0.6	$7^{A}, 9^{A}$
		1.50 µg	15	1	1.1	15^{A} , 14^{A}
	Water	100 μL	14	4		16^{A} , 11^{A}

Key to Plate Postfix Codes

3 Moderately reduced background

Key to Automatic Count Flags

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PK.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PK

Date Plated: 6/1/2018

Evaluation Period: 6/5/2018

DAPOSUIC IVICE	nou. I fate incorpor	ation assay		L'valuation i	C110a. 0/3/	2010
Strain Substance		Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
	Sodium salt of					
TA1537	Hydrolyzed TAF n=4	5000 μg	7	1	1.0	$8^{A} 2, 6^{A} 2$
		1500 μg	6	0	0.9	$6^{A}, 6^{A}$
		500 μg	11	6	1.6	$7^{A}, 15^{A}$
		150 μg	7	2	1.0	8 ^A , 5 ^A
		50.0 μg	6	4	0.9	$3^{A}, 9^{A}$
		15.0 μg	6	$\overset{\tau}{0}$	0.9	6 ^A 6 ^A
		5.00 μg	9	1	1.3	6 ^A , 6 ^A 8 ^A , 9 ^A
			7	3	1.3 1.0	5 ^A , 9 ^A
	13 7 - 4	1.50 μg			1.0	3,9 6A 9A
	Water	100 μL	7	1		6 ^A , 8 ^A
	Sodium salt of					
WP2uvrA	Hydrolyzed	5000 μg	17	8	0.5	$11^{A}, 22^{A}$
	TAF n=4	, 0				
		1500 μg	23	5	0.7	$26^{A}, 19^{A}$
		500 μg	29	6	0.9	24 ^A , 33 ^A
		150 µg	30	6	0.9	25 ^A , 34 ^A
		50.0 μg	36	4	1.1	39 ^A , 33 ^A
		15.0 μg	29	5	0.9	32 ^A , 25 ^A
		5.00 μg	21	4	0.6	24 ^A , 18 ^A
		1.50 μg	33	1	1.0	32 ^A , 34 ^A
	Water	1.50 μg 100 μL	34	4	1.0	36 ^A , 31 ^A
TA98	2NF	1.00 µg	71	4	5.1	73 ^A , 68 ^A
TA100	SA	1.00 µg	701	46	8.3	668 ^A , 733 ^A
TA1535	SA	1.00 µg	679	11	48.5	671 ^A , 687 ^A
TA1537	9AAD	75.0 μg	591	56	84.4	630 ^A , 551 ^A
WP2uvrA	MMS	1000 μg	419	8	12.3	413 ^A , 425 ^A

Key to Positive Controls		Key to	Plate Postfix Codes
2NF SA	2-nitrofluorene sodium azide	2	Slightly reduced background

9AAD 9-Aminoacridine MMS methyl methanesulfonate

A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PK.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PK

Date Plated: 6/1/2018

Evaluation Period: 6/5/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of Hydrolyzed TAF n=4	5000 μg	20	9	1.0	26 ^A , 13 ^A
		1500 μg	20	3	1.0	22^{A} , 18^{A}
		500 μg	25	9	1.3	$31^{A}, 18^{A}$
		150 μg	21	4	1.1	$24^{A}, 18^{A}$
		50.0 μg	23	6	1.2	$19^{A}, 27^{A}$
		15.0 μg	16	1	0.8	15 ^A , 17 ^A
		5.00 μg	21	2	1.1	22 ^A , 19 ^A
		1.50 µg	26	1	1.3	$25^{A}, 26^{A}$
	Water	100 μL	20	4		25 ^A , 26 ^A 17 ^A , 22 ^A
	Sodium salt of	·				
TA100	Hydrolyzed TAF n=4	5000 μg	94	7	0.9	89 ^A 3, 99 ^A 3
		1500 μg	112	17	1.1	124^{A} , 100^{A}
		500 μg	119	2	1.2	117 ^A , 120 ^A
		150 µg	122	2	1.2	123 ^A , 120 ^A
		50.0 μg	96	6	1.0	$100^{A}, 91^{A}$
		15.0 μg	99	9	1.0	$105^{A}, 92^{A}$
		5.00 μg	119	8	1.2	113 ^A , 124 ^A
		1.50 µg	105	20	1.1	91 ^A , 119 ^A
	Water	100 μL	99	1		98 ^A , 99 ^A
TA1535	Sodium salt of Hydrolyzed TAF n=4	5000 μg	7	2	0.5	5 ^A 3, 8 ^A 3
		1500 μg	13	0	0.9	13 ^A , 13 ^A
		500 μg	15	2	1.1	13 ^A , 16 ^A
		150 µg	9	1	0.6	10 ^A , 8 ^A
		50.0 μg	13	2	0.9	11 ^A , 14 ^A
		15.0 μg	16	2	1.1	17 ^A , 14 ^A
		5.00 μg	16	4	1.1	18 ^A , 13 ^A
		1.50 µg	19	7	1.4	18 ^A , 13 ^A 24 ^A , 14 ^A 13 ^A , 15 ^A
	Water	100 μL	14	1		13 ^A , 15 ^A

Key to Plate Postfix Codes

3 Moderately reduced background

A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PK.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PK

Date Plated: 6/1/2018

Evaluation Period: 6/5/2018

Exposure Method. I fate incorporation assay			2010			
Strain	train Substance Dose level per plate		Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
	Sodium salt of					
TA1537	Hydrolyzed TAF n=4	5000 μg	8	1	0.9	8 ^A , 7 ^A
		1500 μg	8	4	0.9	$5^{A}, 10^{A}$
		500 μg	11	3	1.2	13 ^A , 9 ^A
			7	1	0.8	6 ^A , 7 ^A
		150 μg				0 , / cA oA
		50.0 μg	7	1	0.8	6 ^A , 8 ^A 5 ^A , 8 ^A
		15.0 μg	7	2	0.8	51,81
		5.00 μg	10	4	1.1	13 ^A , 7 ^A
		1.50 μg	6	6	0.7	2^{A} , 10^{A}
	Water	100 μL	9	0		2 ^A , 10 ^A 9 ^A , 9 ^A
	Sodium salt of					
WP2uvrA	Hydrolyzed	5000 μg	28	7	0.8	$23^{A}, 33^{A}$
WIZUVIA	TAF n=4	3000 μg	20	/	0.0	25,55
	1 AF 11-4	1500 ug	23	12	0.6	31 ^A , 14 ^A
		1500 μg				
		500 μg	31	8	0.9	25 ^A , 36 ^A
		150 μg	40	0	1.1	$40^{A}, 40^{A}$
		50.0 μg	31	6	0.9	$35^{A}, 26^{A}$
		15.0 μg	32	15	0.9	$42^{A}, 21^{A}$
		5.00 μg	35	6	1.0	$39^{A}, 30^{A}$
		1.50 µg	35	8	1.0	$40^{A}, 29^{A}$
	Water	100 μL	36	3		$34^{A}, 38^{A}$
TA98	2AA	1.00 µg	232	9	11.6	225 ^A , 238 ^A
TA100	2AA	2.00 μg	949	40	9.6	$920^{A}, 977^{A}$
TA1535	2AA	1.00 μg	69	3	4.9	$67^{A}, 71^{A}$
TA1537	2AA	2.00 μg	36	8	4.0	$30^{A}, 42^{A}$
WP2uvrA	2AA	15.0 μg	287	17	8.0	299 ^A , 275 ^A

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PK.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PK

Date Plated: 6/14/2018

Evaluation Period: 6/20/2018

Strain	Substance	Dose level	Mean revertants	Standard	Ratio treated /	Individual revertant colony counts and
Suam	Substance	per plate		Deviation	solvent	background codes
			per plate		Solvelli	background codes
	Sodium salt of					
TA98	Hydrolyzed	5000 μg	13	5	0.8	17^{A} , 15^{A} , 8^{A}
	TAF n=4	10				, ,
		1500 μg	16	2	1.0	17^{A} , 14^{A} , 16^{A}
		500 μg	18	4	1.1	15^{A} , 17^{A} , 23^{A}
		150 µg	19	7	1.2	27 ^A , 15 ^A , 14 ^A
		50.0 μg	15	4	0.9	19 ^A , 15 ^A , 11 ^A 13 ^A , 23 ^A , 15 ^A
		15.0 μg	17	5	1.1	$13^{A}, 23^{A}, 15^{A}$
	Water	100 μL	16	2		18^{A} , 15^{A} , 16^{A}
	Sodium salt of					
TA100	Hydrolyzed TAF n=4	5000 μg	69	13	0.8	$73^{A} 3, 80^{A} 3, 54^{A} 3$
		1500 μg	88	4	1.0	$84^{A}, 88^{A}, 91^{A}$
		500 μg	87	16	1.0	97 ^A , 68 ^A , 96 ^A
		150 µg	82	9	0.9	91 ^A , 74 ^A , 81 ^A
		50.0 μg	89	3	1.0	89 ^A , 87 ^A , 92 ^A
		15.0 μg	89	13	1.0	80 ^A , 103 ^A , 83 ^A
	Water	100 μL	89	6		$83^{A}, 95^{A}, 90^{A}$
	Sodium salt of					
TA1535	Hydrolyzed TAF n=4	5000 μg	12	3	1.1	14 ^A 3, 9 ^A 3, 14 ^A 3
		1500 μg	13	2	1.2	14^{A} , 11^{A} , 14^{A}
		500 μg	8	1	0.7	$8^{A}, 9^{A}, 8^{A}$
		150 µg	9	1	0.8	$10^{A}, 10^{A}, 8^{A}$
		50.0 μg	14	3	1.3	10^{A} , 15^{A} , 16^{A}
		15.0 μg	9	5	0.8	8^{A} , 5^{A} , 14^{A}
	Water	100 μL	11	6		6^{A} , 10^{A} , 17^{A}
	Sodium salt of					
TA1537	Hydrolyzed TAF n=4	5000 μg	8	3	1.1	7^{A} 2, 11^{A} 2, 6^{A} 2
		1500 μg	6	1	0.9	$6^{A}, 6^{A}, 5^{A}$
		500 μg	6	2	0.9	$8^{A}, 6^{A}, 5^{A}$
		150 μg	8	4	1.1	$10^{A}, 3^{A}, 11^{A}$
		50.0 μg	6	1	0.9	7 ^A , 5 ^A , 5 ^A 6 ^A , 7 ^A , 1 ^A
		15.0 μg	5	3	0.7	$6^{A}, 7^{A}, 1^{A}$
	Water	100 μL	7	2		6^{A} , 10^{A} , 6^{A}

	Key	to Plate Postfix Codes
	3	Moderately reduced background
	2	Slightly reduced background
Very to Automotic Count Flogs		

^A: Automatic count

TABLE 3 (CONT.) Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PK.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PK

Date Plated: 6/14/2018

Evaluation Period: 6/20/2018

Bill ober 1110	nous race meorpor	2.0000001101100000000000000000000000000					
Strain	Substance	Substance Dose level per plate		Mean revertants per plate Standard Deviation		Individual revertant colony counts and background codes	
WP2uvrA	Sodium salt of Hydrolyzed TAF n=4	5000 μg	19	6	0.6	25 ^A , 13 ^A , 18 ^A	
		1500 μg	30	2	1.0	$32^{A}, 30^{A}, 29^{A}$	
		500 μg	36	3	1.2	$39^{A}, 35^{A}, 33^{A}$	
		150 μg	32	8	1.0	$39^{A}, 24^{A}, 33^{A}$	
		50.0 μg	32	9	1.0	$34^{A}, 39^{A}, 22^{A}$	
		15.0 µg	35	2	1.1	$35^{A}, 36^{A}, 33^{A}$	
	Water	100 μL	31	3		$34^{A}, 30^{A}, 29^{A}$	
TA98	2NF	1.00 µg	84	18	5.3	99 ^A , 64 ^A , 88 ^A	
TA100	SA	1.00 µg	717	39	8.1	727^{A} , 674^{A} , 750^{A}	
TA1535	SA	1.00 µg	721	23	65.5	694 ^A , 732 ^A , 736 ^A	
TA1537	9AAD	75.0 μg	834	174	119.1	1035^{A} , 749^{A} , 719^{A}	
WP2uvrA	MMS	1000 μg	503	15	16.2	507 ^A , 486 ^A , 516 ^A	

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PK.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PK

Date Plated: 6/14/2018

Evaluation Period: 6/20/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of Hydrolyzed TAF n=4	5000 μg	16	3	0.6	19 ^A , 14 ^A , 16 ^A
		1500 μg	25	3	1.0	$27^{A}, 25^{A}, 22^{A}$
		500 μg	25	2	1.0	$23^{A}, 27^{A}, 25^{A}$
		150 µg	22	9	0.9	32 ^A , 21 ^A , 14 ^A
		50.0 μg	28	4	1.1	$31^{A}, 23^{A}, 30^{A}$
		15.0 μg	21	4	0.8	$18^{A}, 25^{A}, 21^{A}$
	Water	100 μL	25	8		22^{A} , 18^{A} , 34^{A}
TA100	Sodium salt of Hydrolyzed TAF n=4	5000 μg	93	13	1.0	105 ^A 3, 96 ^A 3, 79 ^A 3
		1500 μg	114	11	1.2	127 ^A , 107 ^A , 109 ^A
		500 μg	106	8	1.1	107 ^A , 113 ^A , 97 ^A
		150 µg	107	7	1.1	101^{A} , 106^{A} , 115^{A}
		50.0 μg	91	11	0.9	$103^{A}, 88^{A}, 82^{A}$
		15.0 μg	102	8	1.1	105^{A} , 108^{A} , 93^{A}
	Water	100 μL	97	9		104^{A} , 100^{A} , 86^{A}
TA1535	Sodium salt of Hydrolyzed TAF n=4	5000 μg	11	4	0.9	8 ^A 3, 15 ^A 3, 11 ^A 3
		1500 μg	14	5	1.2	$16^{A}, 17^{A}, 8^{A}$
		500 μg	9	2	0.8	$7^{A}, 9^{A}, 11^{A}$
		150 µg	12	6	1.0	6 ^A , 15 ^A , 16 ^A
		50.0 μg	11	0	0.9	$11^{\text{A}}, 11^{\text{A}}, 11^{\text{A}}$
		15.0 μg	15	7	1.3	21 ^A , 7 ^A , 16 ^A
	Water	100 μL	12	3		11 ^A , 10 ^A , 16 ^A
	G 11 1 4					
TA1537	Sodium salt of Hydrolyzed TAF n=4	5000 μg	11	5	1.0	15 ^A , 6 ^A , 13 ^A
		1500 μg	10	4	0.9	7^{A} , 15^{A} , 9^{A}
		500 μg	8	2	0.7	$8^{A}, 7^{A}, 10^{A}$
		150 µg	6	2	0.5	$8^{A}, 6^{A}, 5^{A}$
		50.0 μg	8	2	0.7	$7^{A}, 10^{A}, 7^{A}$
		15.0 μg	10	1	0.9	9 ^A , 9 ^A , 11 ^A
	Water	100 μL	11	3		14 ^A , 11 ^A , 9 ^A

Key to Plate Postfix Codes

3 Moderately reduced background

A: Automatic count

TABLE 4 (CONT.) Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PK.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PK

Date Plated: 6/14/2018

Evaluation Period: 6/20/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
WP2uvrA	Sodium salt of Hydrolyzed TAF n=4	5000 μg	30	5	0.9	35 ^A , 29 ^A , 25 ^A
		1500 μg	30	0	0.9	$30^{A}, 30^{A}, 30^{A}$
		500 μg	30	5	0.9	$35^{A}, 31^{A}, 25^{A}$
		150 μg	33	1	1.0	$34^{A}, 34^{A}, 32^{A}$
		50.0 μg	26	4	0.8	$24^{A}, 24^{A}, 31^{A}$
		15.0 μg	38	3	1.2	$35^{A}, 40^{A}, 38^{A}$
	Water	100 μL	33	2		34 ^A , 31 ^A , 34 ^A
TA98	2AA	1.00 μg	228	20	9.1	205 ^A , 241 ^A , 237 ^A
TA100	2AA	2.00 μg	827	43	8.5	797 ^A , 808 ^A , 876 ^A
TA1535	2AA	1.00 μg	98	16	8.2	117 ^A , 91 ^A , 87 ^A
TA1537	2AA	2.00 μg	47	2	4.3	$46^{A}, 46^{A}, 50^{A}$
WP2uvrA	2AA	15.0 μg	380	4	11.5	384 ^A , 376 ^A , 381 ^A

Key to Positive Controls

2AA 2-aminoanthracene

Automatic count

13	A PI	PEND	IX I. I	Historica	l Control	Data

Historical Negative and Positive Control Values 2016

revertants per plate

			Activation										
Strain	Control	None							Rat Li	ver			
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL		
TA00	Neg	15	5	6	34	5-25	22	6	8	42	10-34		
TA98	Pos	198	174	36	1826		287	159	47	1916			
TA100	Neg	90	12	60	146	66-114	94	14	63	181	66-122		
1A100	Pos	629	159	186	1383		620	294	192	3483			
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20		
1A1353	Pos	541	164	34	1082		150	122	27	1114			
TA1537	Neg	8	3	1	21	2-14	9	3	2	23	3-15		
1A1337	Pos	368	227	21	1791		91	90	17	951			
WP2 uvrA	Neg	24	7	7	44	10-38	27	7	8	51	13-41		
WFZ UVFA	Pos	336	119	25	876		300	111	41	1059			

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendment

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PK.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

 Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add:

The doses will be 5000, 1500, 500, 150, 50.0 and 15.0 μ g per plate.

Reason: To specify the dose levels to be used for the confirmatory mutagenicity assay based on the toxicity and precipitate profiles observed in the initial toxicity mutation assay.

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PK.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT

Sponsor Representative

Page 2 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PK.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Emily Dakoulas, BS Date

BioReliance Study Director

BioRehance Study Management Date

Protocol

Study Title Bacterial Reverse Mutation Assay

Study Director Emily Dakoulas, BS

Testing Facility BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number AF28PK.503.BTL

1. KEY PERSONNEL

Sponsor Information:

Sponsor The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number C30049

Sponsor's Authorized Representative

Shawn Gannon, Ph.D., DABT The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Phone: 302-773-1376 Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Study Director Emily Dakoulas, BS

BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality

Luleayenwa (Lula) Aberra-Degu, RQAP-GLP

Assurance Representative BioReliance Corporation

Phone: 301-610-2667

Email: Lulcayenwa.aberra-degu@sial.com

2. TEST SCHEDULE

Proposed Experimental Initiation Date 01-June-2018
Proposed Experimental Completion Date 28-June-2018
Proposed Report Date 13-July-2018

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

• US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture. Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

Release Date: 23Apr2018 Page 2 of 13 503.BTL

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. QUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed QA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator, Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director, Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification Sodium salt of Hydrolyzed TAF n=4

CAS No. 39492-91-6

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

Purity 99% (no correction factor will be used for dose formulations)

Molecular Weight 466.04 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below: unless the test substance is used on another study.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803
Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be discarded after use.

7. TEST SYSTEM

The tester strains will include the *S. typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames *et al.* (1975) and the *E. coli* tester strain WP2 *uvr*A as described by Green and Muriel (1976). The genotypes of strains are as follows:

His	Histidine Mutation			Additional Mutations		
hisG46	hisC3076	hisD3052	trpE	LPS	Repair	R-factor
TA1535	TA 1537	-	-	rfa	ΔuvrB	-
TA100	-	TA98	-	rfa	ΔuvrB	+R
-	-	-	WP2 uvrA	-	$\Delta uvrA$	-

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California, Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

Release Date: 23Apr2018

Page 4 of 13

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acetone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/mL for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test article, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellet(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at 37±2°C.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from incubation at a density of approximately 10^9 cells/mL.

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dosc level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MolTox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018

Page 5 of 13

100 mM phosphate buffer at pH 7.4

S9 Mix

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test article.

Strain	Positive Control	S9	Concentrations (µg/plate)	
Salmonella strains	2-aminoanthracene ^B	+	1.0 - 2.0	
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20	
TA98	2-nitrofluorene ^B	_	1.0	
TA100, TA1535	sodium azide ^A	_	1.0	
TA1537	9-aminoacridine ^B	_	75	
WP2 uvrA	methyl methanesulfonate ⁸	_	1,000	

^APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

^BPrepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least eight concentrations of test article, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 μg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 μg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 μg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test article, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will be at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, 100 μ L of tester strain and 50.0 μ L of vehicle, test substance dilution or positive control will be added to 2.0 mL of molten selective top agar at 45±2°C. When necessary, aliquots of other than 50.0 μ L of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test article, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at 37±2°C. Plates that are not counted immediately following the incubation period will be stored at 2-8°C.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018 Page 7 of 13 503.BTL

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *uvr*B mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *uvr*A mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

	Ģ	95% Control Lim	its (99% Uppe	er Limit)	
	TA98	TA100	TA1535	TA1537	WP2 uvrA
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicity

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018

Page 8 of 13

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that less than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but lacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not be limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIOS	Deviation and audit reporting

12. REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- Test article
- Vehicle
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- Test conditions
- Results
- · Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- Copy of the protocol and any amendment
- Contributing reports (if applicable)
- Information about the analyses that characterized the test article, its stability
 and the stability and strength of the dosing preparations, if provided by the
 Sponsor
- Statement of Compliance
- Quality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames, B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muriel, W.J. (1976). Mutagen testing using trp⁺ reversion in *Escherichia coli*. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the *Salmonella* Mutagenicity Test. Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

Version No. 3

Release Date: 23Apr2018 Page 11 of 13 503.BTL

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT Sponsor Representative

8 May 2018
Date

Version No. 3 Release Date: 23Apr2018

Page 12 of 13

Study Director and Test Facility Management Approvals

BioReliance Study Director

Date

BioReliance Study Management

Date Date

Version No. 3 Release Date: 23Apr2018

Page 13 of 13

15.	APPENDIX III: Common Technical Document Tables					

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

No. of Independent Assays: 2

No. of Replicate Cultures: 2 (B1)

and 3 (B2)

Test Substance: Sodium salt of Hydrolyzed TAF n=4

Study No.: AF28PK.503.BTL

No. Cells Analyzed/Culture: 1.0 to 2.8 x 10⁸ cells per

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 01 June 2018 (B1) and

14 June 2018 (B2)

Cytotoxic Effects: Toxicity was observed at 5000 µg per plate with tester strains TA100 and TA1535 in the presence and absence of S9 activation

Genotoxic Effects: None

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B1: Initial Toxicity-Mutation Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	<u>WP2uvrA</u>
Without	Water	100 μL/plate	14 ± 6	84 ± 11	14 ± 4	7 ± 1	34 ± 4
Activation	Sodium salt of Hydrolyzed TAF n=4	1.50	12 ± 6	84 ± 0	15 ± 1	7 ± 3	33 ± 1
	•	5.00	17 ± 0	87 ± 11	8 ± 1	9 ± 1	21 ± 4
		15.0	17 ± 1	79 ± 18	9 ± 1	6 ± 0	29 ± 5
		50.0	14 ± 5	94 ± 10	10 ± 0	6 ± 4	36 ± 4
		150	15 ± 5	86 ± 4	11 ± 1	7 ± 2	30 ± 6
		500	14 ± 6	85 ± 16	15 ± 0	11 ± 6	29 ± 6
		1500	15 ± 2	72 ± 23	8 ± 0	6 ± 0	23 ± 5
		5000	11 ± 4	73 ± 15	7 ± 0	7 ± 1	17 ± 8
	2NF	1.00	71 ± 4				
	SA	1.00		701 ± 46	679 ± 11		
	9AAD	75.0				591 ± 56	
	MMS	1000					419 ± 8
With	Water	100 μL/plate	20 ± 4	99 ± 1	14 ± 1	9 ± 0	36 ± 3
Activation	Sodium salt of Hydrolyzed TAF n=4	1.50	26 ± 1	105 ± 20	19 ± 7	6 ± 6	35 ± 8
		5.00	21 ± 2	119 ± 8	16 ± 4	10 ± 4	35 ± 6
		15.0	16 ± 1	99 ± 9	16 ± 2	7 ± 2	32 ± 15
		50.0	23 ± 6	96 ± 6	13 ± 2	7 ± 1	31 ± 6
		150	21 ± 4	122 ± 2	9 ± 1	7 ± 1	40 ± 0
		500	25 ± 9	119 ± 2	15 ± 2	11 ± 3	31 ± 8
		1500	20 ± 3	112 ± 17	13 ± 0	8 ± 4	23 ± 12
		5000	20 ± 9	94 ± 7	7 ± 2	8 ± 1	28 ± 7
	2AA	1.00	232 ± 9		69 ± 3		
	2AA	2.00		949 ± 40		36 ± 8	
	2AA	15.0					287 ± 17
Key to Pos	itive Controls						
SA	sodium azide			2NF	2-nitrofluorene		
2AA 9AAD	2-aminoanthracene 9-Aminoacridine			MMS	methyl methanesulfonate		

Metabolic Activation	Test Substance	Dose Level (μg/plate)	Revertant Colony Counts (Mean ±SD) (B2: Confirmatory Mutagenicity Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	16 ± 2	89 ± 6	11 ± 6	7 ± 2	31 ± 3
Activation	Sodium salt of Hydrolyzed TAF n=4	15.0	17 ± 5	89 ± 13	9 ± 5	5 ± 3	35 ± 2
		50.0	15 ± 4	89 ± 3	14 ± 3	6 ± 1	32 ± 9
		150	19 ± 7	82 ± 9	9 ± 1	8 ± 4	32 ± 8
		500	18 ± 4	87 ± 16	8 ± 1	6 ± 2	36 ± 3
		1500	16 ± 2	88 ± 4	13 ± 2	6 ± 1	30 ± 2
		5000	13 ± 5	69 ± 13	12 ± 3	8 ± 3	19 ± 6
	2NF	1.00	84 ± 18				
	SA	1.00		717 ± 39	721 ± 23		
	9AAD	75.0				834 ± 174	
	MMS	1000					503 ± 15
With	Water	100 μL/plate	25 ± 8	97 ± 9	12 ± 3	11 ± 3	33 ± 2
Activation	Sodium salt of Hydrolyzed TAF n=4	15.0	21 ± 4	102 ± 8	15 ± 7	10 ± 1	38 ± 3
		50.0	28 ± 4	91 ± 11	11 ± 0	8 ± 2	26 ± 4
		150	22 ± 9	107 ± 7	12 ± 6	6 ± 2	33 ± 1
		500	25 ± 2	106 ± 8	9 ± 2	8 ± 2	30 ± 5
		1500	25 ± 3	114 ± 11	14 ± 5	10 ± 4	30 ± 0
		5000	16 ± 3	93 ± 13	11 ± 4	11 ± 5	30 ± 5
	2AA	1.00	228 ± 20		98 ± 16		
	2AA	2.00		827 ± 43		47 ± 2	
	2AA	15.0					380 ± 4

Key to Positive Controls

SA sodium azide
2AA 2-aminoanthracene
9AAD 9-Aminoacridine
2NF 2-nitrofluorene
MMS methyl methanesulfonate

BioReliance Study No. AF28PK.503.BTL

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

Sodium salt of Hydrolyzed TAF n=3

<u>Author</u>

Emily Dakoulas, BS

Study Completion Date

29 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PL.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 48

1. STATEMENT OF COMPLIANCE

Study No. AF28PL.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

Emily Dakoulas, BS

Date

Study Director

2. QUALITY ASSURANCE STATEMENT

Quality Assurance Statement

Study Information

Number: AF28PL.503.BTL

Compliance

Procedures, documentation, equipment and other records were examined in order to assure this study was performed in accordance with the regulation(s) listed below and conducted according to the protocol and relevant Standard Operating Procedures. Verification of the study protocol was performed and documented by Quality Assurance.

US EPA Good Laboratory Standards 40CFR 792

Inspections

Quality Assurance performed the inspections(s) below for this study.

Insp. Dates (From/To) Phase Inspected

To Study Director To Management

12-Jun-2018	12-Jun-2018	Protocol Review	12-Jun-2018	12-Jun-2018
20-Jun-2018	20-Jun-2018	Scoring	20-Jun-2018	20-Jun-2018
09-Jul-2018	09-Jul-2018	Data/Draft Report	09-Jul-2018	09-Jul-2018
21-Aug-2018	21-Aug-2018	Final Report	21-Aug-2018	21-Aug-2018
21-Aug-2018	21-Aug-2018	Protocol Amendment Review	21-Aug-2018	21-Aug-2018

The Final Report for this study describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

For a multisite study, test site QA Statements are located in the corresponding contributing scientist report.

E-signature

Quality Assurance: Luleayenwa Aberra-Degu 28-Aug-2018 8:12 pm GMT

Reason for signature: QA Approval

Printed by:Luleayenwa Aberra-Degu Printed on:28-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	16
11.	REFERENCES	17
12.	DATA TABLES	18
13.	APPENDIX I: Historical Control Data	26
14.	APPENDIX II: Study Protocol and Amendment	28
15	APPENDIX III: Common Technical Document Tables	15

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study No.: AF28PL.503.BTL

Sponsor No.: C30049

Test Substance

Identification: Sodium salt of Hydrolyzed TAF n=3

CAS No.: 39492-90-5

Purity: 99.4% (per protocol)

Molecular Weight: 400.03 g/mol

Description: Off-white solid

Storage Conditions: Room temperature, protected from light

Receipt Date: 02 May 2018

Study Dates

Study Initiation Date: 30 May 2018

Experimental Starting Date (first day of

data collection): 30 May 2018

Experimental Start Date (first day test

substance administered to test system): 01 June 2018

Experimental Completion Date: 20 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, Sodium salt of Hydrolyzed TAF n=3, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 µg per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate Sodium salt of Hydrolyzed TAF n=3 was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendment are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver Sodium salt of Hydrolyzed TAF n=3 to the test system was water.

