SEMI-WORKS MANUFACTURING PROCESS EMISSIONS TEST REPORT TEST DATES: 10-11 JANUARY 2019

THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA

Prepared for:

THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306

Prepared by:

WESTON SOLUTIONS, INC. 1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380

21 February 2019

W.O. No. 15418.002.009

TABLE OF CONTENTS

Section

Page

1.	INTR	ODUCTION1
	1.1	FACILITY AND BACKGROUND INFORMATION1
	1.2	TEST OBJECTIVES1
	1.3	TEST PROGRAM OVERVIEW1
2.	SUMN	MARY OF TEST RESULTS4
3.	PROC	CESS DESCRIPTIONS
	3.1	SEMI-WORKS AREA
	3.2	PROCESS OPERATIONS AND PARAMETERS
4.	DESC	RIPTION OF TEST LOCATIONS
	4.1	SEMI-WORKS STACK
5.	SAMI	PLING AND ANALYTICAL METHODS8
	5.1	STACK GAS SAMPLING PROCEDURES
		5.1.1 Pre-Test Determinations
	5.2	STACK PARAMETERS
		5.2.1 EPA Method 0010
		 5.2.2 EPA Method 0010 Sample Recovery
	5.3	5.2.3 EPA Method 0010 Sample Analysis
6.	DETA	AILED TEST RESULTS AND DISCUSSION16
	NDIX /	

	-	-		-
APPENDIX C	SAMPLE	CALCUI	LATION	S

- APPENDIX D EQUIPMENT CALIBRATION RECORDS
- APPENDIX E LIST OF PROJECT PARTICIPANTS

LIST OF FIGURES

Title	Page
Figure 4-1 Semi-Works Stack Test Port and Traverse Point Locations	7
Figure 5-1 EPA Method 0010 Sampling Train	9
Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010	
Figure 5-3 WESTON Sampling System	

LIST OF TABLES

Title	Page
Table 1-1 Sampling Plan for Semi-Works Stack	
Table 2-1 Summary of HFPO Dimer Acid Test Results	4
Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Semi-Works	Stack 17

1. INTRODUCTION

1.1 FACILITY AND BACKGROUND INFORMATION

The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. The Chemours operating areas on the site include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse.

Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride, captured as HFPO Dimer Acid, emission testing on the Semi-Works stack. Testing was performed on 10-11 January 2019 and generally followed the "Emission Test Protocol" reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program.

1.2 TEST OBJECTIVES

The specific objectives for this test program were as follows:

- Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid Fluoride from the Semi-Works stack.
- Monitor and record process data in conjunction with the test program.
- Provide representative emissions data.

1.3 TEST PROGRAM OVERVIEW

During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid Fluoride was measured on the Semi-Works stack.

Table 1-1 provides a summary of the test location and the parameters that were measured along with the sampling/analytical procedures that were followed.

Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test location. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6.

Appendix B includes the summary reports for the laboratory analytical results. The full laboratory data packages are provided in electronic format and on CD with each hard copy.

Sampling Point & Location	Semi-Works Stack								
Number of Tests:			2	_					
Parameters To Be Tested:	HFPO Dimer Acid Fluoride (HFPO-DAF)	Volumetric Flow Rate and Gas Velocity	Flow Rate and Dioxide		Water Content				
Sampling or Monitoring Method	EPA M-0010	EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests	EPA I	M3A	EPA M4 in conjunction with M-0010 tests				
Sample Extraction/ Analysis Method(s):	LC/MS/MS	NA^{6}	NA		NA		NA NA		NA
Sample Size	$> 1m^{3}$	NA	NA	NA	NA				
Total Number of Samples Collected ¹	2	2	2	2	2				
Reagent Blanks (Solvents, Resins) ¹	1 set	0	0	0	0				
Field Blank Trains ¹	1 per source	0	0	0	0				
Proof Blanks ¹	1 per train	0	0	0	0				
Trip Blanks ^{1,2}	1 set	0	0	0					
Lab Blanks	1 per fraction ³	0	0	0	0				
Laboratory or Batch Control Spike Samples (LCS)	1 per fraction ³	0	0	0	0				
Laboratory or Batch Control Spike Sample Duplicate (LCSD)	1 per fraction ³	0	0	0	0				
Media Blanks	1 