Vehicle	CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7732-18-5	Sigma-Aldrich	RNBF9658	Sterile- filtered	Mar 2019

To achieve a solution, the most concentrated dilution was sonicated at 22.9°C for 4 minutes in the initial toxicity-mutation assay. Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain S9 Activation		Positive Control	Concentration (µg/plate)		
TA98, TA1535		2-aminoanthracene	1.0		
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	2.0		
,	Rat	Lot No. STBD3302V Exp. Date 30-Nov-2019			
WP2 uvrA		CAS No. 613-13-8	15		
		Purity 97.5%			
TA98	None	2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.) Lot No. S43858V Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%			
TA100, TA1535		sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	1.0		
TA1537		9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Lot No. BCBK1177V Exp. Date 31-Mar-2019 CAS No. 52417-22-8 Purity 99.5%	75		
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000		

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}\text{C}$ for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^9 cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020; Lot No. 3961, Exp. Date: 15 May 2020) was purchased

commercially from MolTox (Boone, NC). Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983).

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and five dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

	Medium					
Component	Minimal top agar	Minimal	Nutrient	Nutrient		
Component	willilliai top agai	bottom agar	bottom agar	broth		
		Concentration is	n Medium			
BBL Select agar (W/V)	0.8% (W/V)					
Vogel-Bonner minimal medium E		1.5% (W/V)	1.5% (W/V)			
Sodium chloride	0.5% (W/V)					
L-histidine, D-biotin and	50 mM each					
L-tryptophan solution	50 milyi each					
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)			1		
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)		
Vogel-Bonner salt solution				Supplied at 20 mL/L		

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for $48 \text{ to } 72 \text{ hours at } 37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics			
1 or no code	Normal	Distinguished by a healthy microcolony lawn.			
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.			
Moderately Reduced Distinguished by a marked thinning of the microcolonies compared to the vehicle control plate.					
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.			
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.			
6	Obscured by Particulate	The background bacterial lawn cannot be accurately evaluated due to microscopic test substance particulate.			
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).			
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.			

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers.

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

	95% Control Limits (99% Upper Limit)									
	TA98 TA100 TA1535 TA1537 WP2 uvrA									
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)					
+S9	+S9 10-34 (40) 66-122 (136) 4-20 (24) 3-15 (18) 13-41 (48)									
XX7:41.	With Strate Director instiffaction valves including the 000/ control limit and									

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose			
LIMS Labware System	Test Substance Tracking			
Excel 2007 (Microsoft Corporation)	Calculations			
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table			
(Perceptive Instruments)	Creation			
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring			
BRIQS	Deviation and audit reporting			

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

No deviations from the protocol or assay-method SOPs occurred during the conduct of this study.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

	Tester Strain					
Experiment	TA98	TA100	TA1535	TA1537	WP2 uvrA	
	Titer Value (x 10 ⁹ cells per mL)					
B1	1.2	1.1	1.5	1.6	2.8	
B2	1.3	1.0	1.3	1.0	2.7	

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

Neither precipitate nor toxicity was observed.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and $\underline{4}$. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 50.0, 150, 500, 1500 and 5000 μ g per plate.

Neither precipitate nor toxicity was observed.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Sodium salt of Hydrolyzed TAF n=3 did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella* Mutagenicity Test, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PL.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PL

Date Plated: 6/1/2018

Evaluation Period: 6/4/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
	G 11 1 0					
TA98	Sodium salt of Hydrolyzed	5000 μg	13	6	0.8	17 ^A , 8 ^A
	TAF n=3	1500 μg	18	0	1.1	18 ^A , 18 ^A
		1300 μg 500 μg	18	1	1.1 1.1	10 , 10 10 ^A 17 ^A
		300 μg 150 μg	12	7	0.8	18 ^A , 17 ^A 17 ^A , 7 ^A
		130 μg 50.0 μg	11	1	0.3	11 ^A , 10 ^A
		30.0 μg 15.0 μg	11 17	9	0.7 1.1	11 , 10 10 ^A 22 ^A
		13.0 μg 5.00 μg	14	0	0.9	10 , 23 14 ^A 14 ^A
		3.00 μg 1.50 μg	14	1	0.9	10 ^A , 23 ^A 14 ^A , 14 ^A 15 ^A , 13 ^A
	Water	1.50 μg 100 μL	16	3	0.9	13, 13 14 ^A , 18 ^A
		100 μL	10	<u> </u>		14 , 10
TA100	Sodium salt of Hydrolyzed TAF n=3	5000 μg	86	3	1.1	88 ^A , 84 ^A
		1500 μg	91	4	1.2	$88^{A}, 93^{A}$
		500 μg	88	18	1.2	$75^{A}, 100^{A}$
		150 µg	76	4	1.0	78 ^A , 73 ^A
		50.0 μg	80	12	1.1	$71^{A}, 88^{A}$
		15.0 μg	83	2	1.1	81 ^A , 84 ^A
		5.00 μg	78	5	1.0	74 ^A , 81 ^A
		1.50 µg	69	10	0.9	$76^{A}, 62^{A}$
	Water	100 μL	76	16		87 ^A , 65 ^A
	Sodium salt of	•				
TA1535	Hydrolyzed TAF n=3	5000 μg	8	1	0.9	9 ^A , 7 ^A
		1500 μg	13	5	1.4	$9^{A}, 16^{A}$
		500 μg	12	2	1.3	$10^{A}, 13^{A}$
		150 μg	9	1	1.0	9 ^A , 8 ^A
		50.0 μg	10	2	1.1	9 ^A , 8 ^A 8 ^A , 11 ^A
		15.0 μg	12	1	1.3	11 ^A , 13 ^A
		5.00 μg	11	1	1.2	$11^{A}, 10^{A}$
		1.50 µg	8	3	0.9	$6^{A}, 10^{A}$
	Water	100 μL	9	2		6 ^A , 10 ^A 7 ^A , 10 ^A

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PL.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PL

Date Plated: 6/1/2018

Evaluation Period: 6/4/2018

Exposure Men	iod. I fate incorpora	ation assay	Evaluation 1 chod. 0/4/2018				
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
	Sodium salt of						
TA1537	Hydrolyzed	5000 μg	6	1	1.2	$7^{A}, 5^{A}$	
1711357	TAF n=3	3000 μg	O	1	1.2	, , 5	
	TAT II—3	1500	7	1	1 1	$7^{A}, 6^{A}$	
		1500 μg	7	1	1.4	/ , 0 (A 7A	
		500 μg	7	1	1.4	6^{A} , 7^{A}	
		150 μg	5	4	1.0	2 ^A , 8 ^A	
		50.0 μg	7	3	1.4	$9^{A}, 5^{A}$	
		15.0 μg	5	0	1.0	2 ^A , 8 ^A 9 ^A , 5 ^A 5 ^A , 5 ^A	
		5.00 μg	8	1	1.6	9 ^A , 7 ^A 3 ^A , 6 ^A	
		1.50 μg	5	2	1.0	$3^{A}, 6^{A}$	
	Water	100 μL	5	3		3 ^A , 7 ^A	
	Sodium salt of	·					
WP2uvrA	Hydrolyzed	5000	26	4	0.9	$23^{A}, 29^{A}$	
WIZUVIA		5000 μg	20	4	0.9	23 , 29	
	TAF n=3	1.500	2.2	0		274 204	
		1500 μg	33	8	1.2	27 ^A , 38 ^A	
		500 μg	28	2	1.0	$26^{A}, 29^{A}$	
		150 µg	23	8	0.8	$29^{A}, 17^{A}$	
		50.0 μg	22	6	0.8	26 ^A , 17 ^A	
		15.0 μg	30	0	1.1	$30^{A}, 30^{A}$	
		5.00 μg	33	5	1.2	$29^{A}, 36^{A}$	
		1.50 µg	33	1	1.2	32 ^A , 34 ^A	
	Water	100 μL	28	1	1.2	29 ^A , 27 ^A	
T 4 00		<u> </u>			2.0		
TA98	2NF	1.00 μg	61	15	3.8	50 ^A , 71 ^A	
TA100	SA	1.00 µg	707	21	9.3	721 ^A , 692 ^A	
TA1535	SA	1.00 µg	721	37	80.1	747 ^A , 695 ^A	
TA1537	9AAD	75.0 μg	599	177	119.8	724 ^A , 474 ^A	
	MMS	1000 μg	384	2	13.7	$385^{A}, 382^{A}$	

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PL.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PL

Date Plated: 6/1/2018

Evaluation Period: 6/4/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of Hydrolyzed TAF n=3	5000 μg	16	4	1.1	18 ^A , 13 ^A
		1500 μg	18	1	1.2	$17^{A}, 18^{A}$
		500 μg	18	5	1.2	$21^{A}, 14^{A}$
		150 μg	19	3	1.3	$17^{A}, 21^{A}$
		50.0 μg	21	8	1.4	$26^{A}, 15^{A}$
		15.0 μg	16	4	1.1	$13^{A}, 18^{A}$
		5.00 μg	15	5	1.0	$11^{A}, 18^{A}$
		1.50 µg	21	5	1.4	$17^{A}, 24^{A}$
	Water	100 μL	15	0		$15^{A}, 15^{A}$
	Sodium salt of	•				
TA100	Hydrolyzed TAF n=3	5000 μg	114	24	1.2	131 ^A , 97 ^A
	IAF n=3	1500	118	2	1.3	116 ^A , 120 ^A
		1500 μg 500 μg	98	<i>3 7</i>	1.3 1.1	103 ^A , 93 ^A
		300 μg 150 μg	96 116	1	1.1	103, 93 117 ^A , 115 ^A
		130 μg 50.0 μg	110 109	1 14	1.3 1.2	117, 113 119 ^A , 99 ^A
		30.0 μg 15.0 μg	109	6	1.2	119, 99 112 ^A , 103 ^A
		13.0 μg 5.00 μg	82	15	0.9	71 ^A , 92 ^A
		3.00 μg 1.50 μg	100	2	1.1	98 ^A , 101 ^A
	Water	1.50 μg 100 μL	92	6	1.1	96 ^A , 88 ^A
		100 μL	- 72	0		70 , 00
TA1535	Sodium salt of Hydrolyzed	5000 μg	14	1	1.0	13 ^A , 15 ^A
	TAF n=3	1.500	1.3	2	0.0	12A 10A
		1500 μg	12	2	0.9	$13^{A}, 10^{A}$
		500 μg	12	2	0.9	$10^{A}, 13^{A}$
		150 μg	12	4	0.9	14 ^A , 9 ^A
		50.0 μg	13	2	0.9	11 ^A , 14 ^A
		15.0 μg	7	1	0.5	$7^{A}, 6^{A}$
		5.00 μg	10	1	0.7	9 ^A , 11 ^A
	XX7 4	1.50 μg	14	1	1.0	13 ^A , 14 ^A
	Water	100 μL	14	1		$13^{A}, 15^{A}$

A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PL.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PL Date Plated: 6/1/2018 Evaluation Period: 6/4/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
	Sodium salt of					
TA1537	Hydrolyzed	5000 μg	11	3	1.4	13 ^A , 9 ^A
	TAF n=3	1.700	10	-	1.2	12A CA
		1500 μg	10	5	1.3	$13^{A}, 6^{A}$
		500 μg	4	1	0.5	5 ^A , 3 ^A
		150 µg	9	0	1.1	9 ^A , 9 ^A 6 ^A , 8 ^A
		50.0 μg	7	1	0.9	$6^{A}, 8^{A}$
		15.0 μg	8	4	1.0	$10^{A}, 5^{A}$
		5.00 μg	6	4	0.8	$3^{A}, 8^{A}$
		1.50 µg	9	3	1.1	7^{A} , 11^{A}
	Water	100 μL	8	3		$10^{A}, 6^{A}$
	Sodium salt of					
WP2uvrA	Hydrolyzed	$5000~\mu g$	34	9	1.0	$40^{A}, 27^{A}$
	TAF n=3	1,500	22	0	1.0	22A 22A
		1500 μg	32	0	1.0	32 ^A , 32 ^A
		500 μg	36	4	1.1	33 ^A , 38 ^A
		150 µg	28	6	0.8	$24^{A}, 32^{A}$
		50.0 μg	43	5	1.3	46 ^A , 39 ^A
		15.0 μg	30	16	0.9	19 ^A , 41 ^A 24 ^A , 27 ^A
		5.00 μg	26	2	0.8	$24^{A}, 27^{A}$
		1.50 µg	29	4	0.9	$26^{A}, 32^{A}$
	Water	100 μL	33	8		39 ^A , 27 ^A
TA98	2AA	1.00 µg	232	20	15.5	218 ^A , 246 ^A
TA100	2AA	$2.00 \mu g$	1243	626	13.5	$1686^{A}, 800^{A}$
TA1535	2AA	1.00 μg	90	8	6.4	96 ^A , 84 ^A
TA1537	2AA	2.00 μg	39	0	4.9	$39^{A}, 39^{A}$
WP2uvrA	2AA	15.0 μg	247	35	7.5	222 ^A , 272 ^A

Key to Positive Controls

2AA 2-aminoanthracene Key to Automatic Count Flags

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PL.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PL

Date Plated: 6/14/2018

Evaluation Period: 6/20/2018

Strain	Substance	Dose level	Mean revertants	Standard	Ratio treated /	Individual revertant colony counts and
		per plate	per plate	Deviation	solvent	background codes
TT 4 00	Sodium salt of	5000	1.4	2	1.0	11A 15A 15A
TA98	Hydrolyzed TAF n=3	5000 μg	14	2	1.2	11 ^A , 15 ^A , 15 ^A
		1500 μg	14	3	1.2	15^{A} , 17^{A} , 11^{A}
		500 μg	13	2	1.1	14 ^A , 13 ^A , 11 ^A
		150 µg	15	0	1.3	15^{A} , 15^{A} , 15^{A}
		50.0 μg	15	2	1.3	13 ^A , 17 ^A , 14 ^A
	Water	100 μL	12	4		16 ^A , 9 ^A , 11 ^A
	Sodium salt of					
TA100	Hydrolyzed	5000 μg	98	5	1.0	$103^{A}, 93^{A}, 98^{A}$
	TAF n=3					
		1500 μg	102	8	1.1	104^{A} , 109^{A} , 93^{A}
		500 μg	98	10	1.0	$89^{A}, 96^{A}, 108^{A}$
		150 µg	94	14	1.0	86 ^A , 111 ^A , 86 ^A
		50.0 μg	109	6	1.2	109^{A} , 115^{A} , 104^{A}
	Water	100 μL	94	12		106 ^A , 83 ^A , 92 ^A
	Sodium salt of					
TA1535	Hydrolyzed TAF n=3	5000 μg	14	1	1.2	15 ^A , 13 ^A , 13 ^A
		1500 μg	13	6	1.1	13^{A} , 19^{A} , 8^{A}
		500 μg	8	1	0.7	$8^{A}, 9^{A}, 8^{A}$
		150 μg	14	3	1.2	16^{A} , 16^{A} , 10^{A}
		50.0 μg	11	4	0.9	$9^{A}, 8^{A}, 15^{A}$
	Water	100 μL	12	4		$16^{A}, 10^{A}, 9^{A}$
	Sodium salt of					
TA1537	Hydrolyzed TAF n=3	5000 μg	6	2	0.8	$7^{A}, 3^{A}, 7^{A}$
		1500 μg	6	3	0.8	$8^{A}, 7^{A}, 3^{A}$
		500 μg	6	1	0.8	5 ^A 7 ^A 6 ^A
		150 μg	9	1	1.1	$8^{A}, 8^{A}, 10^{A}$
		50.0 μg	4	1	0.5	8 ^A , 8 ^A , 10 ^A 3 ^A , 5 ^A , 5 ^A 9 ^A , 5 ^A , 9 ^A
	Water	100 μL	8	2		$9^{A}, 5^{A}, 9^{A}$

A: Automatic count

TABLE 3 (CONT.) Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PL.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PL

Date Plated: 6/14/2018

Evaluation Period: 6/20/2018

Emposare met	nous rate meorpor	arren assaj	Evaluation Foliotic 0/20/2010					
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes		
WP2uvrA	Sodium salt of Hydrolyzed TAF n=3	5000 μg	33	3	1.1	35 ^A , 29 ^A , 34 ^A		
	Water	1500 μg 500 μg 150 μg 50.0 μg 100 μL	33 35 37 39 30	13 7 6 3 5	1.1 1.2 1.2 1.3	31 ^A , 46 ^A , 21 ^A 43 ^A , 31 ^A , 31 ^A 31 ^A , 41 ^A , 40 ^A 40 ^A , 35 ^A , 41 ^A 27 ^A , 36 ^A , 27 ^A		
TA98 TA100 TA1535 TA1537 WP2uvrA	2NF SA SA 9AAD MMS	1.00 μg 1.00 μg 1.00 μg 75.0 μg 1000 μg	61 741 718 823 474	8 33 29 128 38	5.1 7.9 59.8 102.9 15.8	57 ^A , 57 ^A , 70 ^A 705 ^A , 747 ^A , 771 ^A 691 ^A , 749 ^A , 715 ^A 677 ^A , 915 ^A , 878 ^A 431 ^A , 485 ^A , 505 ^A		

Key to Positive Controls

2NF 2-nitrofluorene SA sodium azide 9AAD 9-Aminoacridine MMS methyl methanesulfonate

A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PL.503.BTL Experiment: B2 Exposure Method: Plate incorporation assay Study Code: AF28PL Date Plated: 6/14/2018 Evaluation Period: 6/20/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of Hydrolyzed TAF n=3	5000 μg	19	7	0.9	27 ^A , 13 ^A , 17 ^A
	1711 11 0	1500 μg	19	4	0.9	19^{A} , 16^{A} , 23^{A}
		500 μg	22	8	1.0	15^{A} , 19^{A} , 31^{A}
		150 μg	19	3	0.9	15 ^A , 19 ^A , 31 ^A 15 ^A , 21 ^A , 21 ^A 16 ^A , 23 ^A , 29 ^A
		50.0 μg	23	7	1.0	$16^{A}, 23^{A}, 29^{A}$
	Water	100 μL	22	6		$16^{A}, 26^{A}, 25^{A}$
	Sodium salt of	•				
TA100	Hydrolyzed TAF n=3	5000 μg	120	4	1.3	123 ^A , 116 ^A , 120 ^A
		1500 μg	107	8	1.1	114^{A} , 107^{A} , 99^{A}
		500 μg	102	6	1.1	$107^{A}, 96^{A}, 104^{A}$
		150 µg	113	16	1.2	128^{A} , 114^{A} , 97^{A}
		50.0 μg	89	4	0.9	93 ^A , 88 ^A , 86 ^A
	Water	100 μL	96	10		103^{A} , 101^{A} , 84^{A}
	Sodium salt of	·				
TA1535	Hydrolyzed TAF n=3	5000 μg	13	6	1.2	14 ^A , 6 ^A , 18 ^A
		1500 μg	8	1	0.7	$9^{A}, 7^{A}, 7^{A}$
		500 μg	13	5	1.2	17^{A} , 14^{A} , 8^{A}
		150 µg	9	3	0.8	$6^{A}, 10^{A}, 11^{A}$
		50.0 μg	13	4	1.2	8^{A} , 15^{A} , 16^{A}
	Water	100 μL	11	3		$14^{A}, 8^{A}, 11^{A}$
TA1537	Sodium salt of Hydrolyzed	5000 μg	7	3	0.8	5 ^A , 6 ^A , 10 ^A
	TAF n=3	1-0	•		- / -	, - , -
		1500 μg	11	5	1.2	$8^{A}, 17^{A}, 9^{A}$
		500 μg	8	4	0.9	3^{A} , 10^{A} , 10^{A}
		150 µg	11	3	1.2	$8^{A}, 13^{A}, 13^{A}$
		50.0 μg	11	3	1.2	8 ^A , 13 ^A , 13 ^A 14 ^A , 9 ^A , 10 ^A
	Water	100 μL	9	3		6^{A} , 11^{A} , 11^{A}

A: Automatic count

TABLE 4 (CONT.) Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PL.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PL

Date Plated: 6/14/2018

Evaluation Period: 6/20/2018

	nous race meorpor	arren assay	Evaluation Ferroa. 0/20/2010					
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes		
WP2uvrA	Sodium salt of Hydrolyzed TAF n=3	5000 μg	36	4	1.0	36 ^A , 40 ^A , 33 ^A		
	Water	1500 μg 500 μg 150 μg 50.0 μg 100 μL	37 37 34 39 37	4 6 6 12 3	1.0 1.0 0.9 1.1	34 ^A , 42 ^A , 36 ^A 43 ^A , 32 ^A , 35 ^A 36 ^A , 27 ^A , 39 ^A 48 ^A , 26 ^A , 44 ^A 39 ^A , 38 ^A , 34 ^A		
F1 400		•			10.0	, ,		
TA98 TA100 TA1535 TA1537 WP2uvrA	2AA 2AA 2AA 2AA 2AA	1.00 μg 2.00 μg 1.00 μg 2.00 μg 15.0 μg	239 787 66 49 359	29 23 13 11 66	10.9 8.2 6.0 5.4 9.7	245 ^A , 264 ^A , 207 ^A 766 ^A , 811 ^A , 783 ^A 58 ^A , 60 ^A , 81 ^A 56 ^A , 54 ^A , 36 ^A 287 ^A , 372 ^A , 418 ^A		

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

13	API	PEND	IX I. I	Historica	l Control	Data

Historical Negative and Positive Control Values 2016

revertants per plate

1 1												
		Activation										
Strain	Strain Control		None				Rat Liver					
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL	
TA00	Neg	15	5	6	34	5-25	22	6	8	42	10-34	
TA98	Pos	198	174	36	1826		287	159	47	1916		
TA 100	Neg	90	12	60	146	66-114	94	14	63	181	66-122	
TA100	Pos	629	159	186	1383		620	294	192	3483		
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20	
1A1333	Pos	541	164	34	1082		150	122	27	1114		
TA1537	Neg	8	3	1	21	2-14	9	3	2	23	3-15	
1A1337	Pos	368	227	21	1791		91	90	17	951		
WP2 uvrA	Neg	24	7	7	44	10-38	27	7	8	51	13-41	
WFZ UVFA	Pos	336	119	25	876		300	111	41	1059		

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendment

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PL.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

 Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add:

The doses will be 5000, 1500, 500, 150 and 50.0 µg per plate.

Reason: To specify the dose levels to be used for the confirmatory mutagenicity assay based on the toxicity and precipitate profiles observed in the initial toxicity-mutation assay.

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PL.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT

Sponsor Representative

13 June 2018 Date

Page 2 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PL.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Emily Dakoulas, BS Date

BioReliance Study Director

BioReliance Study Management

12 - JUN - 2018 Date

Protocol

Study Title Bacterial Reverse Mutation Assay

Study Director Emily Dakoulas, BS

Testing Facility BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number AF28PL.503.BTL

1. KEY PERSONNEL

Sponsor Information:

Sponsor The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number C30049

Sponsor's Authorized

Representative

Shawn Gannon, Ph.D., DABT The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899 Phone: 302-773-1376

Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Study Director Emily Dakoulas, BS

BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality

Assurance Representative

Luleayenwa (Lula) Aberra-Degu, RQAP-GLP

BioReliance Corporation Phone: 301-610-2667

Email: Luleayenwa.aberra-degu@sial.com

2. TEST SCHEDULE

Proposed Experimental Initiation Date 01-June-2018
Proposed Experimental Completion Date 28-June-2018
Proposed Report Date 13-July-2018

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

• US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

Release Date: 23Apr2018 Page 2 of 13 503.BTL

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. QUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed QA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator, Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director, Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification Sodium salt of Hydrolyzed TAF n=3

CAS No. 39492-90-5

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

Purity 99.4% (no correction factor will be used for dose formulations)

Molecular Weight 400.03 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below; unless the test substance is used on another study.

Alex Petlick The Chemours Company 200 Powder Mill Rd Experimental Station E402/5317 Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be discarded after use.

7. TEST SYSTEM

The tester strains will include the *S. typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames *et al.* (1975) and the *E. coli* tester strain WP2 *uvr*A as described by Green and Muriel (1976). The genotypes of strains are as follows:

His	stidine Mutatio	n	Tryptophan Mutation	Ad	ditional Mu	itations
hisG46	hisC3076	hisD3052	trpE	LPS	Repair	R-factor
TA1535	TA1537	-	-	rfa	ΔuvrB	-
TA100	-	TA98		rfa	$\Delta uvrB$	+R
-	-	-	WP2 uvrA	-	$\Delta uvrA$	i -

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California, Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

Release Date: 23Apr2018 Page 4 of 13 503.BTL

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acetone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/mL for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test substance, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellet(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}$ C.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from incubation at a density of approximately 10^9 cells/mL.

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dose level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MolTox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018

Page 5 of 13

503.BTL

100 mM phosphate buffer at pH 7.4

S9 Mix

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test substance.

Strain	Positive Control	S9	Concentrations (µg/plate)
Salmonella strains	2-aminoanthracene ^B	+	1.0 - 2.0
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20
TA98	2-nitrofluorene ^B	_	1.0
TA100, TA1535	sodium azide ^A	_	1.0
TA1537	9-aminoacridine ^B	-	75
WP2 uvrA	methyl methanesulfonate ^B	-	1,000

APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

503.BTL

^BPrepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least eight concentrations of test substance, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 μg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 μg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 μg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test substance, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will he at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, 100 µL of tester strain and 50.0 µL of vehicle, test substance dilution or positive control will be added to 2.0 mL of molten selective top agar at 45±2°C. When necessary, aliquots of other than 50.0 µL of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test substance, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at 37±2°C. Plates that are not counted immediately following the incubation period will be stored at 2-8°C.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018 Page 7 of 13 503.BTL

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *uvr*B mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *uvr*A mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

	TA98	95% Control Lim	TA1535	TA1537	WP2 uvrA
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)
+\$9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicity

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018 Page 8 of 13

of 13

503.BTL

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that less than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but lacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not be limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

12. REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- Test substance
- Vehicle
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- Test conditions
- Results
- Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- Copy of the protocol and any amendment
- · Contributing reports (if applicable)
- Information about the analyses that characterized the test substance, its stability and the stability and strength of the dosing preparations, if provided by the Sponsor
- Statement of Compliance
- · Quality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames, B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muriel, W.J. (1976). Mutagen testing using trp⁺ reversion in *Escherichia coli*. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the *Salmonella* Mutagenicity Test. Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

Version No. 3

Release Date: 23Apr2018 Page 11 of 13 503.BTL

BioReliance Study Number: AF28PL.503.BTL Sponsor Number: C30049

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT
Sponsor Representative

Version No. 3 Release Date: 23Apr2018

Page 12 of 13

503.BTL

BioReliance Study Number: AF28PL.503.BTL Sponsor Number: C30049

Study Director and Test Facility Management Approvals

BioRellance Study Director

30mAy 2018

BioReliance Study Management

Date 2018

Version No. 3 Release Date: 23Apr2018

Page 13 of 13

503.BTL

15.	APPENDIX III: Common Technical Document Tables

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

Cytotoxic Effects: None Genotoxic Effects: None

No. of Independent Assays: 2 Study No.: A

No. of Replicate Cultures: 2 (B1)

and 3 (B2)

Test Substance: Sodium salt of Hydrolyzed TAF n=3

Study No.: AF28PL.503.BTL

No. Cells Analyzed/Culture: 1.0 to 2.8 x 10⁸ cells per

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 01 June 2018 (B1) and

14 June 2018 (B2)

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B1: Initial Toxicity-Mutation Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	16 ± 3	76 ± 16	9 ± 2	5 ± 3	28 ± 1
Activation	Sodium salt of Hydrolyzed TAF n=3	1.50	14 ± 1	69 ± 10	8 ± 3	5 ± 2	33 ± 1
	•	5.00	14 ± 0	78 ± 5	11 ± 1	8 ± 1	33 ± 5
		15.0	17 ± 9	83 ± 2	12 ± 1	5 ± 0	30 ± 0
		50.0	11 ± 1	80 ± 12	10 ± 2	7 ± 3	22 ± 6
		150	12 ± 7	76 ± 4	9 ± 1	5 ± 4	23 ± 8
		500	18 ± 1	88 ± 18	12 ± 2	7 ± 1	28 ± 2
		1500	18 ± 0	91 ± 4	13 ± 5	7 ± 1	33 ± 8
		5000	13 ± 6	86 ± 3	8 ± 1	6 ± 1	26 ± 4
	2NF	1.00	61 ± 15				
	SA	1.00		707 ± 21	721 ± 37		
	9AAD	75.0				599 ± 177	
	MMS	1000					384 ± 2
With	Water	100 μL/plate	15 ± 0	92 ± 6	14 ± 1	8 ± 3	33 ± 8
Activation	Sodium salt of Hydrolyzed TAF n=3	1.50	21 ± 5	100 ± 2	14 ± 1	9 ± 3	29 ± 4
	•	5.00	15 ± 5	82 ± 15	10 ± 1	6 ± 4	26 ± 2
		15.0	16 ± 4	108 ± 6	7 ± 1	8 ± 4	30 ± 16
		50.0	21 ± 8	109 ± 14	13 ± 2	7 ± 1	43 ± 5
		150	19 ± 3	116 ± 1	12 ± 4	9 ± 0	28 ± 6
		500	18 ± 5	98 ± 7	12 ± 2	4 ± 1	36 ± 4
		1500	18 ± 1	118 ± 3	12 ± 2	10 ± 5	32 ± 0
		5000	16 ± 4	114 ± 24	14 ± 1	11 ± 3	34 ± 9
	2AA	1.00	232 ± 20		90 ± 8		
	2AA	2.00		1243 ± 626		39 ± 0	
	2AA	15.0					247 ± 35
	itive Controls						
SA	sodium azide				2-nitrofluorene		
2AA 9AAD	2-aminoanthracene 9-Aminoacridine			MMS	methyl methanesulfonate		

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B2: Confirmatory Mutagenicity Assay)			Assay)	
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	12 ± 4	94 ± 12	12 ± 4	8 ± 2	30 ± 5
Activation	Sodium salt of Hydrolyzed TAF n=3	50.0	15 ± 2	109 ± 6	11 ± 4	4 ± 1	39 ± 3
	,,	150	15 ± 0	94 ± 14	14 ± 3	9 ± 1	37 ± 6
		500	13 ± 2	98 ± 10	8 ± 1	6 ± 1	35 ± 7
		1500	14 ± 3	102 ± 8	13 ± 6	6 ± 3	33 ± 13
		5000	14 ± 2	98 ± 5	14 ± 1	6 ± 2	33 ± 3
	2NF	1.00	61 ± 8				
	SA	1.00		741 ± 33	718 ± 29		
	9AAD	75.0				823 ± 128	
	MMS	1000					474 ± 38
With	Water	100 μL/plate	22 ± 6	96 ± 10	11 ± 3	9 ± 3	37 ± 3
Activation	Sodium salt of	50.0	23 ± 7	89 ± 4	13 ± 4	11 ± 3	39 ± 12
	Hydrolyzed TAF n=3						
		150	19 ± 3	113 ± 16	9 ± 3	11 ± 3	34 ± 6
		500	22 ± 8	102 ± 6	13 ± 5	8 ± 4	37 ± 6
		1500	19 ± 4	107 ± 8	8 ± 1	11 ± 5	37 ± 4
		5000	19 ± 7	120 ± 4	13 ± 6	7 ± 3	36 ± 4
	2AA	1.00	239 ± 29		66 ± 13		
	2AA	2.00		787 ± 23		49 ± 11	
	2AA	15.0					359 ± 66

Key to Positive Controls

SA sodium azide 2AA 2-aminoanthracene 9AAD 9-Aminoacridine 2NF 2-nitrofluorene MMS methyl methanesulfonate

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

Potassium salt of Hydrolyzed TAF n=2

Author

Emily Dakoulas, BS

Study Completion Date

30 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PM.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 48

1. STATEMENT OF COMPLIANCE

Study No. AF28PM.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

Emily Dakoulas, BS

Study Director

2. QUALITY ASSURANCE STATEMENT

Quality Assurance Statement

Study Information

Number: AF28PM.503.BTL

Compliance

Procedures, documentation, equipment and other records were examined in order to assure this study was performed in accordance with the regulation(s) listed below and conducted according to the protocol and relevant Standard Operating Procedures. Verification of the study protocol was performed and documented by Quality Assurance.

US EPA Good Laboratory Standards 40CFR 792

Inspections

Quality Assurance performed the inspections(s) below for this study.

Insp. Dates (From/To) Phase Inspected To Study Director To Management

19-Jun-2018	19-Jun-2018	Strain Characterization	19-Jun-2018	19-Jun-2018
19-Jun-2018	19-Jun-2018	Preparation of S9 Mixture	19-Jun-2018	19-Jun-2018
19-Jun-2018	25-Jun-2018	Protocol Review	25-Jun-2018	25-Jun-2018
13-Jul-2018	13-Jul-2018	Data/Draft Report	13-Jul-2018	13-Jul-2018
27-Aug-2018	27-Aug-2018	Final Report	27-Aug-2018	27-Aug-2018
27-Aug-2018	27-Aug-2018	Protocol Amendment Review	27-Aug-2018	27-Aug-2018

The Final Report for this study describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

For a multisite study, test site QA Statements are located in the corresponding contributing scientist report.

E-signature

Quality Assurance: Lisa AnnMarie Fleshman 30-Aug-2018 12:29 pm GMT

Reason for signature: QA Approval

Printed by:Lisa AnnMarie Fleshman Printed on:30-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	16
11.	REFERENCES	17
12.	DATA TABLES	18
13.	APPENDIX I: Historical Control Data	26
14.	APPENDIX II: Study Protocol and Amendment	28
15	APPENDIX III: Common Technical Document Tables	15

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study No.: AF28PM.503.BTL

Sponsor No.: C30049

Test Substance

Identification: Potassium salt of Hydrolyzed TAF n=2

CAS No.: 39492-89-2

Purity: 95% (per protocol)

Molecular Weight: 350.13 g/mol

Description: White powder

Storage Conditions: Room temperature, protected from light

Receipt Date: 02 May 2018

Study Dates

Study Initiation Date: 01 June 2018

Experimental Starting Date (first day of

data collection): 01 June 2018

Experimental Start Date (first day test

substance administered to test system): 05 June 2018

Experimental Completion Date: 26 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, Potassium salt of Hydrolyzed TAF n=2, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 μ g per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate Potassium salt of Hydrolyzed TAF n=2 was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendment are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick The Chemours Company 200 Powder Mill Rd Experimental Station E402/5317 Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver Potassium salt of Hydrolyzed TAF n=2 to the test system was water.

Vehicle	CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7732-18-5	Sigma-Aldrich	RNBF9658	Sterile- filtered	Mar 2019

To achieve a solution, the most concentrated dilution was sonicated at 28.0°C for 5 minutes in the initial toxicity-mutation assay. Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain	S9 Activation	Positive Control	Concentration (µg/plate)
TA98, TA1535		2-aminoanthracene	1.0
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	2.0
,	Rat	Lot No. STBD3302V	
WP2 uvrA		Exp. Date 30-Nov-2019 CAS No. 613-13-8	15
WIZUVIA			13
		Purity 97.5% 2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.)	
TA98		Lot No. S43858V Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%	1.0
TA100, TA1535	N	sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	1.0
TA1537	None	9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Lot No. BCBK1177V Exp. Date 31-Mar-2019 CAS No. 52417-22-8 Purity 99.5%	75
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}\text{C}$ for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^9 cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020; Lot No. 3961, Exp. Date: 15 May 2020) was purchased

commercially from MolTox (Boone, NC). Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by <u>Ames et al.</u> (1975) and updated by <u>Maron and Ames (1983)</u>.

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and five dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

	Medium				
Component	Minimal top agar	Minimal	Nutrient	Nutrient	
Component	Millimai top agai	bottom agar	bottom agar	broth	
		Concentration in	n Medium		
BBL Select agar (W/V)	0.8% (W/V)				
Vogel-Bonner minimal medium E	1	1.5% (W/V)	1.5% (W/V)		
Sodium chloride	0.5% (W/V)				
L-histidine, D-biotin and	50 mM each				
L-tryptophan solution	30 mivi cacii				
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)				
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)	
Vogel-Bonner salt solution				Supplied at 20 mL/L	

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for $48 \text{ to } 72 \text{ hours at } 37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics
1 or no code	Normal	Distinguished by a healthy microcolony lawn.
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn resulting in a pronounced increase in the size of the microcolonies compared to the vehicle control plate.
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.
6	Obscured by Particulate	The background bacterial lawn cannot be accurately evaluated due to microscopic test substance particulate.
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers.

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

95% Control Limits (99% Upper Limit)						
	TA98 TA100 TA1535 TA1537 WP2 <i>uvr</i> A					
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)	
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)	
XX7'41 (C. 1 D' .		1 ' 1 1'	1 000/	. 1 1' '. 1	

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel 2007 (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

No deviations from the protocol or assay-method SOPs occurred during the conduct of this study.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

	Tester Strain								
Experiment	TA98	TA100	TA1535	TA1537	WP2 uvrA				
		Titer Value (x 10 ⁹ cells per mL)							
B1	2.2	2.2 1.0		1.5	2.9				
B2	1.2 1.1 1.5 1.9 2.8								

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

Neither precipitate nor toxicity was observed.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and <u>4</u>. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 50.0, 150, 500, 1500 and 5000 µg per plate.

Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Potassium salt of Hydrolyzed TAF n=2 did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

BioReliance Study No. AF28PM.503.BTL

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella* Mutagenicity Test, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PM.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PM

Date Plated: 6/5/2018

Evaluation Period: 6/11/2018

Strain	Substance	Dose level per plate	revertants		Ratio treated / solvent	Individual revertant colony counts and background codes	
TA98	Potassium salt of Hydrolyzed TAF n=2	5000 μg	12	4	0.8	15 ^A , 9 ^A	
		1500 μg	13	5	0.8	$16^{A}, 9^{A}$	
		500 μg	16	1	1.0	$15^{A}, 17^{A}$	
		150 μg	14	0	0.9	14 ^A , 14 ^A	
		50.0 μg	11	5	0.7	7 ^A , 14 ^A	
		15.0 μg	12	5	0.8	$15^{A}, 8^{A}$	
		5.00 μg	14	6	0.9	9 ^A , 18 ^A	
		1.50 µg	14	1	0.9	$14^{A}, 13^{A}$	
	Water	100 μL	16	1		15 ^A , 17 ^A	
	Potassium salt						
TA100	of Hydrolyzed TAF n=2	5000 μg	94	4	1.0	91 ^A , 97 ^A	
	1111 11 2	1500 μg	87	1	1.0	$87^{A}, 86^{A}$	
		500 μg	83	0	0.9	83 ^A , 83 ^A	
		150 μg	90	16	1.0	79 ^A , 101 ^A	
		50.0 μg	88	8	1.0	93 ^A , 82 ^A	
		15.0 μg	76	8	0.8	$70^{A}, 81^{A}$	
		5.00 μg	80	12	0.9	88 ^A , 71 ^A	
		1.50 μg	94	6	1.0	89 ^A , 98 ^A	
	Water	100 μL	90	1		$90^{A}, 89^{A}$	
TA1535	Potassium salt of Hydrolyzed	5000 μg	12	1	0.9	11 ^A , 13 ^A	
	TAF n=2					A A	
		1500 μg	11	4	0.8	14 ^A , 8 ^A	
		500 μg	9	1	0.7	$8^{A}, 10^{A}$	
		150 μg	12	2	0.9	$13^{A}, 10^{A}$	
		50.0 μg	14	7	1.1	$19^{A}, 9^{A}$	
		15.0 μg	10	0	0.8	$10^{A}, 10^{A}$	
		5.00 μg	11	5	0.8	14 ^A , 7 ^A	
	***	1.50 μg	10	1	0.8	9 ^A , 11 ^A	
	Water	100 μL	13	0		13 ^A , 13 ^A	

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PM.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PM

Date Plated: 6/5/2018

Evaluation Period: 6/11/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA1537	Potassium salt of Hydrolyzed TAF n=2	5000 μg	7	2	0.9	5 ^A , 8 ^A
		1500 μg	6	1	0.8	$6^{A}, 5^{A}$
		500 μg	8	0	1.0	6 ^A , 5 ^A 8 ^A , 8 ^A
		150 μg	5	3	0.6	$3^{A}, 7^{A}$
		50.0 μg	7	0	0.9	7 ^A , 7 ^A 6 ^A , 8 ^A
		15.0 μg	7	1	0.9	$6^{A}, 8^{A}$
		5.00 μg	6	0	0.8	6 ^A , 6 ^A
		1.50 μg	5	0	0.6	5 ^A , 5 ^A 8 ^A , 7 ^A
	Water	100 μL	8	1		$8^{A}, 7^{A}$
WP2uvrA	Potassium salt of Hydrolyzed TAF n=2	5000 μg	29	7	0.9	34 ^A , 24 ^A
		1500 μg	37	8	1.2	$42^{A}, 31^{A}$
		500 μg	36	4	1.1	$33^{A}, 39^{A}$
		150 µg	32	8	1.0	$38^{A}, 26^{A}$
		50.0 μg	36	3	1.1	$34^{A}, 38^{A}$
		15.0 μg	45	13	1.4	54 ^A , 35 ^A
		5.00 μg	30	1	0.9	$29^{A}, 31^{A}$
		1.50 µg	32	4	1.0	$35^{A}, 29^{A}$
	Water	100 μL	32	6		$36^{A}, 27^{A}$
TA98	2NF	1.00 µg	71	28	4.4	51 ^A , 90 ^A
TA100	SA	1.00 μg	642	30	7.1	$663^{A}, 620^{A}$
TA1535	SA	1.00 μg	599	20	46.1	613 ^A , 585 ^A
TA1537	9AAD	75.0 μg	1029	19	128.6	1015 ^A , 1042 ^A
WP2uvrA	MMS	1000 μg	502	50	15.7	466 ^A , 537 ^A

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PM.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PM

Date Plated: 6/5/2018

Evaluation Period: 6/11/2018

Exposure Met	hod: Plate incorpor	ation assay	Evaluation Period: 6/11/2018					
Strain	Substance	Dose level	Mean revertants	Standard	Ratio treated /	Individual revertant colony counts and		
2010111	2 4 2 2 4 4 1 2 2	per plate	per plate	Deviation	solvent	background codes		
			per piace		BOTV CITE	ouckground codes		
	Potassium salt							
TA98	of Hydrolyzed	5000 μg	16	1	0.8	$17^{A}, 15^{A}$		
1 A 3 0	TAF n=2	3000 μg	10	1	0.0	17,13		
	1 AT 11-2	1500 μg	21	4	1.0	24 ^A , 18 ^A		
		1300 μg 500 μg	21	5	1.0	17 ^A , 24 ^A		
		300 μg 150 μg	20	1	1.0	17, 24 19 ^A , 21 ^A		
			20 18	2	0.9	16 ^A , 19 ^A		
		50.0 μg	10 11	1	0.5	10, 19 11 ^A , 10 ^A		
		15.0 μg				11 , 10 14 ^A 17 ^A		
		5.00 μg	16	2	0.8	14 ^A , 17 ^A 14 ^A , 15 ^A		
	***	1.50 μg	15 21	1	0.7	14 ⁻¹ , 15 ⁻¹		
	Water	100 μL	21	0		21 ^A , 21 ^A		
	Potassium salt							
TA100	of Hydrolyzed	5000 μg	109	4	1.1	106^{A} , 112^{A}		
	TAF n=2							
		1500 μg	114	14	1.2	104 ^A , 124 ^A		
		500 μg	98	8	1.0	$103^{A}, 92^{A}$		
		150 μg	87	8	0.9	$81^{A}, 92^{A}$		
		50.0 μg	104	19	1.1	90^{A} , 117^{A}		
		15.0 µg	109	3	1.1	107 ^A , 111 ^A		
		5.00 μg	107	1	1.1	$106^{A}, 108^{A}$		
		1.50 µg	91	1	0.9	$90^{A}, 91^{A}$		
	Water	100 μL	98	12		$89^{A}, 106^{A}$		
	Potassium salt	•						
TA1535	of Hydrolyzed	5000 μg	8	3	0.5	$6^{A}, 10^{A}$		
141555	TAF n=2	3000 μg	O	3	0.5	0,10		
	1 AT 11-2	1500 μg	17	2	1.0	18 ^A , 15 ^A		
		1300 μg 500 μg	17	4	1.0	14 ^A , 19 ^A		
			17 16		1.0 0.9	14, 19 17 ^A , 15 ^A		
		150 μg		1	0.9 0.9	17, 15 13 ^A , 17 ^A		
		50.0 μg	15	3		13, 17 13 ^A , 10 ^A		
		15.0 μg	12	2	0.7			
		5.00 μg	10	4	0.6	7 ^A , 13 ^A		
	***	1.50 μg	10	0	0.6	$10^{A}, 10^{A}$		
	Water	100 μL	17	2		15 ^A , 18 ^A		

A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PM.503.BTL

Experiment: B1

Date Plated: 6/5/2018

Exposure Method: Plate incorporation assay

Evaluation Period: 6/11/2018

Study Code: AF28PM

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA1537	Potassium salt of Hydrolyzed TAF n=2	5000 μg	5	2	0.5	6 ^A , 3 ^A
		1500 μg	7	0	0.7	$7^{A}, 7^{A}$
		500 μg	10	2	1.0	8 ^A , 11 ^A
		150 μg	10	0	1.0	$10^{A}, 10^{A}$
		50.0 μg	7	1	0.7	$6^{A}, 8^{A}$
		15.0 µg	8	1	0.8	7 ^A , 8 ^A 7 ^A , 9 ^A
		5.00 μg	8	1	0.8	$7^{A}, 9^{A}$
		1.50 µg	6	4	0.6	$3^{A}, 8^{A}$
	Water	100 μL	10	4		13 ^A , 7 ^A
WP2uvrA	Potassium salt of Hydrolyzed TAF n=2	5000 μg	30	8	1.0	36 ^A , 24 ^A
		1500 μg	42	1	1.4	$42^{A}, 41^{A}$
		500 μg	34	2	1.1	$32^{A}, 35^{A}$
		150 μg	29	4	1.0	$26^{A}, 31^{A}$
		50.0 μg	28	1	0.9	$27^{A}, 29^{A}$
		15.0 µg	26	1	0.9	$27^{A}, 25^{A}$
		5.00 μg	38	6	1.3	$42^{A}, 33^{A}$
		1.50 µg	36	5	1.2	$39^{A}, 32^{A}$
	Water	100 μL	30	4		27 ^A , 32 ^A
TA98	2AA	1.00 μg	267	6	12.7	263 ^A , 271 ^A
TA100	2AA	2.00 μg	861	81	8.8	803 ^A , 918 ^A
TA1535	2AA	1.00 μg	92	0	5.4	$92^{A}, 92^{A}$
TA1537	2AA	$2.00 \mu g$	45	10	4.5	$38^{A}, 52^{A}$
WP2uvrA	2AA	15.0 μg	327	46	10.9	359 ^A , 294 ^A

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PM.503.BTL Study Code: AF28PM Experiment: B2 Date Plated: 6/19/2018 Exposure Method: Plate incorporation assay Evaluation Period: 6/26/2018

Exposure Me	tnod: Plate incorpor	Evaluation Period: 6/26/2018					
Strain	Substance	Dose level	Mean revertants	Standard	Ratio treated /	Individual revertant colony counts and	
Strain	Buostance	per plate	per plate	Deviation	solvent	background codes	
			per prate		Solveill	background codes	
	D 4 1 14						
TT + 00	Potassium salt	5000	1.2		1.0	0A 11A 16A	
TA98	of Hydrolyzed	5000 μg	12	4	1.0	9^{A} , 11^{A} , 16^{A}	
	TAF n=2						
		1500 µg	11	4	0.9	15^{A} , 11^{A} , 8^{A}	
		500 μg	12	4	1.0	9^{A} , 10^{A} , 17^{A}	
		150 μg	12	5	1.0	8 ^A , 18 ^A , 11 ^A	
		50.0 μg	12	5	1.0	8^{A} , 10^{A} , 17^{A}	
	Water	100 μL	12	4		$16^{A}, 9^{A}, 10^{A}$	
	Potassium salt	•					
TA100	of Hydrolyzed	5000 μg	98	6	1.2	93^{A} , 104^{A} , 97^{A}	
IAIUU	TAF n=2	3000 μg	70	U	1.2	75 , 104 , 77	
	1 AT 11-2	1500 μg	74	11	0.9	67 ^A , 68 ^A , 86 ^A	
			7 <i>4</i> 78	10	0.9	89 ^A , 70 ^A , 75 ^A	
		500 μg				89 , 70 , 73 79 ^A , 95 ^A , 98 ^A	
		150 μg	91	10	1.1	79 , 95 , 98	
		50.0 μg	77	5	0.9	76 ^A , 82 ^A , 73 ^A	
	Water	100 μL	85	15		90 ^A , 68 ^A , 97 ^A	
	Potassium salt						
TA1535	of Hydrolyzed	5000 μg	11	4	1.0	6^{A} , 14^{A} , 13^{A}	
	TAF n=2						
		1500 μg	10	4	0.9	7^{A} , 14^{A} , 8^{A}	
		500 μg	9	2	0.8	$11^{A}, 7^{A}, 10^{A}$	
		150 μg	8	5	0.7	3 ^A , 7 ^A , 13 ^A	
		50.0 μg	9	3	0.8	$7^{A}, 7^{A}, 13^{A}$	
	Water	100 μL	11	2	0.0	$10^{A}, 9^{A}, 13^{A}$	
		100 μΕ	11			10 , 7 , 13	
T 1 1 5 2 5	Potassium salt	5000	-	2	0.0	(A (A 2A	
TA1537	of Hydrolyzed	5000 μg	5	2	0.8	$6^{A}, 6^{A}, 3^{A}$	
	TAF n=2					Δ Δ - Δ	
		1500 µg	5	2	0.8	$7^{A}, 5^{A}, 3^{A}$	
		500 μg	7	2	1.2	8 ^A , 5 ^A , 8 ^A	
		150 µg	8	2	1.3	$7^{A}, 8^{A}, 10^{A}$	
		50.0 μg	8	1	1.3	9 ^A , 7 ^A , 7 ^A 5 ^A , 6 ^A , 6 ^A	
	Water	100 μL	6	1		$5^{A}, 6^{A}, 6^{A}$	
		* * 1 * *	-			, - , -	

A: Automatic count

TABLE 3 (CONT.) Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PM.503.BTL Study Code: AF28PM
Experiment: B2 Date Plated: 6/19/2018
Exposure Method: Plate incorporation assay Evaluation Period: 6/26/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
WP2uvrA	Potassium salt of Hydrolyzed TAF n=2	5000 μg	37	5	1.2	31 ^A , 40 ^A , 39 ^A
		1500 μg	33	4	1.1	$36^{A}, 33^{A}, 29^{A}$
		500 μg	34	6	1.1	$29^{A}, 41^{A}, 32^{A}$
		150 μg	38	5	1.2	$38^{A}, 43^{A}, 33^{A}$
		50.0 μg	33	11	1.1	32^{A} , 44^{A} , 22^{A}
	Water	100 μL	31	3		$33^{A}, 32^{A}, 27^{A}$
TA98	2NF	1.00 µg	55	13	4.6	50 ^A , 70 ^A , 46 ^A
TA100	SA	1.00 μg	761	27	9.0	766^{A} , 785^{A} , 732^{A}
TA1535	SA	1.00 μg	519	38	47.2	524 ^A , 479 ^A , 555 ^A
TA1537	9AAD	75.0 μg	684	2	114.0	685^{A} , 684^{A} , 682^{A}
WP2uvrA	MMS	$1000 \mu g$	493	42	15.9	448 ^A , 530 ^A , 502 ^A

Key to Positive Controls

2NF 2-nitrofluorene SA sodium azide 9AAD 9-Aminoacridine MMS methyl methanesulfonate

^A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PM.503.BTL Experiment: B2 Exposure Method: Plate incorporation assay Study Code: AF28PM Date Plated: 6/19/2018 Evaluation Period: 6/26/2018

Strain	Substance	Dose level per plate Mean revertants per plate		Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Potassium salt of Hydrolyzed TAF n=2	5000 μg	12	5	0.6	7 ^A , 15 ^A , 15 ^A
	1741 11 2	1500 μg	19	2	1.0	$18^{A}, 21^{A}, 17^{A}$
		500 μg	19	2	1.0	18^{A} , 18^{A} , 21^{A}
		150 μg	16	6	0.8	$10^{A}, 17^{A}, 22^{A}$
		50.0 μg	19	3	1.0	22^{A} , 16^{A} , 19^{A}
	Water	100 μL	20	5		23^{A} , 14^{A} , 22^{A}
	Potassium salt					
TA100	of Hydrolyzed TAF n=2	5000 μg	110	2	1.3	112 ^A , 111 ^A , 108 ^A
		1500 μg	104	17	1.2	122^{A} , 101^{A} , 88^{A}
		500 μg	102	10	1.2	$109^{A}, 107^{A}, 91^{A}$
		150 μg	87	12	1.0	78^{A} , 83^{A} , 100^{A}
		50.0 μg	93	7	1.1	101 ^A , 89 ^A , 89 ^A
	Water	100 μL	86	3		88 ^A , 82 ^A , 88 ^A
TA1535	Potassium salt of Hydrolyzed TAF n=2	5000 μg	7	4	0.6	3 ^A , 7 ^A , 11 ^A
		1500 μg	12	3	1.1	9^{A} , 13^{A} , 14^{A}
		500 μg	13	4	1.2	$16^{A}, 13^{A}, 9^{A}$
		150 μg	13	4	1.2	17^{A} , 13^{A} , 10^{A}
		50.0 μg	15	4	1.4	11^{A} , 16^{A} , 18^{A}
	Water	100 μL	11	4		13 ^A , 6 ^A , 13 ^A
TA1537	Potassium salt of Hydrolyzed TAF n=2	5000 μg	7	3	1.2	10 ^A , 5 ^A , 7 ^A
		1500 μg	9	1	1.5	$10^{A}, 8^{A}, 9^{A}$
		500 μg	6	2	1.0	3 ^A , 7 ^A , 7 ^A 5 ^A , 3 ^A , 6 ^A 5 ^A , 9 ^A , 6 ^A
		150 μg	5	2	0.8	$5^{A}, 3^{A}, 6^{A}$
		50.0 μg	7	2	1.2	$5^{A}, 9^{A}, 6^{A}$
	Water	100 μL	6	3		6 ^A , 9 ^A , 3 ^A

A: Automatic count

TABLE 4 (CONT.) Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PM.503.BTL Study Code: AF28PM
Experiment: B2 Date Plated: 6/19/2018
Exposure Method: Plate incorporation assay Evaluation Period: 6/26/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
WP2uvrA	Potassium salt of Hydrolyzed TAF n=2	5000 μg	34	2	1.0	33 ^A , 36 ^A , 33 ^A
		1500 μg	32	1	1.0	$32^{A}, 31^{A}, 32^{A}$
		500 μg	34	9	1.0	$41^{A}, 24^{A}, 38^{A}$
		150 µg	34	4	1.0	$32^{A}, 39^{A}, 32^{A}$
		50.0 μg	35	6	1.1	$30^{A}, 33^{A}, 42^{A}$
	Water	100 μL	33	1		$32^{A}, 34^{A}, 34^{A}$
TA98	2AA	1.00 µg	212	30	10.6	204 ^A , 245 ^A , 186 ^A
TA100	2AA	2.00 μg	572	22	6.7	568 ^A , 595 ^A , 552 ^A
TA1535	2AA	1.00 µg	74	1	6.7	74^{A} , 75^{A} , 74^{A}
TA1537	2AA	2.00 μg	59	10	9.8	$48^{A}, 63^{A}, 67^{A}$
WP2uvrA	2AA	15.0 μg	262	33	7.9	262 ^A , 295 ^A , 229 ^A

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

13	API	PEND	IX I. I	Historica	l Control	Data

Historical Negative and Positive Control Values 2016

revertants per plate

			Activation										
Strain	Control	None						Rat Liver					
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL		
TA00	Neg	15	5	6	34	5-25	22	6	8	42	10-34		
TA98	Pos	198	174	36	1826		287	159	47	1916			
TA 100	Neg	90	12	60	146	66-114	94	14	63	181	66-122		
TA100	Pos	629	159	186	1383		620	294	192	3483			
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20		
1A1333	Pos	541	164	34	1082		150	122	27	1114			
TA1537	Neg	8	3	1	21	2-14	9	3	2	23	3-15		
1A1337	Pos	368	227	21	1791		91	90	17	951			
WP2 uvrA	Neg	24	7	7	44	10-38	27	7	8	51	13-41		
WFZ UVFA	Pos	336	119	25	876		300	111	41	1059			

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendment

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PM.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

 Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add:

The doses will be 5000, 1500, 500, 150 and 50.0 µg per plate.

Reason: To specify the dose levels to be used for the confirmatory mutagenicity assay based on the toxicity and precipitate profiles observed in the initial toxicity-mutation assay.

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PM.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT

Sponsor Representative

19 304

Page 2 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PM.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Emily Dakoulas, BS

BioReliance Study Director

Date

BioReliance Study Management

Date

Protocol

Study Title Bacterial Reverse Mutation Assay

Study Director Emily Dakoulas, BS

Testing Facility BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number AF28PM.503.BTL

1. KEY PERSONNEL Sponsor Information:

Sponsor The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Shawn Gannon, Ph.D., DABT

Sponsor Number C30049

Sponsor's Authorized

Representative The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Phone: 302-773-1376

Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Study Director Emily Dakoulas, BS

BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality Luleayenwa (Lula) Aberra-Degu, RQAP-GLP

Assurance Representative BioReliance Corporation Phone: 301-610-2667

Email: Luleayenwa.aberra-degu@sial.com

2. TEST SCHEDULE

Proposed Experimental Initiation Date 05-June-2018
Proposed Experimental Completion Date 03-July-2018
Proposed Report Date 18-July-2018

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

• US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices. and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

Release Date: 23Apr2018 Page 2 of 13 503.BTL

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. QUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed QA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator, Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director, Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 uvrA in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification Potassium salt of Hydrolyzed TAF n=2

CAS No. 39492-89-2

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

Purity 95% (no correction factor will be used for dose formulations)

Molecular Weight 350.13 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below; unless the test substance is used on another study.

Alex Petlick The Chemours Company 200 Powder Mill Rd Experimental Station E402/5317 Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be discarded after use.

7. TEST SYSTEM

The tester strains will include the *S. typhimurium* histidine auxotropbs TA98, TA100, TA1535 and TA1537 as described by Ames *et al.* (1975) and the *E. coli* tester strain WP2 uvrA as described by Green and Muriel (1976). The genotypes of strains are as follows:

Histidine Mutation			Tryptophan Mutation	Add	ditional Mu	tations
hisG46	hisC3076	hisD3052	trpE	LPS	Repair	R-factor
TA1535	TA1537	-	*	rfa	ΔuvrB	-
TA100	-	TA98	-	rfa	$\Delta uvrB$	+R
_	-	-	WP2 uvrA	-	$\Delta uvrA$	-

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California, Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

Release Date: 23Apr2018

Page 4 of 13

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acetone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/mL for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test substance, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellct(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}$ C.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from incubation at a density of approximately 10^9 cells/mL.

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dose level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MoITox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018 Page 5 of 13

100 mM phosphate buffer at pH 7.4

S9 Mix

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
B-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test substance.

Strain	Positive Control	S 9	Concentrations (µg/plate)
Salmonella strains	2-aminoanthracene ^B	+	1.0 - 2.0
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20
TA98	2-nitrofluorene ^B	_	1.0
TA100, TA1535	sodium azide ^A	_	1.0
TA1537	9-aminoacridine ^B	_	75
WP2 uvrA	methyl methanesulfonate ^B	_	1,000

^APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

BPrepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 *uvr*A will be exposed to vehicle alone and at least eight concentrations of test substance, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 μg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 μg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 μg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test substance, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will be at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, 100 μ L of tester strain and 50.0 μ L of vehicle, test substance dilution or positive control will be added to 2.0 mL of molten selective top agar at 45±2°C. When necessary, aliquots of other than 50.0 μ L of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test substance, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at 37±2°C. Plates that are not counted immediately following the incubation period will be stored at 2-8°C.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018 Page 7 of 13 503.BTL

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *uvr*B mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *uvr*A mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

95% Control Limits (99% Upper Limit)								
TA98 TA100 TA1535 TA1537 WP2 w								
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)			
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)			
With Study Director justification, values including the 99% control limit and above are acceptable.								

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicit

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018

Page 8 of 13

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that less than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but lacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not be limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

12 REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- Test substance
- Vehicle
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- Test conditions
- Results
- · Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- Copy of the protocol and any amendment
- Contributing reports (if applicable)
- Information about the analyses that characterized the test substance, its stability and the stability and strength of the dosing preparations, if provided by the Sponsor
- · Statement of Compliance
- Quality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames, B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muriel, W.J. (1976). Mutagen testing using trp⁺ reversion in *Escherichia coli*. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the Salmonella Mutagenicity Test, Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella/*microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997

Version No. 3

Release Date: 23Apr2018

Page 11 of 13

BioReliance Study Number: AF28PM.503.BTL

Sponsor Number: C30049

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT Sponsor Representative

SMay 2018
Date

Version No. 3 Release Date: 23Apr2018

Page 12 of 13

Study Director and Test Facility Management Approvals

Rio Reliance Study Director

Date

Date

BioReliance Study Management

01-JUN-18 Date

Version No. 3 Release Date: 23Apr2018

Page 13 of 13

15.	APPENDIX III: Common Technical Document Tables

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

Cytotoxic Effects: None Genotoxic Effects: None **Test Substance:** Potassium salt of Hydrolyzed TAF n=2

No. of Independent Assays: 2 Study No.: AF28PM.503.BTL

No. of Replicate Cultures: 2 (B1) No. Cells Analyzed/Culture: 0.8 to 2.9 x 10⁸ cells per and 3 (B2)

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 05 June 2018 (B1) and

19 June 2018 (B2)

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B1: Initial Toxicity-Mutation Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	<u>WP2uvrA</u>
Without	Water	100 μL/plate	16 ± 1	90 ± 1	13 ± 0	8 ± 1	32 ± 6
Activation	Potassium salt of Hydrolyzed TAF n=2	1.50	14 ± 1	94 ± 6	10 ± 1	5 ± 0	32 ± 4
	•	5.00	14 ± 6	80 ± 12	11 ± 5	6 ± 0	30 ± 1
		15.0	12 ± 5	76 ± 8	10 ± 0	7 ± 1	45 ± 13
		50.0	11 ± 5	88 ± 8	14 ± 7	7 ± 0	36 ± 3
		150	14 ± 0	90 ± 16	12 ± 2	5 ± 3	32 ± 8
		500	16 ± 1	83 ± 0	9 ± 1	8 ± 0	36 ± 4
		1500	13 ± 5	87 ± 1	11 ± 4	6 ± 1	37 ± 8
		5000	12 ± 4	94 ± 4	12 ± 1	7 ± 2	29 ± 7
	2NF	1.00	71 ± 28				
	SA	1.00		642 ± 30	599 ± 20		
	9AAD	75.0				1029 ± 19	
	MMS	1000					502 ± 50
With	Water	100 μL/plate	21 ± 0	98 ± 12	17 ± 2	10 ± 4	30 ± 4
Activation	Potassium salt of Hydrolyzed TAF n=2	1.50	15 ± 1	91 ± 1	10 ± 0	6 ± 4	36 ± 5
	•	5.00	16 ± 2	107 ± 1	10 ± 4	8 ± 1	38 ± 6
		15.0	11 ± 1	109 ± 3	12 ± 2	8 ± 1	26 ± 1
		50.0	18 ± 2	104 ± 19	15 ± 3	7 ± 1	28 ± 1
		150	20 ± 1	87 ± 8	16 ± 1	10 ± 0	29 ± 4
		500	21 ± 5	98 ± 8	17 ± 4	10 ± 2	34 ± 2
		1500	21 ± 4	114 ± 14	17 ± 2	7 ± 0	42 ± 1
		5000	16 ± 1	109 ± 4	8 ± 3	5 ± 2	30 ± 8
	2AA	1.00	267 ± 6		92 ± 0		
	2AA	2.00		861 ± 81		45 ± 10	
	2AA	15.0					327 ± 46
Key to Posi	itive Controls						
SA	sodium azide			2NF	2-nitrofluorene		
2AA 9AAD	2-aminoanthracene 9-Aminoacridine			MMS	methyl methanesulfonate		

Metabolic Activation	Test Substance	Dose Level (μg/plate)					
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	12 ± 4	85 ± 15	11 ± 2	6 ± 1	31 ± 3
Activation	Potassium salt of Hydrolyzed TAF n=2	50.0	12 ± 5	77 ± 5	9 ± 3	8 ± 1	33 ± 11
		150	12 ± 5	91 ± 10	8 ± 5	8 ± 2	38 ± 5
		500	12 ± 4	78 ± 10	9 ± 2	7 ± 2	34 ± 6
		1500	11 ± 4	74 ± 11	10 ± 4	5 ± 2	33 ± 4
		5000	12 ± 4	98 ± 6	11 ± 4	5 ± 2	37 ± 5
	2NF	1.00	55 ± 13				
	SA	1.00		761 ± 27	519 ± 38		
	9AAD	75.0				684 ± 2	
	MMS	1000					493 ± 42
With	Water	100 μL/plate	20 ± 5	86 ± 3	11 ± 4	6 ± 3	33 ± 1
Activation	Potassium salt of Hydrolyzed TAF n=2	50.0	19 ± 3	93 ± 7	15 ± 4	7 ± 2	35 ± 6
	11) 0101) 200 1111 11 2	150	16 ± 6	87 ± 12	13 ± 4	5 ± 2	34 ± 4
		500	19 ± 2	102 ± 10	13 ± 4	6 ± 2	34 ± 9
		1500	19 ± 2	104 ± 17	12 ± 3	9 ± 1	32 ± 1
		5000	12 ± 5	110 ± 2	7 ± 4	7 ± 3	34 ± 2
	2AA	1.00	212 ± 30		74 ± 1		
	2AA	2.00		572 ± 22		59 ± 10	
	2AA	15.0					262 ± 33
Key to Posi	tive Controls						

SA sodium azide
2AA 2-aminoanthracene
9AAD 9-Aminoacridine
2NF 2-nitrofluorene
MMS methyl methanesulfonate

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

Sodium salt of Hydrolyzed TAF n=1

<u>Author</u>

Emily Dakoulas, BS

Study Completion Date

27 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PN.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 48

1. STATEMENT OF COMPLIANCE

Study No. AF28PN.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

Emily Dakoulas, BS

Study Director

2. QUALITY ASSURANCE STATEMENT

Quality Assurance Statement

Study Information

Number: AF28PN.503.BTL

Compliance

Procedures, documentation, equipment and other records were examined in order to assure this study was performed in accordance with the regulation(s) listed below and conducted according to the protocol and relevant Standard Operating Procedures. Verification of the study protocol was performed and documented by Quality Assurance.

US EPA Good Laboratory Standards 40CFR 792

Inspections

Quality Assurance performed the inspections(s) below for this study.

Insp. Dates (From/To)		Phase Inspected	10 Study Directo	To Study Director To Management		
14-Jun-2018	15-Jun-2018	Protocol Review	15-Jun-2018	15-Jun-2018		
19-Jun-2018	19-Jun-2018	Dilution of the test article and/or positive control	20-Jun-2018	20-Jun-2018		
13-Jul-2018	13-Jul-2018	Data/Draft Report	13-Jul-2018	13-Jul-2018		
23-Aug-2018	23-Aug-2018	Final Report	23-Aug-2018	23-Aug-2018		
23-Aug-2018	23-Aug-2018	Protocol Amendment Review	23-Aug-2018	23-Aug-2018		

The Final Report for this study describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

For a multisite study, test site QA Statements are located in the corresponding contributing scientist report.

E-signature

 Quality Assurance:
 Carlos Bonilla

 27-Aug-2018
 6:30 pm

 GMT

Reason for signature: QA Approval

Printed by:Carlos Bonilla Printed on:27-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	16
11.	REFERENCES	17
12.	DATA TABLES	18
13.	APPENDIX I: Historical Control Data	26
14.	APPENDIX II: Study Protocol and Amendment	28
15	APPENDIX III: Common Technical Document Tables	45

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study No.: AF28PN.503.BTL

Sponsor No.: C30049

Test Substance

Identification: Sodium salt of Hydrolyzed TAF n=1

CAS No.: 39492-88-1

Purity: 99.9% (per protocol)

Molecular Weight: 268.03 g/mol

Description: White powder

Storage Conditions: Room temperature, protected from light

Receipt Date: 02 May 2018

Study Dates

Study Initiation Date: 01 June 2018

Experimental Starting Date (first day of

data collection): 01 June 2018

Experimental Start Date (first day test

substance administered to test system): 05 June 2018

Experimental Completion Date: 26 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, Sodium salt of Hydrolyzed TAF n=1, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 μ g per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate Sodium salt of Hydrolyzed TAF n=1 was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendment are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver Sodium salt of Hydrolyzed TAF n=1 to the test system was water.

Vehicle	CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7722 10 5	Ciama Aldmidh	RNBF9658	Sterile-	Mar 2019
water	7732-18-5	Sigma-Aldrich	RNBG4913	filtered	Dec 2019

To achieve a solution, the most concentrated dilution was sonicated at 21.4°C for 1 minute in the initial toxicity-mutation assay. Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain	S9 Activation	Positive Control	Concentration (µg/plate)
TA98, TA1535		2-aminoanthracene	1.0
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	2.0
,	Rat	Lot No. STBD3302V	
WP2 uvrA		Exp. Date 30-Nov-2019 CAS No. 613-13-8	15
WIZUVIA			13
		Purity 97.5% 2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.)	
TA98	None	Lot No. S43858V Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%	1.0
TA100, TA1535		sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	1.0
TA1537		9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Lot No. BCBK1177V Exp. Date 31-Mar-2019 CAS No. 52417-22-8 Purity 99.5%	75
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}$ C for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^9 cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020; Lot No. 3961, Exp. Date: 15 May 2020) was purchased

commercially from MolTox (Boone, NC). Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration		
β-nicotinamide-adenine dinucleotide phosphate	4 mM		
Glucose-6-phosphate	5 mM		
Potassium chloride	33 mM		
Magnesium chloride	8 mM		
Phosphate Buffer (pH 7.4)	100 mM		
S9 homogenate	10% (v/v)		

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983).

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and five dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

	Medium			
Component	Minimal top agar	Minimal	Nutrient	Nutrient
Component	willilliai top agai	bottom agar	bottom agar	broth
		Concentration is	n Medium	
BBL Select agar (W/V)	0.8% (W/V)			
Vogel-Bonner minimal medium E		1.5% (W/V)	1.5% (W/V)	
Sodium chloride	0.5% (W/V)			
L-histidine, D-biotin and	50 mM each			
L-tryptophan solution	30 milyi cacii			
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)			1
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)
Vogel-Bonner salt solution				Supplied at 20 mL/L

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for 48 to 72 hours at $37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics			
1 or no code	Normal	Distinguished by a healthy microcolony lawn.			
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.			
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn resulting in a pronounced increase in the size of the microcolonies compared to the vehicle control plate.			
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.			
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.			
6	Obscured by Particulate	The background bacterial lawn cannot be accurately evaluated due to microscopic test substance particulate.			
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).			
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.			

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers.

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

	95% Control Limits (99% Upper Limit)						
	TA98 TA100 TA1535 TA1537 WP2 uvr.						
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)		
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)		
XX7'.1	W'.1 C. 1 D'						

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel 2007 (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

No deviations from the protocol or assay-method SOPs occurred during the conduct of this study.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

	Tester Strain					
Experiment	TA98	TA100	TA1535	TA1537	WP2 uvrA	
	Titer Value (x 10 ⁹ cells per mL)					
B1	2.2	1.0	0.8	1.5	2.9	
B2	1.2	1.1	1.5	1.9	2.8	

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

Neither precipitate nor toxicity was observed.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and <u>4</u>. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 50.0, 150, 500, 1500 and 5000 µg per plate.

Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Sodium salt of Hydrolyzed TAF n=1 did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

BioReliance Study No. AF28PN.503.BTL

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella* Mutagenicity Test, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PN.503.BTL Study Code: AF28PN Experiment: B1 Date Plated: 6/5/2018

Exposure Method: Plate incorporation assay Evaluation Period: 6/11/2018

Exposure Method: Plate incorporation assay			Evaluation Period: 6/11/2018			
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
	G 11 1 1					
TA98	Sodium salt of Hydrolyzed TAF n=1	5000 μg	11	4	0.8	8 ^A , 14 ^A
	TAP II-I	1500 μg	19	6	1.4	15 ^A , 23 ^A
		500 μg	14	1	1.0	15 ^A , 13 ^A
		150 μg	11	5	0.8	7 ^A , 14 ^A
		50.0 μg	14	6	1.0	10 ^A 18 ^A
		30.0 μg 15.0 μg	12	3	0.9	10 ^A , 18 ^A 10 ^A , 14 ^A
		5.00 μg	9	0	0.6	0 ^A 0 ^A
		3.00 μg 1.50 μg	10	1	0.7	9 ^A , 9 ^A 9 ^A , 10 ^A
	Water	1.50 μg 100 μL	14	4	0.7	16 ^A , 11 ^A
		100 μL	17	7		10 , 11
	Sodium salt of					- · A - · A
TA100	Hydrolyzed	5000 μg	90	8	1.1	84 ^A , 95 ^A
	TAF n=1					
		1500 μg	78	3	1.0	$80^{A}, 76^{A}$
		500 μg	79	4	1.0	76 ^A , 81 ^A 87 ^A , 89 ^A
		150 µg	88	1	1.1	$87^{A}, 89^{A}$
		50.0 μg	88	11	1.1	96 ^A , 80 ^A
		15.0 μg	75	11	0.9	$67^{A}, 83^{A}$
		5.00 μg	85	2	1.1	$83^{A}, 86^{A}$
		1.50 µg	80	21	1.0	$95^{A}, 65^{A}$
	Water	100 μL	79	11		$71^{A}, 86^{A}$
	Sodium salt of	•				
TA1535	Hydrolyzed	5000 μg	10	6	0.8	$6^{A}, 14^{A}$
1A1333	TAF n=1	3000 μg	10	U	0.0	0,14
	IAI II-I	1500 μg	10	0	0.8	$10^{A}, 10^{A}$
		500 μg	13	$\stackrel{o}{o}$	1.0	13 ^A , 13 ^A
		300 μg 150 μg	9	$\frac{\sigma}{I}$	0.7	8 ^A , 10 ^A
		130 μg 50.0 μg	9 13	$\frac{1}{2}$	0.7 1.0	8,10 14 ^A ,11 ^A
			13 12		0.9	14, 11 13 ^A , 11 ^A
		15.0 μg		1		
		5.00 μg	7	0	0.5	7 ^A , 7 ^A 16 ^A , 5 ^A
	TT 7 4	1.50 μg	11	8	0.8	
	Water	100 μL	13	2		11 ^A , 14 ^A

Key to Automatic Count Flags

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PN.503.BTL Study Code: AF28PN Experiment: B1 Date Plated: 6/5/2018

Exposure Method: Plate incorporation assay Evaluation Period: 6/11/2018

Strain Substance		Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA1537	Sodium salt of Hydrolyzed TAF n=1	5000 μg	6	0	1.0	6 ^A , 6 ^A
		1500 μg	5	3	0.8	$7^{A}, 3^{A}$
		500 μg	7	0	1.2	$7^{A}, 7^{A}$
		150 μg	5	2	0.8	3 ^A 6 ^A
		50.0 μg	6	1	1.0	6 ^A , 5 ^A 6 ^A , 8 ^A
		15.0 µg	7	1	1.2	$6^{A}, 8^{A}$
		5.00 μg	7	0	1.2	7 ^A , 7 ^A
		1.50 µg	7	1	1.2	6 ^A , 7 ^A 3 ^A , 9 ^A
	Water	100 μL	6	4		$3^{A}, 9^{A}$
WP2uvrA	Sodium salt of Hydrolyzed TAF n=1	5000 μg	35	0	1.0	35 ^A , 35 ^A
		1500 μg	36	6	1.1	$31^{A}, 40^{A}$
		500 μg	31	5	0.9	34 ^A , 27 ^A
		150 μg	34	7	1.0	$39^{A}, 29^{A}$
		50.0 μg	30	4	0.9	$32^{A}, 27^{A}$
		15.0 μg	38	12	1.1	46 ^A , 29 ^A
		5.00 μg	35	13	1.0	$26^{A}, 44^{A}$
		1.50 µg	36	15	1.1	$25^{A}, 46^{A}$
	Water	100 μL	34	1		$33^{A}, 34^{A}$
TA98	2NF	1.00 μg	69	21	4.9	83 ^A , 54 ^A
TA100	SA	1.00 μg	600	35	7.6	$575^{A}, 625^{A}$
TA1535	SA	1.00 μg	564	21	43.4	549 ^A , 579 ^A
TA1537	9AAD	75.0 μg	858	120	143.0	773 ^A , 943 ^A
WP2uvrA	MMS	1000 μg	513	25	15.1	531 ^A , 495 ^A

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PN.503.BTL Study Code: AF28PN Experiment: B1 Date Plated: 6/5/2018

Exposure Method: Plate incorporation assay Evaluation Period: 6/11/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of Hydrolyzed TAF n=1	5000 μg	16	1	0.8	15 ^A , 17 ^A
		1500 μg	29	4	1.4	$26^{A}, 32^{A}$
		500 μg	23	1	1.1	22 ^A , 24 ^A
		150 µg	16	3	0.8	18 ^A , 14 ^A
		50.0 μg	17	0	0.8	$17^{A}, 17^{A}$
		15.0 μg	22	5	1.0	$25^{A}, 18^{A}$
		5.00 μg	17	8	0.8	$22^{A}, 11^{A}$
		1.50 μg	18	2	0.9	$19^{A}, 16^{A}$
	Water	100 μL	21	8		$15^{A}, 26^{A}$
	Sodium salt of					
TA100	Hydrolyzed TAF n=1	5000 μg	108	7	1.1	103 ^A , 113 ^A
		1500 μg	104	15	1.0	93 ^A , 114 ^A
		500 μg	98	1	1.0	97 ^A , 99 ^A
		150 µg	125	23	1.2	108 ^A , 141 ^A
		50.0 μg	106	1	1.0	$107^{A}, 105^{A}$
		15.0 μg	101	4	1.0	$103^{A}, 98^{A}$
		5.00 μg	102	6	1.0	$106^{A}, 98^{A}$
		1.50 µg	98	4	1.0	$100^{A}, 95^{A}$
	Water	100 μL	101	7		$106^{A}, 96^{A}$
	Sodium salt of					
TA1535	Hydrolyzed TAF n=1	5000 μg	18	6	1.3	13 ^A , 22 ^A
	-/	1500 μg	12	2	0.9	$13^{A}, 10^{A}$
		500 μg	12	3	0.9	10 ^A , 14 ^A
		150 μg	13	6	0.9	9 ^A , 17 ^A
		50.0 μg	13	4	0.9	16^{A} , 10^{A}
		15.0 μg	12	4	0.9	9 ^A , 14 ^A
		5.00 μg	11	4	0.8	$8^{A}, 13^{A}$
		1.50 µg	7	1	0.5	9 ^A , 14 ^A 8 ^A , 13 ^A 6 ^A , 8 ^A
	Water	100 μL	14	5		$10^{A}, 17^{A}$

A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PN.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PN Date Plated: 6/5/2018

Evaluation Period: 6/11/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA1537	Sodium salt of Hydrolyzed TAF n=1	5000 μg	5	2	0.8	6 ^A , 3 ^A
		1500 μg	8	1	1.3	$9^{A}, 7^{A}$
		500 μg	4	3	0.7	$2^{A}, 6^{A}$
		150 μg	7	2	1.2	$5^{A}, 8^{A}$
		50.0 μg	4	2	0.7	5 ^A , 8 ^A 5 ^A , 2 ^A
		15.0 μg	4	1	0.7	5 ^A , 3 ^A 6 ^A , 5 ^A 6 ^A , 3 ^A
		5.00 μg	6	1	1.0	$6^{A}, 5^{A}$
		1.50 µg	5	2	0.8	$6^{A}, 3^{A}$
	Water	100 μL	6	1		$6^{A}, 5^{A}$
WP2uvrA	Sodium salt of Hydrolyzed TAF n=1	5000 μg	35	1	1.2	34 ^A , 36 ^A
		1500 μg	37	8	1.2	$31^{A}, 42^{A}$
		500 μg	32	1	1.1	$32^{A}, 31^{A}$
		150 μg	30	1	1.0	$29^{A}, 31^{A}$
		50.0 μg	29	4	1.0	$31^{A}, 26^{A}$
		15.0 μg	29	6	1.0	$33^{A}, 24^{A}$
		5.00 μg	31	1	1.0	$31^{A}, 30^{A}$
		1.50 μg	33	11	1.1	$25^{A}, 41^{A}$
	Water	100 μL	30	4		$27^{A}, 32^{A}$
TA98	2AA	1.00 µg	239	19	11.4	225 ^A , 252 ^A
TA100	2AA	$2.00 \mu g$	547	7	5.4	552 ^A , 542 ^A
TA1535	2AA	1.00 μg	83	6	5.9	$87^{A}, 79^{A}$
TA1537	2AA	2.00 μg	70	26	11.7	88 ^A , 51 ^A
WP2uvrA	2AA	15.0 μg	247	16	8.2	235 ^A , 258 ^A

Key to Positive Controls

2AA 2-aminoanthracene

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PN.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PN

Date Plated: 6/19/2018

Evaluation Period: 6/26/2018

	mod. I late meorpor	Dose level	Mean	Standard	Ratio	Individual revertant
Strain	Substance		revertants	Deviation	treated /	colony counts and
		per plate	per plate	Deviation	solvent	background codes
	Sodium salt of					
TA98	Hydrolyzed	5000 μg	13	3	1.0	16^{A} , 13^{A} , 11^{A}
	TAF n=1					
		1500 μg	13	5	1.0	18 ^A , 8 ^A , 13 ^A
		500 μg	11	3	0.8	8 ^A , 13 ^A , 13 ^A
		150 µg	13	3	1.0	11^{A} , 16^{A} , 13^{A}
		50.0 μg	13	4	1.0	$10^{A}, 17^{A}, 13^{A}$
	Water	100 μL	13	2		14 ^A , 14 ^A , 11 ^A
	Sodium salt of					
TA100	Hydrolyzed	5000 μg	73	22	0.9	$68^{A}, 55^{A}, 97^{A}$
	TAF n=1	. 0				
		1500 μg	89	9	1.2	$89^{A}, 81^{A}, 98^{A}$
		500 μg	92	6	1.2	92^{A} , 86^{A} , 98^{A}
		150 μg	83	3	1.1	$80^{A}, 82^{A}, 86^{A}$
		50.0 μg	83	8	1.1	76^{A} , 83^{A} , 91^{A}
	Water	100 μL	77	9		$87^{A}, 72^{A}, 71^{A}$
	Sodium salt of					
TA1535	Hydrolyzed	5000 μg	12	4	1.0	8^{A} , 15^{A} , 14^{A}
	TAF n=1	1.8				- , - ,
		1500 μg	10	4	0.8	13^{A} , 11^{A} , 6^{A}
		500 μg	9	2	0.8	9^{A} , 11^{A} , 7^{A}
		150 μg	16	1	1.3	16^{A} , 17^{A} , 16^{A}
		50.0 μg	10	5	0.8	6^{A} , 15^{A} , 10^{A}
	Water	100 μL	12	3		$13^{A}, 9^{A}, 14^{A}$
	Sodium salt of	·				
TA1537	Hydrolyzed	5000 μg	4	2	0.8	$3^{A}, 3^{A}, 6^{A}$
	TAF n=1					,- ,-
		1500 μg	5	0	1.0	$5^{A}, 5^{A}, 5^{A}$
		500 μg	7	2	1.4	$7^{A}, 5^{A}, 9^{A}$
		150 μg	7	4	1.4	11 ^A , 3 ^A , 6 ^A
		50.0 μg	6	3	1.2	6 ^A , 3 ^A , 9 ^A 3 ^A , 6 ^A , 6 ^A
	Water	100 μL	5	2	-· -	2 A . C A . C A

A: Automatic count

TABLE 3 (CONT.) Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PN.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PN

Date Plated: 6/19/2018

Evaluation Period: 6/26/2018

	nous race meorpor	E variation 1 0110 a. 0/20/2010					
Strain	Strain Substance Dose level per plate		Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
WP2uvrA	Sodium salt of Hydrolyzed TAF n=1	5000 μg	35	1	1.1	36 ^A , 35 ^A , 35 ^A	
		1500 μg 500 μg 150 μg	37 34 40	4 6 9	1.1 1.0 1.2 0.7	42 ^A , 34 ^A , 36 ^A 31 ^A , 41 ^A , 31 ^A 41 ^A , 48 ^A , 31 ^A 15 ^A , 24 ^A , 32 ^A	
	Water	50.0 μg 100 μL	24 33	9	0.7	35 ^A , 30 ^A , 34 ^A	
TA98 TA100 TA1535 TA1537 WP2uvrA	2NF SA SA 9AAD MMS	1.00 μg 1.00 μg 1.00 μg 75.0 μg 1000 μg	52 653 590 521 462	14 24 30 129 38	4.0 8.5 49.2 104.2 14.0	40 ^A , 48 ^A , 67 ^A 627 ^A , 657 ^A , 675 ^A 611 ^A , 603 ^A , 556 ^A 388 ^A , 529 ^A , 645 ^A 487 ^A , 418 ^A , 480 ^A	

Key to Positive Controls

2NF 2-nitrofluorene SA sodium azide 9AAD 9-Aminoacridine MMS methyl methanesulfonate

A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PN.503.BTL Study Code: AF28PN
Experiment: B2 Date Plated: 6/19/2018
Exposure Method: Plate incorporation assay Evaluation Period: 6/26/2018

Strain Substance Dose level per plate Propertion Provided per plate Standard Deviation Standard Solvent Solve	Exposure Method. I fate incorporation assay				Evaluation 1 chod. 0/20/2016				
TA98	Strain	Strain Substance		revertants		treated /	colony counts and		
TA98									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TA98	Hydrolyzed	5000 μg	14	1	1.0	15 ^A , 14 ^A , 14 ^A		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1500 по	15	2	11	$17^{A} 13^{A} 14^{A}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							17 ^A 15 ^A 9 ^A		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							16 ^A 22 ^A 14 ^A		
TA100 Hydrolyzed 5000 μg 94 5 0.9 88Å, 98Å, 96Å TAF n=1							22A 12A 17A		
TA100 Hydrolyzed 5000 μg 94 5 0.9 88Å, 98Å, 96Å TAF n=1		XX7 - 4				1.2	22 , 13 , 17		
TA100 Hydrolyzed TAF n=1			100 μL	14			10 , 13 , 14		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TA100	Hydrolyzed	5000 μg	94	5	0.9	88 ^A , 98 ^A , 96 ^A		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1500 ug	02	10	0.0	08A 81A 07A		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Water 100 μL 100 7 96 ^A , 108 ^A , 97 ^A Sodium salt of Hydrolyzed TAF n=1 1500 μg 13 5 1.3 18 ^A , 10 ^A , 10 ^A 1500 μg 8 2 0.8 9 ^A , 9 ^A , 5 ^A 150 μg 10 4 1.0 8 ^A , 14 ^A , 7 ^A 50.0 μg 8 2 0.8 8 ^A , 7 ^A , 10 ^A Water 100 μL 10 2 11 ^A , 11 ^A , 8 ^A Sodium salt of Hydrolyzed TAF n=1 1500 μg 5 2 0.8 6 ^A , 2 ^A , 6 ^A 500 μg 6 1 1.0 7 ^A , 5 ^A , 5 ^A 150 μg 5 3 0.8 9 ^A , 3 ^A , 3 ^A 50.0 μg 7 2 1.2 5 ^A , 6 ^A , 9 ^A							01A 00A 07A		
TA1535 Hydrolyzed 5000 μg 13 5 1.3 18^{A} , 10^{A} , 10^{A} TAF n=1 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		33 7 4				0.9			
TA1535 Hydrolyzed TAF n=1 $1500 \mu g$ 13 5 1.3 $18^{A}, 10^{A}, 10^{A}$ 10^{A} $1500 \mu g$ 12 1 1.2 $11^{A}, 13^{A}, 11^{A}$ $1500 \mu g$ 8 2 0.8 $9^{A}, 9^{A}, 5^{A}$ $150 \mu g$ 10 4 1.0 $8^{A}, 14^{A}, 7^{A}$ $50.0 \mu g$ 8 2 0.8 $8^{A}, 7^{A}, 10^{A}$ $100 \mu L$ 10 2 $11^{A}, 11^{A}, 8^{A}$ $100 \mu L$ $100 \mu L$ 10 10 10 10 10 10 10 10		water	100 μL	100	/		961, 1081, 971		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TA1535	Hydrolyzed	5000 μg	13	5	1.3	•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1500 μg	12	1	1.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			500 μg	8	2	0.8			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				10		1.0	$8^{A}, 14^{A}, 7^{A}$		
Water 100 μL 10 2 11 ^A , 11 ^A , 8 ^A Sodium salt of Hydrolyzed 5000 μg 8 3 1.3 11 ^A , 6 ^A , 7 ^A TAF n=1 1500 μg 5 2 0.8 6 ^A , 2 ^A , 6 ^A 500 μg 6 1 1.0 7 ^A , 5 ^A , 5 ^A 150 μg 5 3 0.8 9 ^A , 3 ^A , 3 ^A 50.0 μg 7 2 1.2 5 ^A , 6 ^A , 9 ^A				8		0.8	$8^{A}, 7^{A}, 10^{A}$		
Sodium salt of Hydrolyzed 5000 μg 8 3 1.3 11^{A} , 6^{A} , 7^{A} TAF n=1 1500 μg 5 2 0.8 6^{A} , 2^{A} , 6^{A} 500 μg 6 1 1.0 7^{A} , 5^{A} , 5^{A} 150 μg 5 3 0.8 9^{A} , 3^{A} , 3^{A} 50.0 μg 7 2 1.2 5^{A} , 6^{A} , 9^{A}		Water		10			$11^{A}, 11^{A}, 8^{A}$		
TAF n=1 1500 μg 5 2 0.8 6 ^A , 2 ^A , 6 ^A 500 μg 6 1 1.0 7 ^A , 5 ^A , 5 ^A 150 μg 5 3 0.8 9 ^A , 3 ^A , 3 ^A 50.0 μg 7 2 1.2 5 ^A , 6 ^A , 9 ^A		Sodium salt of	·						
1500 μg 5 2 0.8 6^{A} , 2^{A} , 6^{A} 500 μg 6 1 1.0 7^{A} , 5^{A} , 5^{A} 150 μg 5 3 0.8 9^{A} , 3^{A} , 3^{A} 50.0 μg 7 2 1.2 5^{A} , 6^{A} , 9^{A}	TA1537		5000 μg	8	3	1.3			
500 μg 6 1 1.0 7^{A} , 5^{A} , 5^{A} 150 μg 5 3 0.8 9^{A} , 3^{A} , 3^{A} 50.0 μg 7 2 1.2 5^{A} , 6^{A} , 9^{A}			1500 μg	5	2	0.8	$6^{A}, 2^{A}, 6^{A}$		
$150 \mu g$ 5 3 0.8 $9^{A}, 3^{A}, 3^{A}$ $50.0 \mu g$ 7 2 1.2 $5^{A}, 6^{A}, 9^{A}$							7^{A} , 5^{A} , 5^{A}		
$50.0 \mu g$ 7 2 $1.2 5^{A}, 6^{A}, 9^{A}$							$9^{A}, 3^{A}, 3^{A}$		
Water $100 \mu L$ 6 1 $5^{A} \cdot 7^{A} \cdot 5^{A}$					2		$5^{A}, 6^{A}, 9^{A}$		
		Water	100 μL	6			5 ^A , 7 ^A , 5 ^A		

A: Automatic count

TABLE 4 (CONT.) Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PN.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PN

Date Plated: 6/19/2018

Evaluation Period: 6/26/2018

	nou. I face meetper	E (a cancel 1 e c c c c c c c c c c c c c c c c c c					
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
WP2uvrA	Sodium salt of Hydrolyzed TAF n=1	5000 μg	31	2	1.1	30 ^A , 30 ^A , 34 ^A	
		1500 μg 500 μg 150 μg 50.0 μg	31 34 36 31	3 6 9 3	1.1 1.2 1.2 1.1	33 ^A , 33 ^A , 27 ^A 39 ^A , 36 ^A , 27 ^A 46 ^A , 31 ^A , 30 ^A 29 ^A , 30 ^A , 35 ^A	
	Water	100 μL	29	5	1.1	32 ^A , 23 ^A , 32 ^A	
TA98 TA100 TA1535 TA1537 WP2uvrA	2AA 2AA 2AA 2AA 2AA	1.00 μg 2.00 μg 1.00 μg 2.00 μg 15.0 μg	217 778 74 40 289	15 19 16 6 1	15.5 7.8 7.4 6.7 10.0	218 ^A , 231 ^A , 202 ^A 772 ^A , 763 ^A , 800 ^A 60 ^A , 91 ^A , 72 ^A 35 ^A , 47 ^A , 38 ^A 290 ^A , 290 ^A , 288 ^A	

Key to Positive Controls

2AA 2-aminoanthracene

Key to Automatic & Manual Count Flags

M: Manual count

A: Automatic count

13	A PI	PEND	IX I. I	Historica	l Control	Data

Historical Negative and Positive Control Values 2016

revertants per plate

	1 1										
		Activation									
Strain	Control	None						Rat Liv	ver		
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL
TA00	Neg	15	5	6	34	5-25	22	6	8	42	10-34
TA98	Pos	198	174	36	1826		287	159	47	1916	
TA 100	Neg	90	12	60	146	66-114	94	14	63	181	66-122
TA100	Pos	629	159	186	1383		620	294	192	3483	
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20
1A1333	Pos	541	164	34	1082		150	122	27	1114	
TA1537	Neg	8	3	1	21	2-14	9	3	2	23	3-15
1A1337	Pos	368	227	21	1791		91	90	17	951	
WP2 uvrA	Neg	24	7	7	44	10-38	27	7	8	51	13-41
WFZ UVFA	Pos	336	119	25	876		300	111	41	1059	

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendment

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PN.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

 Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add.

The doses will be 5000, 1500, 500, 150 and 50.0 μg per plate.

Reason: To specify the dose levels to be used for the confirmatory assay based on the toxicity and precipitate profiles observed in the initial toxicity-mutation assay.

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PN.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT

Sponsor Representative

19 Time 248

Page 2 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PN.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Emily Dakoulas, BS

BioReliance Study Director

Date

BioReliance Study Management

Date

Protocol

Study Title **Bacterial Reverse Mutation Assay**

Emily Dakoulas, BS Study Director

BioReliance Corporation Testing Facility

9630 Medical Center Drive

Rockville, MD 20850

BioReliance Study Number AF28PN.503.BTL

Page 1 of 13

1. KEY PERSONNEL

Sponsor Information:

Sponsor The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Shawn Gannon, Ph.D., DABT

Sponsor Number C30049

Sponsor's Authorized

Representative The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899 Phone: 302-773-1376

Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Study Director Emily Dakoulas, BS

BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality Luleayenwa (Lula) Aberra-Degu, RQAP-GLP

Assurance Representative BioReliance Corporation

Phone: 301-610-2667

Email: Luleayenwa.aberra-degu@sial.com

2. TEST SCHEDULE

Proposed Experimental Initiation Date 06-June-2018
Proposed Experimental Completion Date 03-July-2018
Proposed Report Date 18-July-2018

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

• US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices. and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

Release Date: 23Apr2018 Page 2 of 13 503.BTL

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. QUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed OA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator. Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director, Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PHRPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification Sodium salt of Hydrolyzed TAF n=1

CAS No. 39492-88-1

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

Purity 99.9% (no correction factor will be used for dose formulations)

Molecular Weight 268.03 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below; unless the test substance is used on another study.

Alex Petlick The Chemours Company 200 Powder Mill Rd Experimental Station E402/5317 Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be discarded after use.

7. TEST SYSTEM

The tester strains will include the *S. typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames *et al.* (1975) and the *E. coli* tester strain WP2 *uvr*A as described by Green and Muriel (1976). The genotypes of strains are as follows:

His	stidine Mutatio	n	Tryptophan Mutation	Adı	ditional Mu	tations
hisG46	hisC3076	hisD3052	trpE.	LPS	Repair	R-factor
TA1535	TA1537	-	-	rfa	$\Delta uvrB$	-
TA100	-	TA98	-	rfa	$\Delta uvrB$	÷R
-	-	-	WP2 uvrA	-	AuvrA	-

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California, Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

Release Date: 23Apr2018 Page 4 of 13 503.BTL

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acetone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/ml. for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test substance, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellet(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at 37±2°C.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from incubation at a density of approximately 10⁹ cells/ml..

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dose level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MołTox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018 Page 5 of 13 503.BTL

100 mM phosphate buffer at pH 7.4

\$9 Mis

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
B-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test substance.

Strain	Positive Control	S 9	Concentrations (µg/plate)	
Salmonella strains	2-aminoanthracene ^B	+	1.0 - 2.0	
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20	
TA98	2-nitrofluorene ^B	_	1.0	
TA100, TA1535	sodium azide ^A	_	1.0	
TA1537	9-aminoacridine ^B	_	75	
WP2 uvrA	methyl methanesulfonate ^B	_	1,000	

APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

503.BTL

^BPrepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 wvr A will be exposed to vehicle alone and at least eight concentrations of test substance, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 μg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 μg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 μg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test substance, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will be at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, 100 μ L of tester strain and 50.0 μ L of vehicle, test substance dilution or positive control will be added to 2.0 mL of molten selective top agar at 45±2°C. When necessary, aliquots of other than 50.0 μ L of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test substance, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at 37±2°C. Plates that are not counted immediately following the incubation period will be stored at 2-8°C.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018 Page 7 of 13 503.BTL

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *wrB* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *wrA* mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

95% Control Limits (99% Upper Limit)							
	TA98	TA100	TA1535	TA1537	WP2 uvrA		
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)		
+89	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)		

With Study Director justification, values including the 99% control limit and above are acceptable.

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicity

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018 Page 8 of 13 503.BTL

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that less than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will he judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but lacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not be limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIOS	Deviation and audit reporting

12. REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- Test substance
- Vehicle
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- · Test conditions
- Results
- · Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- · Copy of the protocol and any amendment
- Contributing reports (if applicable)
- Information about the analyses that characterized the test substance, its stability and the stability and strength of the dosing preparations, if provided by the Sponsor
- · Statement of Compliance
- Quality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioRelianee as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPI. Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames. B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muricl, W.J. (1976). Mutagen testing using trp reversion in *Escherichia coli*. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the *Salmonella* Mutagenicity Test. Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test). Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

Version No. 3

Release Date: 23Apr2018 Page 11 of 13 503.BTL

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT
Sponsor Representative

8 May 2015 Date

Version No. 3

Release Date: 23Apr2018

Page 12 of 13

503.BTL

Study Director and Test Facility Management Approvals

io Reliance Study Director Date

BioRaliance Study Management Date

Version No. 3 Release Date: 23Apr2018

Page 13 of 13

503.BTL

15.	APPENDIX III: Common Technical Document Tables

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

Cytotoxic Effects: None Genotoxic Effects: None **Test Substance:** Sodium salt of Hydrolyzed TAF n=1

No. of Independent Assays: 2 Study No.: AF28PN.503.BTL

No. of Replicate Cultures: 2 (B1) No. Cells Analyzed/Culture: 0.8 to 2.9 x 10⁸ cells per and 3 (B2)

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 05 June 2018 (B1) and

19 June 2018 (B2)

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B1: Initial Toxicity-Mutation Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	<u>WP2uvrA</u>
Without	Water	100 μL/plate	14 ± 4	79 ± 11	13 ± 2	6 ± 4	34 ± 1
Activation	Sodium salt of Hydrolyzed TAF n=1	1.50	10 ± 1	80 ± 21	11 ± 8	7 ± 1	36 ± 15
		5.00	9 ± 0	85 ± 2	7 ± 0	7 ± 0	35 ± 13
		15.0	12 ± 3	75 ± 11	12 ± 1	7 ± 1	38 ± 12
		50.0	14 ± 6	88 ± 11	13 ± 2	6 ± 1	30 ± 4
		150	11 ± 5	88 ± 1	9 ± 1	5 ± 2	34 ± 7
		500	14 ± 1	79 ± 4	13 ± 0	7 ± 0	31 ± 5
		1500	19 ± 6	78 ± 3	10 ± 0	5 ± 3	36 ± 6
		5000	11 ± 4	90 ± 8	10 ± 6	6 ± 0	35 ± 0
	2NF	1.00	69 ± 21				
	SA	1.00		600 ± 35	564 ± 21		
	9AAD	75.0				858 ± 120	
	MMS	1000					513 ± 25
With	Water	100 μL/plate	21 ± 8	101 ± 7	14 ± 5	6 ± 1	30 ± 4
Activation	Sodium salt of Hydrolyzed TAF n=1	1.50	18 ± 2	98 ± 4	7 ± 1	5 ± 2	33 ± 11
		5.00	17 ± 8	102 ± 6	11 ± 4	6 ± 1	31 ± 1
		15.0	22 ± 5	101 ± 4	12 ± 4	4 ± 1	29 ± 6
		50.0	17 ± 0	106 ± 1	13 ± 4	4 ± 2	29 ± 4
		150	16 ± 3	125 ± 23	13 ± 6	7 ± 2	30 ± 1
		500	23 ± 1	98 ± 1	12 ± 3	4 ± 3	32 ± 1
		1500	29 ± 4	104 ± 15	12 ± 2	8 ± 1	37 ± 8
		5000	16 ± 1	108 ± 7	18 ± 6	5 ± 2	35 ± 1
	2AA	1.00	239 ± 19		83 ± 6		
	2AA	2.00		547 ± 7		70 ± 26	
	2AA	15.0					247 ± 16
Key to Pos	itive Controls						
SA 2AA 9AAD	sodium azide 2-aminoanthracene 9-Aminoacridine			2NF MMS	2-nitrofluorene methyl methanesulfonate		

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B2: Confirmatory Mutagenicity Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	13 ± 2	77 ± 9	12 ± 3	5 ± 2	33 ± 3
Activation	Sodium salt of Hydrolyzed TAF n=1	50.0	13 ± 4	83 ± 8	10 ± 5	6 ± 3	24 ± 9
	<i>y</i>	150	13 ± 3	83 ± 3	16 ± 1	7 ± 4	40 ± 9
		500	11 ± 3	92 ± 6	9 ± 2	7 ± 2	34 ± 6
		1500	13 ± 5	89 ± 9	10 ± 4	5 ± 0	37 ± 4
		5000	13 ± 3	73 ± 22	12 ± 4	4 ± 2	35 ± 1
	2NF	1.00	52 ± 14				
	SA	1.00		653 ± 24	590 ± 30		
	9AAD	75.0				521 ± 129	
	MMS	1000					462 ± 38
With	Water	100 μL/plate	14 ± 2	100 ± 7	10 ± 2	6 ± 1	29 ± 5
Activation	Sodium salt of	50.0	17 ± 5	89 ± 2	8 ± 2	7 ± 2	31 ± 3
	Hydrolyzed TAF n=1						
		150	17 ± 4	101 ± 4	10 ± 4	5 ± 3	36 ± 9
		500	14 ± 4	94 ± 10	8 ± 2	6 ± 1	34 ± 6
		1500	15 ± 2	92 ± 10	12 ± 1	5 ± 2	31 ± 3
		5000	14 ± 1	94 ± 5	13 ± 5	8 ± 3	31 ± 2
	2AA	1.00	217 ± 15		74 ± 16		
	2AA	2.00		778 ± 19		40 ± 6	
	2AA	15.0					289 ± 1

Key to Positive Controls

SA sodium azide
2AA 2-aminoanthracene
9AAD 9-Aminoacridine
2NF 2-nitrofluorene
MMS methyl methanesulfonate

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

Sodium salt of PSEPVE Acid

Author

Emily Dakoulas, BS

Study Completion Date

30 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PP.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 48

1. STATEMENT OF COMPLIANCE

Study No. AF28PP.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

Emily Dakoulas, BS

Study Director

2. QUALITY ASSURANCE STATEMENT

Quality Assurance Statement

Study Information

Number: AF28PP.503.BTL

Compliance

Procedures, documentation, equipment and other records were examined in order to assure this study was performed in accordance with the regulation(s) listed below and conducted according to the protocol and relevant Standard Operating Procedures. Verification of the study protocol was performed and documented by Quality Assurance.

US EPA Good Laboratory Standards 40CFR 792

Inspections

Quality Assurance performed the inspections(s) below for this study.

Insp. Dates (From/To) Phase Inspected To Study Director To Management

05-Jun-2018	05-Jun-2018	Protocol Review	05-Jun-2018	05-Jun-2018
05-Jun-2018	05-Jun-2018	Preparation of S9 Mixture	05-Jun-2018	05-Jun-2018
17-Jul-2018	17-Jul-2018	Data/Draft Report	17-Jul-2018	17-Jul-2018
17-Jul-2018	17-Jul-2018	Protocol Amendment Review	17-Jul-2018	17-Jul-2018
27-Aug-2018	27-Aug-2018	Final Report	27-Aug-2018	27-Aug-2018

The Final Report for this study describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

For a multisite study, test site QA Statements are located in the corresponding contributing scientist report.

E-signature

Quality Assurance: Lisa AnnMarie Fleshman 30-Aug-2018 12:26 pm GMT

Reason for signature: QA Approval

Printed by:Lisa AnnMarie Fleshman Printed on:30-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	16
11.	REFERENCES	17
12.	DATA TABLES	18
13.	APPENDIX I: Historical Control Data	26
14.	APPENDIX II: Study Protocol and Amendment	28
15	APPENDIX III: Common Technical Document Tables	15

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study No.: AF28PP.503.BTL

Sponsor No.: C30049

Test Substance

Identification: Sodium salt of PSEPVE Acid

CAS No.: 65086-48-8

Purity: 96.6% (per protocol)

Molecular Weight: 466.11 g/mol

Description: White powder

Storage Conditions: Room temperature, protected from light

Receipt Date: 02 May 2018

Study Dates

Study Initiation Date: 01 June 2018

Experimental Starting Date (first day of

data collection): 01 June 2018

Experimental Start Date (first day test

substance administered to test system): 05 June 2018

Experimental Completion Date: 27 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, Sodium salt of PSEPVE Acid, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 μ g per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate Sodium salt of PSEPVE Acid was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendment are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver Sodium salt of PSEPVE Acid to the test system was water.

Vehicle	CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7732-18-5	Ciama Aldmidh	RNBF9658	Sterile-	Mar 2019
w ater	1132-18-3	Sigma-Aldrich	RNBG4913	filtered	Dec 2019

To achieve a solution, the most concentrated dilution was sonicated at 28.3°C for 1 minute in the initial toxicity-mutation assay. Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain	S9 Activation	Positive Control	Concentration (µg/plate)		
TA98, TA1535		2-aminoanthracene	1.0		
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	2.0		
,	Rat	Lot No. STBD3302V Exp. Date 30-Nov-2019			
WP2 uvrA		CAS No. 613-13-8	15		
		Purity 97.5%			
TA98	None	2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.) Lot No. S43858V Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%			
TA100, TA1535		sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	1.0		
TA1537		9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Let No. BCBK 1177V		75	
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000		

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}\text{C}$ for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^9 cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020; Lot No. 3961, Exp. Date: 15 May 2020) was purchased

commercially from MolTox (Boone, NC). Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983).

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and five dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

	Medium					
Component	Minimal top agar	Minimal	Nutrient	Nutrient		
Component	Millillar top agai	bottom agar	bottom agar	broth		
	(Concentration is	n Medium			
BBL Select agar (W/V)	0.8% (W/V)					
Vogel-Bonner minimal medium E	1	1.5% (W/V)	1.5% (W/V)			
Sodium chloride	0.5% (W/V)					
L-histidine, D-biotin and	50 mM each					
L-tryptophan solution	50 min each					
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)					
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)		
Vogel-Bonner salt solution				Supplied at 20 mL/L		

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for $48 \text{ to } 72 \text{ hours at } 37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics
1 or no code	Normal	Distinguished by a healthy microcolony lawn.
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn resulting in a pronounced increase in the size of the microcolonies compared to the vehicle control plate.
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.
6	Obscured by Particulate	The background bacterial lawn cannot be accurately evaluated due to microscopic test substance particulate.
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers.

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

95% Control Limits (99% Upper Limit)										
TA98 TA100 TA1535 TA1537 WP2 uvrA										
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)					
+S9 10-34 (40) 66-122 (136) 4-20 (24) 3-15 (18) 13-41 (48)										
XX7'41 (C. 1 D' .	W'd C(1 D' / ' 'C' / ' 1 ' 1 ' 1 000/ / 11' '/ 1								

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose			
LIMS Labware System	Test Substance Tracking			
Excel 2007 (Microsoft Corporation)	Calculations			
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table			
(Perceptive Instruments)	Creation			
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring			
BRIQS	Deviation and audit reporting			

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

No deviations from the protocol or assay-method SOPs occurred during the conduct of this study.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

			Tester Strain		
Experiment	TA98	TA100	TA1535	TA1537	WP2 uvrA
Titer Value (x 10 ⁹ cells per mL)					
B1	2.2	1.0	0.8	1.5	2.9
B2	2.0	1.2	1.7	1.7	4.0

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

Neither precipitate nor toxicity was observed.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and $\underline{4}$. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 50.0, 150, 500, 1500 and 5000 μ g per plate.

Neither precipitate nor toxicity was observed.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Sodium salt of PSEPVE Acid did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella Mutagenicity Test*, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PP.503.BTL Study Code: AF28PP Experiment: B1 Date Plated: 6/5/2018

Exposure Method: Plate incorporation assay Evaluation Period: 6/12/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of PSEPVE Acid	5000 μg	17	1	1.1	18 ^A , 16 ^A
		1500 μg	16	4	1.1	$18^{A}, 13^{A}$
		500 μg	15	5	1.0	$18^{A}, 11^{A}$
		150 μg	15	0	1.0	15 ^A , 15 ^A 19 ^A , 22 ^A 11 ^A , 22 ^A
		50.0 μg	21	2	1.4	$19^{A}, 22^{A}$
		15.0 μg	17	8	1.1	$11^{A}, 22^{A}$
		5.00 μg	20	2	1.3	$21^{A}, 18^{A}$
		1.50 µg	14	1	0.9	$15^{A}, 13^{A}$
	Water	100 μL	15	6		19^{A} , 11^{A}
TA100	Sodium salt of PSEPVE Acid	5000 μg	105	37	1.0	131 ^A , 79 ^A
		1500 μg	101	14	1.0	111 ^A , 91 ^A
		500 μg	94	8	0.9	$88^{A}, 100^{A}$
		150 μg	90	20	0.9	$104^{A}, 76^{A}$
		50.0 μg	101	12	1.0	$109^{A}, 92^{A}$
		15.0 μg	98	16	1.0	$87^{A}, 109^{A}$
		5.00 μg	96	5	0.9	92 ^A , 99 ^A
		1.50 µg	112	6	1.1	107^{A} , 116^{A}
	Water	100 μL	103	18		90^{A} , 115^{A}
TA1535	Sodium salt of PSEPVE Acid	5000 μg	14	1	1.4	13 ^A , 14 ^A
		1500 μg	12	1	1.2	11 ^A , 13 ^A
		500 μg	13	3	1.3	$11^{A}, 15^{A}$
		150 μg	16	4	1.6	18^{A} , 13^{A}
		50.0 μg	13	4	1.3	$10^{A}, 15^{A}$
		15.0 μg	11	6	1.1	$7^{A}, 15^{A}$
		5.00 μg	13	2	1.3	11 ^A , 14 ^A
		1.50 μg	13	4	1.3	$10^{A}, 15^{A}$
	Water	100 μL	10	1		$10^{A}, 9^{A}$

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PP.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PP

Date Plated: 6/5/2018

Evaluation Period: 6/12/2018

r							
Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes	
TA1537	Sodium salt of PSEPVE Acid	5000 μg	10	1	1.1	$10^{A}, 9^{A}$	
		1500 μg	8	4	0.9	$5^{A}, 10^{A}$	
		500 μg	9	2	1.0	$10^{A}, 7^{A}$	
		150 μg	11	6	1.2	$6^{A}, 15^{A}$	
		50.0 μg	11	7	1.2	$16^{A}, 6^{A}$	
		15.0 μg	14	1	1.6	$14^{A}, 13^{A}$	
		5.00 μg	7	1	0.8	$8^{A}, 6^{A}$	
		1.50 μg	10	0	1.1	$10^{A}, 10^{A}$	
	Water	100 μL	9	1		$8^{A}, 10^{A}$	
WP2uvrA	Sodium salt of PSEPVE Acid	5000 μg	31	1	1.0	32 ^A , 30 ^A	
		1500 μg	33	5	1.1	$36^{A}, 29^{A}$	
		500 μg	37	8	1.2	$42^{A}, 31^{A}$	
		150 μg	33	0	1.1	$33^{A}, 33^{A}$	
		50.0 μg	43	2	1.4	44 ^A , 41 ^A	
		15.0 μg	40	9	1.3	$46^{A}, 33^{A}$	
		5.00 μg	21	5	0.7	$24^{A}, 17^{A}$	
		1.50 µg	30	5	1.0	$33^{A}, 26^{A}$	
	Water	100 μL	30	12		$21^{A}, 38^{A}$	
TA98	2NF	1.00 μg	68	11	4.5	$60^{A}, 75^{A}$	
TA100	SA	1.00 μg	754	27	7.3	$773^{\text{A}}, 735^{\text{A}}$	
TA1535	SA	1.00 μg	648	49	64.8	613 ^A , 683 ^A	
TA1537	9AAD	75.0 μg	514	34	57.1	490 ^A , 538 ^A	
WP2uvrA	MMS	1000 μg	367	43	12.2	336 ^A , 397 ^A	
		. 0					

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PP.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PP

Date Plated: 6/5/2018

Evaluation Period: 6/12/

Evaluation Period: 6/12/2018 Mean Ratio Individual revertant Dose level Standard Strain Substance revertants treated / colony counts and Deviation per plate per plate solvent background codes Sodium salt of **TA98** $5000 \mu g$ 20 1 0.7 $19^{A}, 21^{A}$ **PSEPVE Acid** $1500 \mu g$ 17 3 0.6 $15^{A}, 19^{A}$ 21 3 0.7 $19^{A}, 23^{A}$ 500 μg 19^A, 26^A 34^A, 30^A 5 0.8 23 $150 \mu g$ $50.0 \mu g$ 32 3 1.1 $22^{A}, 31^{A}$ 27 6 0.9 $15.0 \, \mu g$ 22^A, 22^A 22 0 0.7 $5.00 \mu g$ 23^A, 21^A 22 1 0.7 $1.50 \mu g$ $36^{A}, 24^{A}$ 8 30 Water $100 \mu L$ Sodium salt of 117^A, 122^A **TA100** $5000 \mu g$ 120 4 1.1 **PSEPVE Acid** 103^A, 114^A 1.0 109 8 $1500 \mu g$ 123^A, 103^A 108^A, 91^A 500 μg 113 14 1.0 12 0.9 150 µg 100 $50.0 \mu g$ 114 14 1.0 104^A, 124^A 123^A, 109^A $15.0 \mu g$ 116 10 1.0 111^A, 101^A $5.00 \mu g$ 106 7 1.0 99^A, 107^A 114^A, 107^A $1.50 \mu g$ 103 6 0.9 Water $100 \, \mu L$ 111 5 Sodium salt of $10^{A}, 8^{A}$ 9 1 TA1535 $5000 \, \mu g$ 0.5 **PSEPVE Acid** $1500 \mu g$ 10 0 0.6 $10^{A}, 10^{A}$ 17^A, 13^A 3 0.9 500 μg 15 13^A, 9^A 3 150 µg 11 0.6 11^A, 11^A 19^A, 16^A 11 0 0.6 $50.0 \mu g$ 2 $15.0 \mu g$ 18 1.1 3 $9^{A}, 13^{A}$ $5.00 \mu g$ 11 0.6 $11^{A}, 19^{A}$ 15 6 0.9 $1.50 \, \mu g$ $13^{A}, 21^{A}$ Water $100 \mu L$ 17 6

A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PP.503.BTL Study Code: AF28PP
Experiment: B1 Date Plated: 6/5/2018

Exposure Method: Plate incorporation assay Evaluation Period: 6/12/2018 Mean Ratio Individual revertant Dose level Standard Strain Substance revertants treated / colony counts and Deviation per plate per plate solvent background codes Sodium salt of TA1537 $5000 \mu g$ 9 3 1.3 7^{A} , 11^{A} **PSEPVE Acid** $6^{A}, 8^{A}$ $1500 \mu g$ 7 1 1.0 8 1 1.1 $7^{A}, 8^{A}$ 500 μg $13^{A}, 9^{A}$ 3 150 µg 11 1.6 9^A, 13^A $50.0 \mu g$ 11 3 1.6 14^A, 9^A 12 4 1.7 $15.0 \, \mu g$ $11^{A}, 3^{A}$ 7 6 1.0 $5.00 \mu g$ $9^{A}, 9^{A}$ 9 0 1.3 $1.50 \mu g$ 7^A, 7^A 7 Water 0 $100 \mu L$ Sodium salt of $34^{A}, 38^{A}$ WP2uvrA $5000 \mu g$ 36 3 1.0 **PSEPVE Acid** 38^A, 39^A 39^A, 32^A 39 1 1.1 $1500 \mu g$ 500 μg 36 5 1.0 $36^{A}, 31^{A}$ 34 4 1.0 150 µg 47^A, 27^A $50.0 \mu g$ 37 14 1.1 39^A, 31^A $15.0 \mu g$ 35 6 1.0 24^A, 32^A 41^A, 49^A 40^A, 30^A $5.00 \mu g$ 28 6 0.8 $1.50 \mu g$ 45 6 1.3 Water $100 \, \mu L$ 35 7 **TA98** 2AA $1.00 \mu g$ 245 10 8.2 252^A, 238^A 718 *37* 6.5 692^A, 744^A **TA100** $2.00 \, \mu g$ 2AA74^A, 82^A **TA1535** 2AA $1.00 \mu g$ 78 6 4.6 49^A, 52^A 306^A, 349^A 51 2 TA1537 2AA $2.00 \, \mu g$ 7.3 328 30 9.4 WP2uvrA 2AA $15.0 \, \mu g$

Key to Positive Controls

2AA 2-aminoanthracene Key to Automatic Count Flags

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PP.503.BTL Experiment: B2 Exposure Method: Plate incorporation assay Study Code: AF28PP Date Plated: 6/20/2018 Evaluation Period: 6/27/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of PSEPVE Acid	5000 μg	15	6	0.8	12 ^A , 12 ^A , 22 ^A
		1500 μg	15	4	0.8	15^{A} , 19^{A} , 12^{A}
		500 μg	17	6	0.9	12^{A} , 16^{A} , 24^{A}
		150 μg	16	9	0.8	$6^{A}, 24^{A}, 17^{A}$
		50.0 μg	17	3	0.9	17^{A} , 15^{A} , 20^{A}
	Water	100 μL	19	4		$21^{A}, 22^{A}, 15^{A}$
TA100	Sodium salt of PSEPVE Acid	5000 μg	92	7	0.9	84 ^A , 94 ^A , 98 ^A
		1500 μg	93	10	0.9	94^{A} , 102^{A} , 83^{A}
		500 μg	100	2	1.0	$100^{A}, 98^{A}, 102^{A}$
		150 μg	100	12	1.0	114 ^A , 97 ^A , 90 ^A
		50.0 μg	93	6	0.9	89 ^A , 99 ^A , 90 ^A
	Water	100 μL	98	3		94 ^A , 99 ^A , 100 ^A
TA1535	Sodium salt of PSEPVE Acid	5000 μg	14	2	0.9	14 ^A , 16 ^A , 12 ^A
		1500 μg	15	2	0.9	14^{A} , 15^{A} , 17^{A}
		500 μg	15	3	0.9	11 ^A , 17 ^A , 17 ^A
		150 µg	18	2	1.1	$16^{A}, 20^{A}, 17^{A}$
		50.0 μg	15	1	0.9	14^{A} , 15^{A} , 15^{A}
	Water	100 μL	16	3		15 ^A , 19 ^A , 14 ^A
TA1537	Sodium salt of PSEPVE Acid	5000 μg	7	1	0.9	$7^{A}, 6^{A}, 7^{A}$
		1500 μg	8	3	1.0	$11^{A}, 6^{A}, 7^{A}$
		500 μg	9	3	1.1	6^{A} , 11^{A} , 9^{A}
		150 μg	7	1	0.9	6 ^A , 7 ^A , 7 ^A
		50.0 μg	7	2	0.9	5 ^A , 7 ^A , 9 ^A
	Water	100 μL	8	4		4 ^A , 11 ^A , 9 ^A
WP2uvrA	Sodium salt of PSEPVE Acid	5000 μg	27	2	1.0	28 ^A , 24 ^A , 28 ^A
		1500 μg	24	4	0.9	$24^{A}, 20^{A}, 28^{A}$
		500 μg	26	5	1.0	$21^{A}, 30^{A}, 27^{A}$
		150 μg	29	4	1.1	$33^{A}, 26^{A}, 27^{A}$
		50.0 μg	27	2	1.0	28 ^A , 27 ^A , 25 ^A
	Water	100 μL	26	6		$27^{A}, 31^{A}, 20^{A}$

^A: Automatic count

TABLE 3 (CONT.) Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PP.503.BTL Study Code: AF28PP Date Plated: 6/20/2018 Experiment: B2 Exposure Method: Plate incorporation assay Evaluation Period: 6/27/2018

Substance	Dose level	revertants	Standard Deviation	treated /	Individual revertant colony counts and
	per plate	per plate	Deviation	solvent	background codes
		• •			
2NF	1.00 μg	67	4	3.5	64 ^A , 71 ^A , 66 ^A
SA	1.00 µg	715	33	7.3	682^{A} , 748^{A} , 716^{A}
SA	1.00 µg	762	47	47.6	812 ^A , 718 ^A , 755 ^A
9AAD	75.0 μg	768	49	96.0	781^{A} , 810^{A} , 714^{A}
MMS	1000 μg	461	47	17.7	$416^{A}, 510^{A}, 457^{A}$
	2NF SA SA 9AAD	Per plate Per plate	Substance per plate revertants per plate 2NF 1.00 μg 67 SA 1.00 μg 715 SA 1.00 μg 762 9AAD 75.0 μg 768	Substance Dose level per plate revertants per plate Standard Deviation 2NF 1.00 μg 67 4 SA 1.00 μg 715 33 SA 1.00 μg 762 47 9AAD 75.0 μg 768 49	Substance Dose level per plate revertants per plate Standard Deviation treated / solvent 2NF 1.00 μg 67 4 3.5 SA 1.00 μg 715 33 7.3 SA 1.00 μg 762 47 47.6 9AAD 75.0 μg 768 49 96.0

Key to Positive Controls

2NF 2-nitrofluorene SA sodium azide 9AAD 9-Aminoacridine MMS

methyl methanesulfonate

A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PP.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PP

Date Plated: 6/20/2018

Evaluation Period: 6/27/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Sodium salt of PSEPVE Acid	5000 μg	20	2	1.1	22 ^A , 19 ^A , 19 ^A
		1500 μg	20	2	1.1	$22^{A}, 20^{A}, 19^{A}$
		500 μg	19	4	1.0	$15^{A}, 22^{A}, 21^{A}$
		150 µg	20	3	1.1	15 ^A , 22 ^A , 21 ^A 22 ^A , 20 ^A , 17 ^A
		50.0 μg	19	3	1.0	20^{A} , 16^{A} , 21^{A}
	Water	100 μL	19	2		19^{A} , 17^{A} , 21^{A}
TA100	Sodium salt of PSEPVE Acid	5000 μg	127	13	1.2	123 ^A , 116 ^A , 141 ^A
		1500 μg	126	8	1.2	125 ^A , 135 ^A , 119 ^A
		500 μg	107	12	1.0	120^{A} , 105^{A} , 97^{A}
		150 µg	105	3	1.0	103^{A} , 109^{A} , 104^{A}
		50.0 μg	102	4	0.9	$106^{A}, 98^{A}, 102^{A}$
	Water	100 μL	109	1		109^{A} , 108^{A} , 110^{A}
TA1535	Sodium salt of PSEPVE Acid	5000 μg	13	2	0.9	15 ^A , 11 ^A , 12 ^A
		1500 μg	16	2	1.1	17^{A} , 14^{A} , 16^{A}
		500 μg	12	3	0.9	12^{A} , 10^{A} , 15^{A}
		150 µg	13	4	0.9	11^{A} , 17^{A} , 10^{A}
		50.0 μg	11	1	0.8	$12^{A}, 11^{A}, 10^{A}$
	Water	100 μL	14	2		12^{A} , 16^{A} , 14^{A}
TA1537	Sodium salt of PSEPVE Acid	5000 μg	10	1	1.7	9 ^A , 9 ^A , 11 ^A
		1500 μg	7	2	1.2	$6^{A}, 9^{A}, 5^{A}$
		500 μg	7	2	1.2	$6^{A}, 9^{A}, 5^{A}$
		150 µg	8	2	1.3	7^{A} , 10^{A} , 7^{A}
		50.0 μg	7	2	1.2	$6^{A}, 9^{A}, 7^{A}$
	Water	100 μL	6	1		6 ^A , 7 ^A , 6 ^A
WP2uvrA	Sodium salt of PSEPVE Acid	5000 μg	32	5	1.0	33 ^A , 27 ^A , 37 ^A
		1500 μg	31	1	0.9	$30^{A}, 31^{A}, 31^{A}$
		500 μg	36	1	1.1	$37^{A}, 35^{A}, 36^{A}$
		150 μg	33	3	1.0	$31^{A}, 37^{A}, 31^{A}$
		50.0 μg	35	3	1.1	33 ^A , 38 ^A , 35 ^A
	Water	100 μL	33	5		28 ^A , 33 ^A , 37 ^A

A: Automatic count

TABLE 4 (CONT.) Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PP.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PP

Date Plated: 6/20/2018

Evaluation Period: 6/27/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	2AA	1.00 µg	218	27	11.5	203 ^A , 249 ^A , 203 ^A
TA100	2AA	2.00 μg	750	34	6.9	742 ^A , 788 ^A , 721 ^A
TA1535	2AA	1.00 µg	83	13	5.9	$82^{A}, 97^{A}, 71^{A}$
TA1537	2AA	2.00 μg	43	9	7.2	$33^{A}, 50^{A}, 45^{A}$
WP2uvrA	2AA	15.0 μg	300	14	9.1	312^{A} , 302^{A} , 285^{A}

Key to Positive Controls

2AA 2-aminoanthracene Key to Automatic Count Flags

^A: Automatic count

13	A PPI	ENDIX	I. Historical	l Control Data

Historical Negative and Positive Control Values 2016

revertants per plate

1 1												
		Activation										
Strain	Control	None				Rat Liver						
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL	
TA00	Neg	15	5	6	34	5-25	22	6	8	42	10-34	
TA98	Pos	198	174	36	1826		287	159	47	1916		
TA100	Neg	90	12	60	146	66-114	94	14	63	181	66-122	
	Pos	629	159	186	1383		620	294	192	3483		
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20	
1A1353	Pos	541	164	34	1082		150	122	27	1114		
TA1537	Neg	8	3	1	21	2-14	9	3	2	23	3-15	
1A1337	Pos	368	227	21	1791		91	90	17	951		
TVD2 A	Neg	24	7	7	44	10-38	27	7	8	51	13-41	
WP2 uvrA	Pos	336	119	25	876		300	111	41	1059		

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendment

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PP.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

 Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add:

The doses will be 5000, 1500, 500, 150 and 50.0 μ g per plate.

Reason: To specify the dose levels to be used for the confirmatory mutagenicity assay based on the toxicity and precipitate profiles observed in the initial toxicity-mutation assay.

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PP.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT

Sponsor Representative

19 June 2018
Date

Page 2 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PP.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Emily Dakoulas, BS

BioReliance Study Director

Date

BioReliance Study Management

Date

Protocol

Study Title Bacterial Reverse Mutation Assay

Study Director Emily Dakoulas, BS

Testing Facility BioReliance Corporation

9630 Medical Center Drive

Rockville, MD 20850

BioReliance Study Number AF28PP.503.BTL

1. KEY PERSONNEL Sponsor Information:

Sponsor The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number C30049

Sponsor's Authorized Shawn Gannon, Ph.D., DABT Representative The Chemours Company

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899 Phone: 302-773-1376

Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Study Director Emily Dakoulas, BS

BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality

Luleayenwa (Lula) Aberra-Degu, RQAP-GLP

Assurance Representative BioReliance Corporation

Phone: 301-610-2667

Email: Luleayenwa.abcrra-degu@sial.com

2. TEST SCHEDULE

Proposed Experimental Initiation Date 06-June-2018
Proposed Experimental Completion Date 06-July-2018
Proposed Report Date 20-July-2018

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

• US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices. and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

Release Date: 23Apr2018 Page 2 of 13 503.BTL

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. QUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed QA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator, Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director, Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 uvrA in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification Sodium salt of PSEPVE Acid

CAS No. 65086-48-8

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

Purity 96.6% (no correction factor will be used for dose formulations)

Molecular Weight 466.11 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below; unless the test substance is used on another study.

Alex Petlick The Chemours Company 200 Powder Mill Rd Experimental Station E402/5317 Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be discarded after use.

7. TEST SYSTEM

The tester strains will include the *S. typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames *et al.* (1975) and the *E. coli* tester strain WP2 *uvr*A as described by Green and Muriel (1976). The genotypes of strains are as follows:

His	Histidine Mutation			Ad	ditional Mu	tations
hisG46	hisC3076	hisD3052	trpE	LPS	Repair	R-factor
TA1535	TA1537	-	-	rfa	$\Delta uvrB$	-
TA100	-	TA98	-	rfa	$\Delta uvrB$	+R
-	-	-	WP2 uvrA	-	$\Delta uvrA$	-

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California, Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

Release Date: 23Apr2018

Page 4 of 13

503.BTL

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acetone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/mL for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test substance, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellet(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}$ C.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from ineubation at a density of approximately 10⁹ cells/mL.

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dose level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MoITox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018 Page 5 of 13 503.BTL

100 mM phosphate buffer at pH 7.4

S9 Mix

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test substance.

Strain	Positive Control	S9	Concentrations (µg/plate)
Salmonella strains	2-aminoanthracene ^B	+	1.0 - 2.0
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20
TA98	2-nitrofluorene ^B	_	1.0
TA100, TA1535	sodium azide ^A	_	1.0
TA1537	9-aminoacridine ^B	_	75
WP2 uvrA	methyl methanesulfonate ^B	_	1,000

^APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

503.BTL

^BPrepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 *uvr*A will be exposed to vehicle alone and at least eight concentrations of test substance, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 μg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 μg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 μg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test substance, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will be at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, 100 μL of tester strain and 50.0 μL of vehicle, test substance dilution or positive control will be added to 2.0 mL of molten selective top agar at $45\pm2^{\circ}C$. When necessary, aliquots of other than 50.0 μL of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test substance, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at $37\pm2^{\circ}C$. Plates that are not counted immediately following the incubation period will be stored at 2-8°C.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018 Page 7 of 13 503.BTL

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *uvr*B mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *uvr*A mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

	(95% Control Lim	its (99% Uppe	er Limit)		
	TA98	TA100	TA1535	TA1537	WP2 uvrA	
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)	
+89	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)	
With	With Study Director justification, values including the 99% control limit and					
above	are acceptable	•				

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicit

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018

Page 8 of 13

503.BTL

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that less than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but lacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not be limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIOS	Deviation and audit reporting

12 REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- Test substance
- Vehicle
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- Test conditions
- Results
- Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- Copy of the protocol and any amendment
- Contributing reports (if applicable)
- Information about the analyses that characterized the test substance, its stability and the stability and strength of the dosing preparations, if provided by the Sponsor
- Statement of Compliance
- Quality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames, B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muriel, W.J. (1976). Mutagen testing using trp⁺ reversion in *Escherichia coli*. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the *Salmonella* Mutagenicity Test. Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997

Version No. 3

Release Date: 23Apr2018 Page 11 of 13 503.BTL

BioRcliance Study Number: AF28PP.503.BTL Sponsor Number: C30049

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT Sponsor Representative

Version No. 3 Release Date: 23Apr2018

Page 12 of 13

503.BTL

BioReliance Study Number: AF28PP.503.BTL Sponsor Number: C30049

Study Director and Test Facility Management Approvals

BioReliance Study Director

BioReliance Study Management

8166 PM

01-JON-18 Date

Version No. 3 Release Date: 23Apr2018

Page 13 of 13

503.BTL

15.	APPENDIX III: Common Technical Document Tables

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

Cytotoxic Effects: None Genotoxic Effects: None

Test Substance: Sodium salt of PSEPVE Acid No. of Independent Assays: 2

No. of Replicate Cultures: 2 (B1)

and 3 (B2)

Study No.: AF28PP.503.BTL

No. Cells Analyzed/Culture: 0.8 to 4.0 x 10⁸ cells per

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 05 June 2018 (B1) and

20 June 2018 (B2)

Metabolic Activation	Test <u>Substance</u>	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B1: Initial Toxicity-Mutation Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	15 ± 6	103 ± 18	10 ± 1	9 ± 1	30 ± 12
Activation	Sodium salt of PSEPVE Acid	1.50	14 ± 1	112 ± 6	13 ± 4	10 ± 0	30 ± 5
		5.00	20 ± 2	96 ± 5	13 ± 2	7 ± 1	21 ± 5
		15.0	17 ± 8	98 ± 16	11 ± 6	14 ± 1	40 ± 9
		50.0	21 ± 2	101 ± 12	13 ± 4	11 ± 7	43 ± 2
		150	15 ± 0	90 ± 20	16 ± 4	11 ± 6	33 ± 0
		500	15 ± 5	94 ± 8	13 ± 3	9 ± 2	37 ± 8
		1500	16 ± 4	101 ± 14	12 ± 1	8 ± 4	33 ± 5
		5000	17 ± 1	105 ± 37	14 ± 1	10 ± 1	31 ± 1
	2NF	1.00	68 ± 11				
	SA	1.00		754 ± 27	648 ± 49		
	9AAD	75.0				514 ± 34	
	MMS	1000					367 ± 43
With	Water	100 μL/plate	30 ± 8	111 ± 5	17 ± 6	7 ± 0	35 ± 7
Activation	Sodium salt of PSEPVE Acid	1.50	22 ± 1	103 ± 6	15 ± 6	9 ± 0	45 ± 6
		5.00	22 ± 0	106 ± 7	11 ± 3	7 ± 6	28 ± 6
		15.0	27 ± 6	116 ± 10	18 ± 2	12 ± 4	35 ± 6
		50.0	32 ± 3	114 ± 14	11 ± 0	11 ± 3	37 ± 14
		150	23 ± 5	100 ± 12	11 ± 3	11 ± 3	34 ± 4
		500	21 ± 3	113 ± 14	15 ± 3	8 ± 1	36 ± 5
		1500	17 ± 3	109 ± 8	10 ± 0	7 ± 1	39 ± 1
		5000	20 ± 1	120 ± 4	9 ± 1	9 ± 3	36 ± 3
	2AA	1.00	245 ± 10		78 ± 6		
	2AA	2.00		718 ± 37		51 ± 2	
	2AA	15.0					328 ± 30
Key to Pos	itive Controls						
SA	sodium azide			2NF	2-nitrofluorene		
2AA 9AAD	2-aminoanthracene 9-Aminoacridine			MMS	methyl methanesulfonate		

BioReliance Study No. AF28PP.503.BTL

Metabolic Activation	Test Substance	Dose Level (µg/plate)	Revertant Colony Counts (Mean ±SD) (B2: Confirmatory Mutagenicity Assay)				
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	19 ± 4	98 ± 3	16 ± 3	8 ± 4	26 ± 6
Activation	Sodium salt of PSEPVE Acid	50.0	17 ± 3	93 ± 6	15 ± 1	7 ± 2	27 ± 2
		150	16 ± 9	100 ± 12	18 ± 2	7 ± 1	29 ± 4
		500	17 ± 6	100 ± 2	15 ± 3	9 ± 3	26 ± 5
		1500	15 ± 4	93 ± 10	15 ± 2	8 ± 3	24 ± 4
		5000	15 ± 6	92 ± 7	14 ± 2	7 ± 1	27 ± 2
	2NF	1.00	67 ± 4				
	SA	1.00		715 ± 33	762 ± 47		
	9AAD	75.0				768 ± 49	
	MMS	1000					461 ± 47
With	Water	100 μL/plate	19 ± 2	109 ± 1	14 ± 2	6 ± 1	33 ± 5
Activation	Sodium salt of PSEPVE Acid	50.0	19 ± 3	102 ± 4	11 ± 1	7 ± 2	35 ± 3
		150	20 ± 3	105 ± 3	13 ± 4	8 ± 2	33 ± 3
		500	19 ± 4	107 ± 12	12 ± 3	7 ± 2	36 ± 1
		1500	20 ± 2	126 ± 8	16 ± 2	7 ± 2	31 ± 1
		5000	20 ± 2	127 ± 13	13 ± 2	10 ± 1	32 ± 5
	2AA	1.00	218 ± 27		83 ± 13		
	2AA	2.00		750 ± 34		43 ± 9	
	2AA	15.0					300 ± 14

Key to Positive Controls

SA sodium azide
2AA 2-aminoanthracene
9AAD 9-Aminoacridine
2NF 2-nitrofluorene
MMS methyl methanesulfonate

BioReliance Study No. AF28PP.503.BTL

FINAL REPORT

Study Title

Bacterial Reverse Mutation Assay

Testing Guidelines

OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025:2005 (ISO/IEC, 2005)

Test Substance

Potassium salt of Hydro PSEPVE Acid

<u>Author</u>

Emily Dakoulas, BS

Study Completion Date

29 August 2018

Testing Facility

BioReliance Corporation 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AF28PR.503.BTL

Sponsor

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Sponsor Number

C30049

Page 1 of 48

1. STATEMENT OF COMPLIANCE

Study No. AF28PR.503.BTL was conducted in compliance with the following regulation: US EPA GLP Standards 40 CFR 792 (TSCA). This regulation is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries. The following exceptions were noted:

- 1. The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.
 - Study Director Impact Statement: The impact cannot be determined because the appropriate information was not provided to the Study Director. The study conclusion was based on the test substance as supplied.
- 2. Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

Study Director Impact Statement: The impact cannot be determined because the appropriate analyses were not performed. The study conclusion was based on the nominal dose levels as documented in the study records.

Emily Dakoulas, BS

Date

Date

Study Director

2. QUALITY ASSURANCE STATEMENT

Quality Assurance Statement

Study Information

Number: AF28PR.503.BTL

Compliance

Procedures, documentation, equipment and other records were examined in order to assure this study was performed in accordance with the regulation(s) listed below and conducted according to the protocol and relevant Standard Operating Procedures. Verification of the study protocol was performed and documented by Quality Assurance.

US EPA Good Laboratory Standards 40CFR 792

Inspections

Quality Assurance performed the inspections(s) below for this study.

Insp. Dates (From/To) Phase Inspected

To Study Director To Management

13-Jun-2018	13-Jun-2018	Plating	13-Jun-2018	13-Jun-2018
13-Jun-2018	13-Jun-2018	Strain Characterization	14-Jun-2018	14-Jun-2018
05-Jul-2018	05-Jul-2018	Protocol Amendment Review	05-Jul-2018	05-Jul-2018
05-Jul-2018	05-Jul-2018	Protocol Review	05-Jul-2018	05-Jul-2018
06-Jul-2018	06-Jul-2018	Data/Draft Report	06-Jul-2018	06-Jul-2018
20-Aug-2018	21-Aug-2018	Final Report	21-Aug-2018	21-Aug-2018

The Final Report for this study describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

For a multisite study, test site QA Statements are located in the corresponding contributing scientist report.

E-signature

Quality Assurance: Luleayenwa Aberra-Degu 28-Aug-2018 8:14 pm GMT

Reason for signature: QA Approval

Printed by:Luleayenwa Aberra-Degu Printed on:28-Aug-18

3. TABLE OF CONTENTS

		Page
1.	STATEMENT OF COMPLIANCE	2
2.	QUALITY ASSURANCE STATEMENT	3
3.	TABLE OF CONTENTS	4
4.	STUDY INFORMATION	5
5.	SUMMARY	7
6.	PURPOSE	8
7.	CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES	8
8.	MATERIALS AND METHODS	10
9.	RESULTS AND DISCUSSION	16
10.	CONCLUSION	16
11.	REFERENCES	17
12.	DATA TABLES	18
13.	APPENDIX I: Historical Control Data	26
14.	APPENDIX II: Study Protocol and Amendment	28
15	APPENDIX III: Common Technical Document Tables	15

4. STUDY INFORMATION

Study Conduct

Sponsor: The Chemours Company

1007 Market Street D-3008 Wilmington, DE 19899

Sponsor's Authorized Representative: Shawn Gannon, Ph.D., DABT

Testing Facility: BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study No.: AF28PR.503.BTL

Sponsor No.: C30049

Test Substance

Identification: Potassium salt of Hydro PSEPVE Acid

CAS No.: 259140-44-8

Purity: 97.7% (per protocol)

Molecular Weight: 502.22 g/mol

Description: White powder

Storage Conditions: Room temperature, protected from light

Receipt Date: 02 May 2018

Study Dates

Study Initiation Date: 24 May 2018

Experimental Starting Date (first day of

data collection): 25 May 2018

Experimental Start Date (first day test

substance administered to test system): 31 May 2018

Experimental Completion Date: 25 June 2018

Key Personnel

Study Director: Emily Dakoulas, BS

Testing Facility Management: Rohan Kulkarni, MSc, Ph.D.

Director, Genetic Toxicology Study Management

Laboratory Supervisor: Ankit Patel, BS

Report Writer: Gayathri Jayakumar, MPS

5. SUMMARY

The test substance, Potassium salt of Hydro PSEPVE Acid, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. Water was used as the vehicle.

In the initial toxicity-mutation assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Based upon these results, the maximum dose tested in the confirmatory mutagenicity assay was 5000 μ g per plate.

In the confirmatory mutagenicity assay, the dose levels tested were 50.0, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate Potassium salt of Hydro PSEPVE Acid was negative for the ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

6. PURPOSE

The purpose of this study was to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* strain WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system.

Historical control data are found in <u>Appendix I</u>. Copies of the study protocol and amendment are included in <u>Appendix II</u>.

7. CHARACTERIZATION OF TEST AND CONTROL SUBSTANCES

The identity, strength, purity, stability and composition or other characteristics to define the test substance have not been determined.

All unused Test Substance was returned to the sponsor prior to report finalization using the information below.

Alex Petlick
The Chemours Company
200 Powder Mill Rd
Experimental Station
E402/5317
Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

The vehicle used to deliver Potassium salt of Hydro PSEPVE Acid to the test system was water.

Vehicle	e CAS Number	Supplier	Lot Number	Purity	Expiration Date
Water	7732-18-5	Sigma-Aldrich	RNBF9658	Sterile- filtered	Mar 2019

Test substance dilutions were prepared immediately before use and delivered to the test system at room temperature under filtered light. To achieve a solution, the most concentrated dilution was sonicated at 31.7°C for 22 minutes in the confirmatory mutagenicity assay.

Positive controls plated concurrently with each assay are listed in the following table. All positive controls were diluted in dimethyl sulfoxide (DMSO) except for sodium azide, which was diluted in sterile water. All subdivided solutions of positive controls were stored at -10 to -30°C.

Strain	S9 Activation	Positive Control	Concentration (µg/plate)
TA98, TA1535		2-aminoanthracene	1.0
TA100, TA1537		(Sigma Aldrich Chemical Co., Inc.)	2.0
,	Rat	Lot No. STBD3302V Exp. Date 30-Nov-2019	
WP2 uvrA		CAS No. 613-13-8	15
		Purity 97.5%	-
TA98		2-nitrofluorene (Sigma Aldrich Chemical Co., Inc.) Lot No. S43858V Exp. Date 31-Mar-2019 CAS No. 607-57-8 Purity 99.4%	1.0
TA100, TA1535	N	sodium azide (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBT8080V Exp. Date Jan-2020 CAS No. 26628-22-8 Purity 99.8%	1.0
TA1537	None	9-aminoacridine (Sigma Aldrich Chemical Co., Inc.) Lot No. BCBK1177V Exp. Date 31-Mar-2019 CAS No. 52417-22-8 Purity 99.5%	75
WP2 uvrA		methyl methanesulfonate (Sigma Aldrich Chemical Co., Inc.) Lot No. MKBX5165V Exp. Date 31-Oct-2020 CAS No. 66-27-3 Purity 99.5%	1,000

The negative and positive control substances have been characterized as per the Certificates of Analysis on file with the testing facility. The stability of the negative and positive control substances and their mixtures was demonstrated by acceptable results that met the criteria for a valid test.

Dose Formulation Collection and Analysis

Analyses to determine the concentration, uniformity and stability of the test substance dose formulations were not performed.

8. MATERIALS AND METHODS

Test System

The tester strains used were the *Salmonella typhimurium* histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by <u>Ames et al. (1975)</u> and *Escherichia coli* WP2 uvrA as described by <u>Green and Muriel (1976)</u>.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in *E. coli* is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).

Salmonella tester strains were derived from Dr. Bruce Ames' cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.

Solubility Determination

Water was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in water at a concentration of approximately 50 mg/mL in the solubility test conducted at BioReliance.

Preparation of Tester Strain

Overnight cultures were prepared by inoculating from the appropriate frozen permanent stock into a vessel, containing 30 to 50 mL of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at $37\pm2^{\circ}\text{C}$ for approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of greater than or equal to 0.3×10^9 cells per milliliter. The actual titers were determined by viable count assays on nutrient agar plates.

Identification of Test System

Each plate was identified by the BioReliance study number and a code system to designate the treatment condition, dose level and test phase, as described in detail in BioReliance's Standard Operating Procedures.

Metabolic Activation System

Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats that were injected intraperitoneally with AroclorTM 1254 (200 mg/mL in corn oil) at a dose of 500 mg/kg, five days before sacrifice. The S9 (Lot No. 3925, Exp. Date: 21 Feb 2020; Lot No. 3961, Exp. Date: 15 May 2020) was purchased

commercially from MolTox (Boone, NC). Upon arrival at BioReliance, the S9 was stored at -60°C or colder until used. Each bulk preparation of S9 was assayed for its ability to metabolize benzo(a)pyrene and 2-aminoanthracene to forms mutagenic to *Salmonella typhimurium* TA100.

The S9 mix was prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

The Sham mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was also prepared on the day of use.

Frequency and Route of Administration

The test system was exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983).

Initial Toxicity-Mutation Assay to Select Dose Levels

The initial toxicity-mutation assay was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and eight dose levels of the test substance, in duplicate, in the presence and absence of Aroclor-induced rat liver S9. Dose levels for the confirmatory mutagenicity assay were based upon lack of post-treatment toxicity.

Confirmatory Mutagenicity Assay

The confirmatory mutagenicity assay was used to evaluate and confirm the mutagenic potential of the test substance. TA98, TA100, TA1535, TA1537 and WP2 *uvr*A were exposed to the vehicle alone, positive controls and five dose levels of the test substance, in triplicate, in the presence and absence of Aroclor-induced rat liver S9.

Treatment of Test System

Media used in the treatment of the test system were as indicated below.

	Medium				
Component	Minimal top agar	Minimal	Nutrient	Nutrient	
Component	Millillar top agai	bottom agar	bottom agar	broth	
	(Concentration is	n Medium		
BBL Select agar (W/V)	0.8% (W/V)				
Vogel-Bonner minimal medium E	1	1.5% (W/V)	1.5% (W/V)		
Sodium chloride	0.5% (W/V)				
L-histidine, D-biotin and	50 mM each				
L-tryptophan solution	50 min each				
Sterile water	25 mL/100 mL agar (when agar not used with S9 or Sham mix)				
Oxoid Nutrient Broth No. 2 (dry powder)			2.5% (W/V)	2.5% (W/V)	
Vogel-Bonner salt solution				Supplied at 20 mL/L	

To confirm the sterility of the S9 and Sham mixes, a 0.5 mL aliquot of each was plated on selective agar. To confirm the sterility of the test substance and the vehicle, all test substance dose levels and the vehicle used in each assay were plated on selective agar with an aliquot volume equal to that used in the assay. These plates were incubated under the same conditions as the assay.

One-half (0.5) milliliter of S9 or Sham mix, $100 \,\mu\text{L}$ of tester strain (cells seeded) and $100 \,\mu\text{L}$ of vehicle or test substance dilution were added to $2.0 \,\text{mL}$ of molten selective top agar at $45\pm2^{\circ}\text{C}$. When plating the positive controls, the test substance aliquot was replaced by a $50.0 \,\mu\text{L}$ aliquot of appropriate positive control. After vortexing, the mixture was overlaid onto the surface of $25 \,\text{mL}$ of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for $48 \text{ to } 72 \text{ hours at } 37\pm2^{\circ}\text{C}$. Plates that were not counted immediately following the incubation period were stored at $2\text{-}8^{\circ}\text{C}$ until colony counting could be conducted.

Scoring

The condition of the bacterial background lawn was evaluated for evidence of test substance toxicity by using a dissecting microscope. Precipitate was evaluated after the incubation period by visual examination without magnification. Toxicity and degree of precipitation were scored relative to the vehicle control plate using the codes shown in the following table. As appropriate, colonies were enumerated either by hand or by machine.

Code	Description	Characteristics
1 or no code	Normal	Distinguished by a healthy microcolony lawn.
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and possibly a slight increase in the size of the microcolonies compared to the vehicle control plate.
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn resulting in a pronounced increase in the size of the microcolonies compared to the vehicle control plate.
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn resulting in an increase in the size of the microcolonies compared to the vehicle control plate such that the microcolony lawn is visible to the unaided eye as isolated colonies.
5	Absent	Distinguished by a complete lack of any microcolony lawn over greater than or equal to 90% of the plate.
6	Obscured by Particulate	The background bacterial lawn cannot be accurately evaluated due to microscopic test substance particulate.
NP	Non- Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye but any precipitate particles detected by the automated colony counter total less than or equal to 10% of the revertant colony count (e.g., less than or equal to 3 particles on a plate with 30 revertants).
IP	Interfering Precipitate	Distinguished by precipitate on the plate that is visible to the naked eye and any precipitate particles detected by the automated colony counter exceed 10% of the revertant colony count (e.g., greater than 3 particles on a plate with 30 revertants). These plates are counted manually.

Tester Strain Verification

On the day of use in each assay, all tester strain cultures were checked for the appropriate genetic markers.

Criteria for a Valid Test

The following criteria must be met for each assay to be considered valid:

All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive).

95% Control Limits (99% Upper Limit)						
TA98 TA100 TA1535 TA1537 WP2 <i>uvr</i> A						
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)	
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)	
XX7°41	C. 1 D' .		1 ' 1 1'	1 000/	. 1 1' '. 1	

With Study Director justification, values including the 99% control limit and above are acceptable.

To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to $0.3x10^9$ cells/mL.

The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control and exceed the corresponding acceptable vehicle control range cited above.

A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Evaluation of Test Results

For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Electronic Data Collection Systems

The primary computer or electronic systems used for the collection of data or analysis included but were not limited to the following:

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel 2007 (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kaye Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

Records and Archives

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance at JK Records as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

Deviations

No deviations from the protocol or assay-method SOPs occurred during the conduct of this study.

9. RESULTS AND DISCUSSION

Sterility Results

No contaminant colonies were observed on the sterility plates for the vehicle control, the test substance dilutions or the S9 and Sham mixes.

Tester Strain Titer Results

	Tester Strain								
Experiment	TA98	TA100	TA1535	TA1537	WP2 uvrA				
		Titer Value (x 10 ⁹ cells per mL)							
B1	1.3	1.4	1.1	1.4	3.1				
B2	1.3 1.1 1.5 1.8 2.9								

Initial Toxicity-Mutation Assay

The results of the initial toxicity-mutation assay conducted at dose levels of 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μ g per plate in water are presented in <u>Tables 1</u> and <u>2</u>. The maximum dose of 5000 μ g per plate was achieved using a concentration of 50.0 mg/mL and a 100 μ L plating aliquot.

Neither precipitate nor toxicity was observed.

No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

Confirmatory Mutagenicity Assay

The results of the confirmatory mutagenicity assay are presented in <u>Tables 3</u> and $\underline{4}$. Based upon the results of the initial toxicity-mutation assay, the dose levels selected for the confirmatory mutagenicity assay were 50.0, 150, 500, 1500 and 5000 μ g per plate.

Neither precipitate nor toxicity was observed. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

A copy of the Common Technical Document Tables is included in Appendix III.

10. CONCLUSION

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Potassium salt of Hydro PSEPVE Acid did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9.

BioReliance Study No. AF28PR.503.BTL

11. REFERENCES

Ames, B.N., J. McCann and E. Yamasaki (1975) Methods for Detecting Carcinogens and Mutagens with the *Salmonella*/Mammalian Microsome Mutagenicity Test, Mutation Research, 31:347-364.

Green, M.H.L. and W.J. Muriel (1976) Mutagen testing using trp+ reversion in *Escherichia coli*, Mutation Research 38:3-32.

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and B.N. Ames (1983) Revised Methods for the *Salmonella* Mutagenicity Test, Mutation Research, 113:173-215.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

12. DATA TABLES

TABLE 1
Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PR.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PR

Date Plated: 5/31/2018

Evaluation Period: 6/5/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Potassium salt of Hydro PSEPVE Acid	5000 μg	20	3	1.3	22 ^A , 18 ^A
	I SEI VE Meia	1500 μg	18	2	1.2	$19^{A}, 16^{A}$
		500 μg	15	5	1.0	11 ^A , 18 ^A
		150 μg	20	1	1.3	21 ^A , 19 ^A
		50.0 μg	16	3	1.1	14 ^A , 18 ^A
		15.0 μg	17	3	1.1	15 ^A , 19 ^A
		5.00 μg	10	0	0.7	$10^{A}, 10^{A}$
		1.50 µg	19	6	1.3	14 ^A , 23 ^A
	Water	100 μL	15	0		$15^{A}, 15^{A}$
	Potassium salt	•				·
TA100	of Hydro PSEPVE Acid	5000 μg	82	6	1.0	86 ^A , 78 ^A
	1 SEI VE Meia	1500 μg	100	17	1.2	88 ^A , 112 ^A
		500 μg	93	4	1.1	95 ^A , 90 ^A
		150 μg	104	5	1.3	100 ^A , 107 ^A
		50.0 μg	85	9	1.0	91 ^A , 78 ^A
		15.0 μg	85	4	1.0	82 ^A , 88 ^A
		5.00 μg	77	5	0.9	$80^{A}, 73^{A}$
		1.50 μg	96	13	1.2	86 ^A , 105 ^A
	Water	100 μL	83	0		83 ^A , 83 ^A
TA1535	Potassium salt of Hydro	5000 μg	11	1	0.9	10 ^A , 11 ^A
	PSEPVE Acid	. 0				•
		1500 μg	14	8	1.2	$19^{A}, 8^{A}$
		500 μg	11	0	0.9	$11^{A}, 11^{A}$
		150 μg	8	1	0.7	9 ^A , 7 ^A
		50.0 μg	12	2	1.0	$13^{A}, 10^{A}$
		15.0 μg	10	9	0.8	$16^{A}, 3^{A}$
		5.00 μg	12	2	1.0	$10^{A}, 13^{A}$
		1.50 µg	10	1	0.8	$9^{A}, 10^{A}$
	Water	100 μL	12	1		11 ^A , 13 ^A

A: Automatic count

TABLE 1 (CONT.) Initial Toxicity-Mutation Assay without S9 activation

Study Number: AF28PR.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PR

Date Plated: 5/31/2018

Evaluation Period: 6/5/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	vertants Standard Deviation		Individual revertant colony counts and background codes
TA1537	Potassium salt of Hydro PSEPVE Acid	5000 μg	8	4	0.9	5 ^A , 11 ^A
	- 10 1	1500 μg	8	4	0.9	$5^{A}, 10^{A}$
		500 μg	9	3	1.0	7^{A} , 11^{A}
		150 μg	10	2	1.1	8 ^A , 11 ^A
		50.0 μg	11	3	1.2	$13^{A}, 9^{A}$
		15.0 μg	13	4	1.4	$10^{A}, 15^{A}$
		5.00 μg	9	3	1.0	7 ^A , 11 ^A 3 ^A , 7 ^A
		1.50 µg	5	3	0.6	$3^{A}, 7^{A}$
	Water	100 μL	9	1		$8^{A}, 10^{A}$
WP2uvrA	Potassium salt of Hydro PSEPVE Acid	5000 μg	25	3	0.8	27 ^A , 23 ^A
	I SEI VE MUI	1500 μg	33	1	1.1	$33^{A}, 32^{A}$
		500 μg	30	8	1.0	36 ^A , 24 ^A
		150 μg	35	5	1.2	31 ^A , 38 ^A
		50.0 μg	32	4	1.1	$29^{A}, 35^{A}$
		15.0 μg	43	6	1.4	38 ^A , 47 ^A
		5.00 μg	25	1	0.8	$24^{A}, 25^{A}$
		1.50 μg	34	3	1.1	$32^{A}, 36^{A}$
	Water	100 μL	30	6		$34^{A}, 25^{A}$
TA98	2NF	1.00 µg	66	1	4.4	$65^{A}, 66^{A}$
TA100	SA	1.00 µg	722	62	8.7	$766^{A}, 678^{A}$
TA1535	SA	1.00 µg	742	93	61.8	$676^{A}, 808^{A}$
TA1537	9AAD	75.0 μg	826	94	91.8	759 ^A , 892 ^A
WP2uvrA	MMS	1000 μg	368	12	12.3	$376^{A}, 359^{A}$

Key to Positive Controls

2NF 2-nitrofluorene
SA sodium azide
9AAD 9-Aminoacridine
MMS methyl methanesulfonate
Key to Automatic Count Flags

A: Automatic count

TABLE 2
Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PR.503.BTL

Experiment: B1

Exposure Method: Plate incorporation assay

Study Code: AF28PR

Date Plated: 5/31/2018

Evaluation Period: 6/5/2018

Strain Substance		Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
TA98	Potassium salt of Hydro PSEPVE Acid	5000 μg	23	10	1.0	30 ^A , 16 ^A
	I SEI VEIRIG	1500 μg	20	4	0.9	$17^{A}, 22^{A}$
		500 μg	25	6	1.1	29 ^A , 21 ^A
		150 μg	24	3	1.1	$26^{A}, 22^{A}$
		50.0 μg	21	2	1.0	$22^{A}, 19^{A}$
		15.0 μg	27	8	1.2	$21^{A}, 32^{A}$
		5.00 μg	27	5	1.2	$23^{A}, 30^{A}$
		1.50 µg	24	1	1.1	23 ^A , 25 ^A
	Water	100 μL	22	7		27 ^A , 17 ^A
	Potassium salt	•				
TA100	of Hydro PSEPVE Acid	5000 μg	106	4	1.0	103 ^A , 109 ^A
	I SEI VE ACIO	1500 μg	121	3	1.1	119 ^A , 123 ^A
		500 μg	109	17	1.0	97 ^A , 121 ^A
		150 μg	124	10	1.2	117 ^A , 131 ^A
		50.0 μg	107	6	1.0	111 ^A , 103 ^A
		15.0 μg	113	13	1.1	103 ^A , 122 ^A
		5.00 μg	89	12	0.8	80 ^A , 97 ^A
		1.50 μg	100	2	0.9	98 ^A , 101 ^A
	Water	100 μL	107	4	0.,	104 ^A , 109 ^A
	Potassium salt			•		
TA1535	of Hydro	5000 μg	14	1	1.0	14 ^A , 13 ^A
	PSEPVE Acid	1500 μg	13	4	0.9	$10^{A}, 15^{A}$
		1300 μg 500 μg	13 13	3	0.9	10, 13 15 ^A , 11 ^A
		300 μg 150 μg	13 14	<i>3 4</i>	0.9 1.0	13, 11 11 ^A , 16 ^A
		130 μg 50.0 μg	14 17	4 1	1.0 1.2	16 ^A , 17 ^A
		30.0 μg 15.0 μg	14	4	1.2	16, 17 16 ^A , 11 ^A
		13.0 μg 5.00 μg	14 11	4 1	0.8	10 ^A , 11 ^A
		3.00 μg 1.50 μg	15	5	1.1	10, 11 11 ^A , 18 ^A
	Water	1.50 μg 100 μL	14	5	1.1	17 ^A , 10 ^A

A: Automatic count

TABLE 2 (CONT.) Initial Toxicity-Mutation Assay with S9 activation

Study Number: AF28PR.503.BTL Study Code: AF28PR Experiment: B1

Date Plated: 5/31/2018 Exposure Method: Plate incorporation assay Evaluation Period: 6/5/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	revertants Standard Deviation		Individual revertant colony counts and background codes
TA1537	Potassium salt of Hydro PSEPVE Acid	5000 μg	12	5	1.2	8 ^A , 15 ^A
	I SEI VE HOW	1500 μg	12	1	1.2	11 ^A , 13 ^A
		500 μg	11	5	1.1	$7^{A}, 14^{A}$
		150 µg	15	1	1.5	16 ^A , 14 ^A
		50.0 μg	17	6	1.7	$13^{A}, 21^{A}$
		15.0 μg	8	1	0.8	$7^{A}, 9^{A}$
		5.00 μg	14	4	1.4	11 ^A , 17 ^A
		1.50 µg	10	2	1.0	11 ^A , 8 ^A
	Water	100 μL	10	4		7^{A} , 13^{A}
WP2uvrA	Potassium salt of Hydro PSEPVE Acid	5000 μg	45	4	1.2	42 ^A , 47 ^A
	I SEI VE MEIU	1500 μg	51	12	1.3	42 ^A , 59 ^A
		500 μg	46	5	1.2	49 ^A , 42 ^A
		150 μg	42	6	1.1	38 ^A , 46 ^A
		50.0 μg	45	5	1.2	48 ^A , 41 ^A
		15.0 μg	42	1	1.1	41 ^A , 42 ^A
		5.00 μg	37	8	1.0	43 ^A , 31 ^A
		1.50 µg	41	8	1.1	43 ^A , 31 ^A 35 ^A , 46 ^A
	Water	100 μL	38	9		44 ^A , 31 ^A
TA98	2AA	1.00 μg	198	13	9.0	207 ^A , 188 ^A
TA100	2AA	2.00 μg	635	11	5.9	627 ^A , 642 ^A
TA1535	2AA	1.00 µg	94	19	6.7	80 ^A , 107 ^A
TA1537	2AA	2.00 μg	45	16	4.5	$56^{A}, 33^{A}$
WP2uvrA	2AA	15.0 μg	286	2	7.5	284 ^A , 287 ^A

Key to Positive Controls

2-aminoanthracene 2AA

A: Automatic count

TABLE 3
Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PR.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PR

Date Plated: 6/13/2018

Evaluation Period: 6/25/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
	D					
TA98	Potassium salt of Hydro PSEPVE Acid	5000 μg	14	4	0.8	18^{A} , 10^{A} , 13^{A}
	I SEI VE Meiu	1500 µg	18	2	1.0	21 ^A , 17 ^A , 17 ^A
		500 μg	22	2	1.2	$24^{A}, 22^{A}, 21^{A}$
		150 μg	20	1	1.1	$21^{A}, 19^{A}, 21^{A}$
		50.0 μg	21	4	1.2	$17^{A}, 22^{A}, 24^{A}$
	Water	100 μL	18	1		17^{A} , 18^{A} , 18^{A}
	Potassium salt	•				
TA100	of Hydro PSEPVE Acid	5000 μg	106	1	1.1	106 ^A , 106 ^A , 107 ^A
	I SEI VEIRIG	1500 μg	106	12	1.1	92^{A} , 111^{A} , 114^{A}
		500 μg	94	9	1.0	99 ^A , 99 ^A , 83 ^A
		150 μg	96	15	1.0	88 ^A , 86 ^A , 113 ^A
		50.0 μg	98	3	1.0	101 ^A , 95 ^A , 98 ^A
	Water	100 μL	97	16		79^{A} , 108^{A} , 104^{A}
	Potassium salt					
TA1535	of Hydro PSEPVE Acid	5000 μg	16	4	1.3	21 ^A , 14 ^A , 14 ^A
	I SEI VEIRIG	1500 μg	15	5	1.3	17^{A} , 18^{A} , 9^{A}
		500 μg	14	6	1.2	$9^{A}, 21^{A}, 11^{A}$
		150 µg	17	1	1.4	17^{A} , 18^{A} , 16^{A}
		50.0 μg	10	1	0.8	$11^{A}, 10^{A}, 9^{A}$
	Water	100 μL	12	4		$11^{A}, 9^{A}, 17^{A}$
	Potassium salt					
TA1537	of Hydro PSEPVE Acid	5000 μg	10	5	1.1	11 ^A , 14 ^A , 5 ^A
		1500 μg	12	3	1.3	$10^{A}, 10^{A}, 16^{A}$
		500 μg	12	5	1.3	14 ^A , 7 ^A , 16 ^A
		150 μg	11	1	1.2	$10^{A}, 11^{A}, 11^{A}$
		50.0 μg	9	1	1.0	$9^{A}, 9^{A}, 8^{A}$
	Water	100 μL	9	3		$11^{A}, 5^{A}, 11^{A}$

A: Automatic count

TABLE 3 (CONT.) Confirmatory Mutagenicity Assay without S9 activation

Study Number: AF28PR.503.BTL Study Code: AF28PR Date Plated: 6/13/2018 Experiment: B2

Exposure Method: Plate incorporation assay Evaluation Period: 6/25/2018

Strain	Substance	Dose level per plate	Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes
WP2uvrA	Potassium salt of Hydro PSEPVE Acid	5000 μg	28	2	0.9	29 ^A , 26 ^A , 29 ^A
	I SEI VE Held	1500 μg	30	4	1.0	$27^{A}, 34^{A}, 30^{A}$
		500 μg	34	7	1.1	$34^{A}, 40^{A}, 27^{A}$
		150 μg	39	7	1.3	$40^{A}, 46^{A}, 32^{A}$
		50.0 μg	29	3	0.9	$32^{A}, 27^{A}, 29^{A}$
	Water	100 μL	31	2		$29^{A}, 33^{A}, 31^{A}$
TA98	2NF	1.00 μg	65	9	3.6	57 ^A , 65 ^A , 74 ^A
TA100	SA	1.00 μg	741	48	7.6	790^{A} , 740^{A} , 694^{A}
TA1535	SA	1.00 μg	759	16	63.3	757 ^A , 744 ^A , 776 ^A
TA1537	9AAD	75.0 μg	630	26	70.0	645^{A} , 600^{A} , 645^{A}
WP2uvrA	MMS	1000 μg	497	5	16.0	491 ^A , 499 ^A , 500 ^A

Key to Positive Controls

2NF 2-nitrofluorene sodium azide SA 9AAD 9-Aminoacridine methyl methanesulfonate MMS

A: Automatic count

TABLE 4
Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PR.503.BTL

Experiment: B2

Exposure Method: Plate incorporation assay

Study Code: AF28PR

Date Plated: 6/13/2018

Evaluation Period: 6/25/2018

•		Dose level	Mean	Standard	Ratio	Individual revertant
Strain	Substance	per plate	revertants per plate	Deviation	treated / solvent	colony counts and background codes
			per place		SOIV CITE	ouckground codes
	Potassium salt					
TA98	of Hydro	5000 μg	24	4	1.0	$29^{A}, 22^{A}, 21^{A}$
17100	PSEPVE Acid	3000 μς	2 /	,	1.0	27,22,21
	I SEI VE Meiu	1500 μg	21	5	0.9	$18^{A}, 27^{A}, 19^{A}$
		500 μg	26	5	1.1	22 ^A , 31 ^A , 24 ^A
		150 μg	24	3	1.0	22 ^A , 24 ^A , 27 ^A
		50.0 μg	29	4	1.2	31 ^A , 24 ^A , 32 ^A
	Water	100 μL	24	2	1.2	26 ^A , 23 ^A , 22 ^A
	Potassium salt		_ ·			- , ,
TA100	of Hydro	5000 μg	116	9	1.1	127 ^A , 111 ^A , 111 ^A
IAIUU	PSEPVE Acid	3000 μg	110	9	1.1	127,111,111
	r SEF V E ACIU	1500 μg	100	15	1.0	103 ^A , 113 ^A , 83 ^A
		1300 μg 500 μg	108	13	1.0 1.1	103, 113, 83 122 ^A , 105 ^A , 97 ^A
		300 μg 150 μg	105	8	1.1	114 ^A , 99 ^A , 103 ^A
		130 μg 50.0 μg	115	21	1.0 1.1	91 ^A , 124 ^A , 129 ^A
	Water	30.0 μg 100 μL	102	21 19	1.1	123 ^A , 92 ^A , 90 ^A
		100 μL	102	19		123 , 92 , 90
	Potassium salt			_		- A 10A 0A
TA1535	of Hydro	5000 μg	11	7	0.7	7^{A} , 19^{A} , 8^{A}
	PSEPVE Acid					
		1500 μg	16	4	1.1	21 ^A , 13 ^A , 14 ^A
		500 μg	18	2	1.2	$19^{A}, 19^{A}, 15^{A}$
		150 µg	16	4	1.1	$17^{A}, 11^{A}, 19^{A}$
		50.0 μg	11	3	0.7	$13^{A}, 7^{A}, 13^{A}$
	Water	100 μL	15	6		15 ^A , 9 ^A , 21 ^A
	Potassium salt					
TA1537	of Hydro	5000 μg	11	4	1.2	8^{A} , 16^{A} , 9^{A}
	PSEPVE Acid					
		1500 μg	10	4	1.1	$13^{A}, 5^{A}, 11^{A}$
		500 μg	13	1	1.4	14 ^A , 13 ^A , 13 ^A
		150 μg	11	4	1.2	15 ^A , 11 ^A , 7 ^A
		50.0 μg	12	2	1.3	11 ^A , 15 ^A , 11 ^A
	Water	100 μL	9	1		$10^{A}, 8^{A}, 9^{A}$

A: Automatic count

TABLE 4 (CONT.) Confirmatory Mutagenicity Assay with S9 activation

Study Number: AF28PR.503.BTL Study Code: AF28PR
Experiment: B2 Date Plated: 6/13/2018
Exposure Method: Plate incorporation assay Evaluation Period: 6/25/2018

Exposure Met	nod: Plate incorpor	ation assay		Evaluation Period: 6/25/2018				
Strain	Strain Substance		Mean revertants per plate	Standard Deviation	Ratio treated / solvent	Individual revertant colony counts and background codes		
WP2uvrA	Potassium salt of Hydro PSEPVE Acid	5000 μg	32	3	0.9	31 ^A , 36 ^A , 30 ^A		
		1500 μg 500 μg 150 μg 50.0 μg	32 35 32 33	9 6 3 2	0.9 1.0 0.9 1.0	36 ^A , 38 ^A , 21 ^A 41 ^A , 32 ^A , 31 ^A 33 ^A , 34 ^A , 29 ^A 31 ^A , 35 ^A , 34 ^A		
	Water	100 μL	34	2		32 ^A , 35 ^A , 34 ^A		
TA98 TA100 TA1535 TA1537	2AA 2AA 2AA 2AA	1.00 μg 2.00 μg 1.00 μg 2.00 μg	179 609 101 71	77 66 15 8	7.5 6.0 6.7 7.9	226 ^A , 90 ^A , 220 ^A 534 ^A , 653 ^A , 641 ^A 101 ^A , 116 ^A , 86 ^A 63 ^A , 79 ^A , 71 ^A		
WP2uvrA	2AA	15.0 µg	312	24	9.2	287^{A} , 335^{A} , 314^{A}		

Key to Positive Controls

2AA 2-aminoanthracene Key to Automatic Count Flags

A: Automatic count

13	A PI	PEND	IX I. I	Historica	l Control	Data

Historical Negative and Positive Control Values 2016

revertants per plate

r - r - r - r - r - r - r - r - r - r -											
		Activation									
Strain	Control	None							Rat Liv	ver	
		Mean	SD	Min	Max	95% CL	Mean	SD	Min	Max	95% CL
TA00	Neg	15	5	6	34	5-25	22	6	8	42	10-34
TA98	Pos	198	174	36	1826		287	159	47	1916	
TA 100	Neg	90	12	60	146	66-114	94	14	63	181	66-122
TA100	Pos	629	159	186	1383		620	294	192	3483	
TA1535	Neg	12	4	3	31	4-20	12	4	3	26	4-20
1A1333	Pos	541	164	34	1082		150	122	27	1114	
TA1527	Neg	8	3	1	21	2-14	9	3	2	23	3-15
TA1537	Pos	368	227	21	1791		91	90	17	951	
WP2 uvrA	Neg	24	7	7	44	10-38	27	7	8	51	13-41
WFZ UVFA	Pos	336	119	25	876		300	111	41	1059	

SD=standard deviation; Min=minimum value; Max=maximum value; 95% $CL = Mean \pm 2$ SD (but not less than zero); Neg=negative control (including but not limited to deionized water, dimethyl sulfoxide, ethanol and acetone); Pos=positive control

14.	APPENDIX II: Study Protocol and Amendment

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PR.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

1. Page 7, Section 8, Experimental Design and Methodology – Confirmatory Mutagenicity Assay

Effective: Date of Study Director signature on this amendment

Add:

The doses will be 5000, 1500, 500, 150 and 50.0 µg per plate.

Reason: To specify the dose levels to be used for the confirmatory mutagenicity assay based on the toxicity and precipitate profiles observed in the initial toxicity-mutation assay.

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PR.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Sponsor Approval:

Shawn Gannon, Ph.D., DABT

Sponsor Representative

Page 2 of 3

PROTOCOL AMENDMENT 1

Sponsor: The Chemours Company

BioReliance Study No.: AF28PR.503.BTL; Sponsor No.: C30049

Title: Bacterial Reverse Mutation Assay

Study Director and Test Facility Management Approvals:

Emily Dakoulas, BS

BioReliance Study Director

BioReliance Study Management

Date

Date

Page 3 of 3.

Protocol

Study Title Bacterial Reverse Mutation Assay

Study Director Emily Dakoulas, BS

Testing Facility

BioReliance Corporation

9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number AF28PR.503.BTL

Page 1 of 13

1. KEY PERSONNEL

Sponsor Information:

The Chemours Company Sponsor 1007 Market Street D-3008

Wilmington, DE 19899

Sponsor Number C30049

Sponsor's Authorized

Representative

The Chemours Company 1007 Market Street D-3008 Wilmington, DE 19899

Shawn Gannon, Ph.D., DABT

Phone: 302-773-1376 Email: SHAWN.A.GANNON@chemours.com

Test Facility Information:

Emily Dakoulas, BS Study Director

BioReliance Corporation Phone: 301-610-2153

Email: emily.dakoulas@sial.com

BioReliance Quality

Assurance Representative

Luleayenwa (Lula) Aberra-Degu, RQAP-GLP

BioReliance Corporation Phone: 301-610-2667

Email: Luleayenwa.aberra-degu@sial.com

2. TEST SCHEDULE

07-June-2018 Proposed Experimental Initiation Date Proposed Experimental Completion Date 03-July-2018 18-July-2018 Proposed Report Date

3. REGULATORY REQUIREMENTS

This study will be performed in compliance with the following Good Laboratory Practices (GLP) regulations.

• US EPA GLP Standards 40 CFR 792 (TSCA)

The regulation listed is compatible to non-US regulations, OECD Principles of Good Laboratory Practice (C(97)186/Final); Japanese Ministry of Health, Labor and Welfare Good Laboratory Practices (Ordinance Nos. 21 and 114, if applicable); Japanese Ministry of Agriculture, Forestry and Fisheries Good Laboratory Practices (No. 11 Nousan-6283); Japanese Ministry of Economy, Trade and Industry Good Laboratory Practices, and allows submission of the report under the Mutual Acceptance of Data (MAD) agreement with applicable OECD member countries.

Version No. 3

503.BTL Page 2 of 13 Release Date: 23Apr2018

At a minimum, all work performed at US test site(s) will comply with the US GLP regulations stated above. Non-US sites must follow the GLP regulations governing their site. The regulations that were followed will be indicated on the compliance statement in the final contributing report. If no regulatory compliance statement to any GLP regulations is made by the Test Site(s), a GLP exception will be added to the compliance page of the final report.

4. QUALITY ASSURANCE

The protocol, any amendments, at least one in-lab phase, the raw data, draft report(s), and final report(s) will be audited by BioReliance Quality Assurance (QA) and a signed QA Statement will be included in the final report.

Test Site Quality Assurance (where applicable)

At a minimum, Test Site QA is responsible for auditing the raw data and final report(s), and providing the inspection results to the Principal Investigator, Study Director, and their respective management. Additional audits are conducted as directed by Test Site QA SOPS. Email Testing Facility Management at RCK-Tox-TFM@bioreliance.com. A signed QA Statement documenting the type of audits performed, the dates performed, and the dates in which the audit results were reported to the Study Director, Principal Investigator and their respective management must be submitted by the Test Site QA.

5. PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test substance by measuring its ability to induce reverse mutations at selected loci of several strains of *Salmonella typhimurium* and at the tryptophan locus of *Escherichia coli* WP2 *uvr*A in the presence and absence of an exogenous metabolic activation system. The assay design is based on the OECD Guideline 471, updated and adopted 21 July 1997 and ISO/IEC 17025;2005 (ISO/IEC, 2005).

6. TEST SUBSTANCE INFORMATION

Identification Potassium salt of Hydro PSEPVE Acid

CAS No. 259140-44-8

Storage Conditions Room Temperature

Protect from light (Per BioReliance SOP)

Purity 97.7% (no correction factor will be used for dose formulations)

Molecular Weight 502.22 g/mol

Version No. 3

Release Date: 23Apr2018 Page 3 of 13 503.BTL

Characterization of Test Substance

Characterization of the Test Substance is the responsibility of the Sponsor.

Test Substance Reserve Sample

A reserve sample of the Test Substance is the responsibility of the Sponsor.

Characterization of Dose Formulations

Dose formulations will not be analyzed.

Stability of Test Substance in Vehicle

Stability of Test Substance in Vehicle, under the conditions of use, is the responsibility of the Sponsor.

Disposition of Test Substance and Dose Formulations

All unused Test Substance will be returned to the sponsor prior to report finalization using the information below; unless the test substance is used on another study.

Alex Petlick The Chemours Company 200 Powder Mill Rd **Experimental Station** E402/5317 Wilmington, DE 19803

Phone: +1 (302) 353-5444

Email: Alexandra.Petlick@chemours.com

Residual dose formulations will be discarded after use.

7. TEST SYSTEM

The tester strains will include the S. typhimurium histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames et al. (1975) and the E. coli tester strain WP2 uvrA as described by Green and Muriel (1976). The genotypes of strains are as follows:

	His	stidine Mutatio	Tryptophan Mutation	Additional Mutations			
	hisG46	hisC3076	hisD3052	trpE.	LPS	Repair	R-factor
	TA1535	TA1537	-	-	rfa	$\Delta uvrB$	-
	TA100	-	TA98	-	rfa	$\Delta uvrB$	+R
\vdash	_	-	-	WP2 uvrA	-	$\Delta uvrA$	-

The S. typhimurium tester strains were from Dr. Bruce Ames, University of California, Berkeley. The E. coli tester strain was from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (United Kingdom). The tester strains may also be obtained from Molecular Toxicology Inc. (Moltox).

Version No. 3

503.BTL Page 4 of 13 Release Date: 23Apr2018

8. EXPERIMENTAL DESIGN AND METHODOLOGY

The test system will be exposed to the test substance via the plate incorporation methodology originally described by Ames *et al.* (1975) and updated by Maron and Ames (1983). This test system has been shown to detect a wide range of classes of chemical mutagens (McCann *et al.*, 1975; McCann and Ames, 1976).

If the Sponsor is aware of specific metabolic requirements (e.g., azo compounds), this information will be utilized in designing the assay.

Solubility Determination

As needed, a solubility determination will be conducted to determine the maximum soluble concentration or workable suspension as indicated below. Vehicles compatible with this test system, in order of preference, include but are not limited to deionized water (CAS 7732-18-5), dimethyl sulfoxide (CAS 67-68-5), ethanol (CAS 64-17-5) and acetone (CAS 67-64-1). The vehicle of choice, selected in order of preference, will be that which permits preparation of the highest workable or soluble stock concentration, up to 50 mg/mL for aqueous vehicles and up to 500 mg/mL for organic vehicles. Based on the molecular weight of the test substance, the vehicles to be tested and the dose to be achieved in the assay, alternate stock concentrations may be tested, as needed.

Preparation of Tester Strain

Each tester strain culture will be inoculated from the appropriate frozen stock, lyophilized pellet(s), or master plate. To ensure that cultures are harvested in late log phase, the length of incubation will be controlled and monitored. Each inoculated flask will be placed in a shaker/incubator programmed to begin shaking at 125 to 175 rpm and incubating at 37±2°C.

All cultures will be harvested by spectrophotometric monitoring of culture turbidity rather than by duration of incubation since overgrowth of cultures can cause loss of sensitivity to some mutagens. Cultures will be removed from incubation at a density of approximately 10° cells/mL.

Identification of Test System

Each plate will be identified by the BioReliance study number and a code system to designate at least the treatment condition, dose level, and test phase.

Exogenous Metabolic Activation

Liver Homogenate

Liver homogenate (S9) will be purchased commercially (MolTox; Boone, NC). It is prepared from male Sprague-Dawley rats that have been injected intraperitonealy with AroclorTM 1254 (200 mg/mL in corn oil), at a dose of 500 mg/kg, 5 days before sacrifice.

Sham Mix

Version No. 3

Release Date: 23Apr2018 Page 5 of 13 503.BTL

100 mM phosphate buffer at pH 7.4

S9 Mix

S9 mix will be prepared on the day of use as indicated below:

Component	Final Concentration
β-nicotinamide-adenine dinucleotide phosphate	4 mM
Glucose-6-phosphate	5 mM
Potassium chloride	33 mM
Magnesium chloride	8 mM
Phosphate Buffer (pH 7.4)	100 mM
S9 homogenate	10% (v/v)

Controls

No analyses will be performed on the positive control articles or the positive control dose formulations. The neat positive control articles and the vehicles used to prepare the test substance and positive control formulations will be characterized by the Certificates of Analysis provided by the Supplier(s). Copies of the Certificates of Analysis will be kept on file at BioReliance.

Vehicle Control

The vehicle for the test substance will be used as the vehicle control for each treatment group. For vehicles with no historical control data, an untreated control will be included.

Sterility Controls

At a minimum, the most concentrated test substance dilution and the Sham and S9 mixes will be checked for sterility.

Positive Controls

Results obtained from these articles will be used to assure responsiveness of the test system but not to provide a standard for comparison with the test substance.

Strain	Positive Control	S9	Concentrations (µg/plate)
Salmonella strains	2-aminoanthracene ^B	+	1.0 - 2.0
WP2 uvrA	2-aminoanthracene ^B	+	10 - 20
TA98	2-nitrofluorene ^B	_	1.0
TA100, TA1535	sodium azide ^A	-	1.0
TA1537	9-aminoacridine ^B	_	75
WP2 uvrA	methyl methanesulfonate ^B		1,000

APrepared in water

Frequency and Route of Administration

The test system will be treated using the plate incorporation method.

Version No. 3

Release Date: 23Apr2018

Page 6 of 13

^BPrepared in DMSO

Verification of a clear positive response will not be required (OECD Guideline 471). Equivocal results will be retested in consultation with the Sponsor using an appropriate modification of the experimental design (e.g., dose levels, activation system or treatment method).

Initial Toxicity-Mutation Assay to Select Dose Levels

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least eight concentrations of test substance, in duplicate, in both the presence and absence of S9. Unless limited by solubility, the test substance will be evaluated at a maximum concentration of 5000 μg/plate. Unless indicated otherwise by the Sponsor, the dose levels will be 5000, 1500, 500, 150, 50.0, 15.0, 5.00 and 1.50 μg/plate. If limited by solubility in the vehicle, the test substance will be evaluated at the highest concentration permissible as a workable suspension. Dose levels for the confirmatory mutagenicity assay will be based upon post-treatment toxicity, the precipitation profile, solubility of the test substance and will be documented in the raw data and report. If the top dose is less than 5000 μg/plate due to precipitation or solubility issues, the Sponsor will be consulted. If a retest of the initial toxicity-mutation assay is needed, a minimum of five dose levels of test substance will be used in the retest.

Confirmatory Mutagenicity Assay

TA98, TA100, TA1535, TA1537 and WP2 uvrA will be exposed to vehicle alone and at least five concentrations of test substance, in triplicate, in both the presence and absence of S9.

Treatment of Test System

Unless specified otherwise, test substance dilutions will be prepared immediately prior to use. All test substance dosing will be at room temperature under filtered light. One half milliliter (0.5 mL) of S9 mix or Sham mix, 100 µL of tester strain and 50.0 µL of vehicle, test substance dilution or positive control will be added to 2.0 mL of molten selective top agar at 45±2°C. When necessary, aliquots of other than 50.0 µL of test substance or vehicle or positive control will be plated. When plating untreated controls, the addition of test substance, vehicle and positive control will be omitted. The mixture will be vortex mixed and overlaid onto the surface of a minimal bottom agar plate. After the overlay has solidified, the plates will be inverted and incubated for 48 to 72 hours at 37±2°C. Plates that are not counted immediately following the incubation period will be stored at 2-8°C.

Scoring

The condition of the bacterial background lawn will be evaluated for evidence of test substance toxicity and precipitate. Evidence of toxicity will be scored relative to the vehicle control plate and recorded along with the revertant count for that plate. Toxicity will be evaluated as a decrease in the number of revertant colonies per plate and/or a thinning or disappearance of the bacterial background lawn. Precipitation will be evaluated after the incubation period by visual examination without magnification. As appropriate, colonies will be enumerated either by hand or by machine.

Version No. 3

Release Date: 23Apr2018 Page 7 of 13 503.BTL

Tester Strain Verification

On the day of use in the initial toxicity-mutation assay and the confirmatory mutagenicity assays, all tester strain cultures will be checked for the appropriate genetic markers.

9. CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the initial toxicity-mutation assay and the confirmatory mutagenicity assay to be considered valid. If one or more of these parameters are not acceptable, the affected condition(s) will be retested.

Tester Strain Integrity

To demonstrate the presence of the *rfa* mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to crystal violet. To demonstrate the presence of the *uvr*B mutation, all *S. typhimurium* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the *uvr*A mutation, all *E. coli* tester strain cultures must exhibit sensitivity to ultraviolet light. To demonstrate the presence of the pKM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to ampicillin.

Vehicle Controls Values

Based on historical control data (95% control limits), all tester strain cultures must exhibit characteristic numbers of spontaneous revertants per plate with the vehicle controls. The mean revertants per plate must be within the following ranges (inclusive). Untreated controls, when part of the design, must also be within the ranges cited below.

	95% Control Limits (99% Upper Limit)								
	TA98	TA100	TA1535	TA1537	WP2 uvrA				
-S9	5-25 (30)	66-114 (126)	4-20 (24)	2-14 (17)	10-38 (45)				
+S9	10-34 (40)	66-122 (136)	4-20 (24)	3-15 (18)	13-41 (48)				
With Study Director justification, values including the 99% control limit and above are acceptable.									

Tester Strain Titers

To ensure that appropriate numbers of bacteria are plated, all tester strain culture titers must be equal to or greater than 0.3×10^9 cells per milliliter.

Positive Control Values

Each mean positive control value must exhibit at least a 3.0-fold increase over the respective mean vehicle control value for each tester strain and exceed the corresponding acceptable vehicle control range cited above.

Toxicity

A minimum of three non-toxic dose levels will be required to evaluate assay data. A dose level is considered toxic if it causes a >50% reduction in the mean number of

Version No. 3

Release Date: 23Apr2018

Page 8 of 13

revertants per plate relative to the mean vehicle control value (this reduction must be accompanied by an abrupt dose-dependent drop in the revertant count) or a reduction in the background lawn. In the event that less than three non-toxic dose levels are achieved, the affected portion of the assay will be repeated with an appropriate change in dose levels.

10. EVALUATION OF TEST RESULTS

For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:

Strains TA1535 and TA1537

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

Strains TA98, TA100 and WP2 uvrA

Data sets will be judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.

An equivocal response is an increase in a revertant count that is greater than the acceptable vehicle control range but lacks a dose response or does not achieve the respective fold increase threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

11. ELECTRONIC DATA COLLECTION SYSTEMS

Electronic systems used for the collection or analysis of data may include but not be limited to the following (version numbers are maintained in the system documentation):

System	Purpose
LIMS Labware System	Test Substance Tracking
Excel (Microsoft Corporation)	Calculations
Sorcerer Colony Counter and Ames Study Manager	Data Collection/Table
(Perceptive Instruments)	Creation
Kave Lab Watch Monitoring system (Kaye GE)	Environmental Monitoring
BRIQS	Deviation and audit reporting

12 REPORT

A report of the results of this study will accurately describe all methods used for generation and analysis of the data. The report will include, but not limited to information about the following:

- Test substance
- Vehicle
- Strains

Version No. 3

Release Date: 23Apr2018 Page 9 of 13 503.BTL

- Test conditions
- Results
- · Discussion of results
- Conclusion
- Historical Control Data (vehicle and positive controls with ranges, means and standard deviations)
- · Copy of the protocol and any amendment
- Contributing reports (if applicable)
- Information about the analyses that characterized the test substance, its stability and the stability and strength of the dosing preparations, if provided by the Sponsor
- · Statement of Compliance
- Quality Assurance Statement
- CTD Tables (unless otherwise requested)

The report will be issued as a QA-audited draft. After receipt of the Sponsor's comments a final report will be issued. A GLP Compliance Statement signed by the Study Director will also be included in the final report and will note any exceptions if the characterization of the test substance and/or the characterization of the dose formulations are not performed or provided. Four months after issuance of the draft report, if no communication regarding the study is received from the Sponsor or designated representative, the draft report may be issued as a final report. If all supporting documents have not been provided, the report will be written based on those that are provided.

13. RECORDS AND ARCHIVES

All raw data, the original signed protocol, amendment(s) (if applicable), and the original signed final report will be archived by BioReliance as directed by the applicable SOP. A copy of the draft report, including Study Director and Sponsor comments, if applicable, will be archived electronically by BioReliance. Following the SOP retention period, the Sponsor will be contacted by BioReliance for disposition instructions or return of materials. Slides and/or specimens (as applicable) will be archived at EPL Archives and indexed as such in the BioReliance archive database.

BioReliance reserves the right to retain true copies (i.e. photocopies, scans, microfilm, or other accurate reproductions of the original records) for at least the minimum retention period specified by the relevant regulations.

14. REFERENCES

Ames, B.N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutation Research 31:347-364.

Green, M.H.L., and Muriel, W.J. (1976). Mutagen testing using trp⁺ reversion in Escherichia coli. Mutation Research 38:3-32.

Version No. 3

Release Date: 23Apr2018 Page 10 of 13 503.BTL

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories.

Maron, D.M. and Ames, B.N. (1983). Revised Methods for the Salmonella Mutagenicity Test. Mutation Research 113:173-215.

McCann, J. and Ames, B.N. (1976). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals: discussion. Proc. Natl. Acad. Sci. USA 73:950-954.

McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975). Detection of carcinogens as mutagens in the *Salmonella*/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135-5139.

OECD Guideline 471 (Genetic Toxicology: Bacterial Reverse Mutation Test), Ninth Addendum to the OECD Guidelines for the Testing of Chemicals, adopted July 21, 1997.

Version No. 3

Release Date: 23Apr2018 Page 11 of 13 503.BTL

> 8 May 2018 Date

APPROVALS

Sponsor Approval

Shawn Gannon, Ph.D., DABT

Sponsor Representative

Version No. 3 Release Date: 23Apr2018 Page 12 of 13

Study Director and Test Facility Management Approvals

Bioretiance Study Management

24-MAY-18 Date

Version No. 3 Release Date: 23Apr2018

Page 13 of 13

15.	APPENDIX III: Common Technical Document Tables

2.6.7.8 Genotoxicity: In Vitro

Report Title: Bacterial Reverse Mutation Assay

Test for Induction of: Reverse mutation in bacterial cells

Species/Strain: S. typhimurium TA98, TA100, TA1535,

TA1537; E. coli WP2 uvrA

Metabolizing System: Aroclor-induced rat liver S9

Vehicle for Test Substance: Water

Treatment: Plate incorporation

Cytotoxic Effects: None Genotoxic Effects: None Test Substance: Potassium salt of Hydro PSEPVE Acid

No. of Independent Assays: 2 Study No.: AF28PR.503.BTL

No. of Replicate Cultures: 2 (B1) No. Cells Analyzed/Culture: 1.1 to 3.1 x 10⁸ cells per and 3 (B2)

plate

GLP Compliance: Yes

Vehicle for Positive Controls: DMSO, except sterile water for sodium azide

Date(s) of Treatment: 31 May 2018 (B1) and

13 June 2018 (B2)

Metabolic Activation	Test Substance	Dose Level (μg/plate)	Revertant Colony Counts (Mean ±SD)					
		<u> </u>	<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA	
Without	Water	100 μL/plate	15 ± 0	83 ± 0	12 ± 1	9 ± 1	30 ± 6	
Activation	Potassium salt of Hydro PSEPVE Acid	1.50	19 ± 6	96 ± 13	10 ± 1	5 ± 3	34 ± 3	
	•	5.00	10 ± 0	77 ± 5	12 ± 2	9 ± 3	25 ± 1	
		15.0	17 ± 3	85 ± 4	10 ± 9	13 ± 4	43 ± 6	
		50.0	16 ± 3	85 ± 9	12 ± 2	11 ± 3	32 ± 4	
		150	20 ± 1	104 ± 5	8 ± 1	10 ± 2	35 ± 5	
		500	15 ± 5	93 ± 4	11 ± 0	9 ± 3	30 ± 8	
		1500	18 ± 2	100 ± 17	14 ± 8	8 ± 4	33 ± 1	
		5000	20 ± 3	82 ± 6	11 ± 1	8 ± 4	25 ± 3	
	2NF	1.00	66 ± 1					
	SA	1.00		722 ± 62	742 ± 93			
	9AAD	75.0				826 ± 94		
	MMS	1000					368 ± 12	
With	Water	100 μL/plate	22 ± 7	107 ± 4	14 ± 5	10 ± 4	38 ± 9	
Activation	Potassium salt of Hydro PSEPVE Acid	1.50	24 ± 1	100 ± 2	15 ± 5	10 ± 2	41 ± 8	
	•	5.00	27 ± 5	89 ± 12	11 ± 1	14 ± 4	37 ± 8	
		15.0	27 ± 8	113 ± 13	14 ± 4	8 ± 1	42 ± 1	
		50.0	21 ± 2	107 ± 6	17 ± 1	17 ± 6	45 ± 5	
		150	24 ± 3	124 ± 10	14 ± 4	15 ± 1	42 ± 6	
		500	25 ± 6	109 ± 17	13 ± 3	11 ± 5	46 ± 5	
		1500	20 ± 4	121 ± 3	13 ± 4	12 ± 1	51 ± 12	
		5000	23 ± 10	106 ± 4	14 ± 1	12 ± 5	45 ± 4	
	2AA	1.00	198 ± 13		94 ± 19			
	2AA	2.00		635 ± 11		45 ± 16		
	2AA	15.0					286 ± 2	
Key to Posi	tive Controls							

SA sodium azide
2AA 2-aminoanthracene
9AAD 9-Aminoacridine
2NF 2-nitrofluorene
MMS methyl methanesulfonate

BioReliance Study No. AF28PR.503.BTL

Metabolic Activation	Test <u>Substance</u>	Dose Level (μg/plate)		Reverta	nt Colony Counts (Me	ean ±SD)	
			<u>TA98</u>	<u>TA100</u>	<u>TA1535</u>	<u>TA1537</u>	WP2uvrA
Without	Water	100 μL/plate	18 ± 1	97 ± 16	12 ± 4	9 ± 3	31 ± 2
Activation	Potassium salt of Hydro PSEPVE Acid	50.0	21 ± 4	98 ± 3	10 ± 1	9 ± 1	29 ± 3
	,	150	20 ± 1	96 ± 15	17 ± 1	11 ± 1	39 ± 7
		500	22 ± 2	94 ± 9	14 ± 6	12 ± 5	34 ± 7
		1500	18 ± 2	106 ± 12	15 ± 5	12 ± 3	30 ± 4
		5000	14 ± 4	106 ± 1	16 ± 4	10 ± 5	28 ± 2
	2NF	1.00	65 ± 9				
	SA	1.00		741 ± 48	759 ± 16		
	9AAD	75.0				630 ± 26	
	MMS	1000 g					497 ± 5
With	Water	100 μL/plate	24 ± 2	102 ± 19	15 ± 6	9 ± 1	34 ± 2
Activation	Potassium salt of Hydro PSEPVE Acid	50.0	29 ± 4	115 ± 21	11 ± 3	12 ± 2	33 ± 2
	•	150	24 ± 3	105 ± 8	16 ± 4	11 ± 4	32 ± 3
		500	26 ± 5	108 ± 13	18 ± 2	13 ± 1	35 ± 6
		1500	21 ± 5	100 ± 15	16 ± 4	10 ± 4	32 ± 9
		5000	24 ± 4	116 ± 9	11 ± 7	11 ± 4	32 ± 3
	2AA	1.00	179 ± 77		101 ± 15		
	2AA	2.00		609 ± 66		71 ± 8	
	2AA	15.0					312 ± 24

Key to Positive Controls

SA sodium azide
2AA 2-aminoanthracene
9AAD 9-Aminoacridine
2NF 2-nitrofluorene
MMS methyl methanesulfonate

PUBLIC COPY

September 25, 2018

Via Federal Express

Document Processing Center (Mail Code 7407M)
Room 6428
Attention: 8(e) Coordinator – FYI Letter
Office of Pollution Prevention and Toxics
U.S. Environmental Protection Agency
1201 Constitution Ave., NW
Washington, DC 20004

Dear 8(e) Coordinator:

Test Substance Abbreviation*		Test Substance	CAS RN (if available)
1	Sodium Salt of Hydrolyzed TAF n = 0	Acetic acid, 2,2-difluoro-2-(trifluoromethoxy)-, sodium salt (1:1)	21837-98-9
2	Sodium Salt of Hydrolyzed TAF n = 1	Acetic acid, 2-[difluoro(trifluoromethoxy)methoxy]-2,2- difluoro-, sodium salt (1:1)	No CAS RN
3	Potassium Salt of Hydrolyzed TAF n = 2	Acetic acid, 2- [[difluoro(trifluoromethoxy)methoxy]difluoromethoxy]-2,2- difluoro-, potassium salt (1:1)	No CAS RN
4	Sodium Salt Hydrolyzed TAF n = 3	3,5,7,9-Tetraoxadecanoic acid, 2,2,4,4,6,6,8,8,10,10,10- undecafluoro-, sodium salt (1:1)	1035377-21-9
5	Sodium Salt of Hydrolyzed TAF n = 4	3,5,7,9,11-Pentaoxadodecanoic acid, 2,2,4,4,6,6,8,8,10,10,12,12,12-tridecafluoro-, sodium salt (1:1)	No CAS RN
6	Potassium Salt of Hydro PSEPVE Acid	Ethanesulfonic acid, 2-[1-[difluoro(1,2,2,2-tetrafluoroethoxy)methyl]- 1,2,2,2-tetrafluoroethoxy]-1,1,2,2-tetrafluoro-, potassium salt (1:1)	259140-44-8
7	Sodium Salt of PSEPVE Acid	Ethanesulfonic acid, 2-[1-[difluoro[(1,2,2-trifluoroethenyl)oxy]methyl]- 1,2,2,2-tetrafluoroethoxy]-1,1,2,2-tetrafluoro-, sodium salt (1:1)	No CAS RN
8	PFECA A	Butanoic acid, 2,2,3,3,4,4-hexafluoro-4-(trifluoromethoxy)-	863090-89-5
9	PFECA F	Propanoic acid, 2,2,3,3-tetrafluoro-3-(trifluoromethoxy)-	377-73-1
10	PFECA G	Butanoic acid, 2,2,3,3,4,4-hexafluoro-4-[1,2,2,2-tetrafluoro-1- (trifluoromethyl)ethoxy]-	801212-59-9

^{*} TAF = telomeric acid fluoride; PSEPVE = perfluorosulfonyl ethyl vinyl ether; PFECA = perfluoroalkyl ether carboxylic acid

This letter is to inform you of the results of Ames studies with the above-referenced test substances. Results indicate that "each test substance" was negative for the ability to induce reverse mutations at selected loci of several strains of Salmonella typhimurium and at the tryptophan locus of Escherichia coli strain WP2 uvrA in the presence and absence of an exogenous metabolic activation system.

PUBLIC COPY

This information is provided to the TSCA 8(e) Office for information in view of the Agency's continued interest in perfluorinated substances and as a precautionary measure.

I hereby certify to the best of my knowledge and belief that all information entered on this form is complete and accurate.

I further certify that, pursuant to 15 U.S.C. § 2613(c), for all claims for confidentiality made with this submission, all information submitted to substantiate such claims is true and correct, and that it is true and correct that

- (i) My company has taken reasonable measures to protect the confidentiality of the information;
- (ii) I have determined that the information is not required to be disclosed or otherwise made available to the public under any other Federal law;
- (iii) I have a reasonable basis to conclude that disclosure of the information is likely to cause substantial harm to the competitive position of my company; and
- (iv) I have a reasonable basis to believe that the information is not readily discoverable through reverse engineering.

Any knowing and willful misrepresentation is subject to criminal penalty pursuant to 18 U.S.C. § 1001.

Substantiation of our claim of confidentiality is included herewith as **Attachment 1**. Please contact me if you have any questions about this submission or need further clarification.

Sincerely,

PUBLIC COPY

Attachment 1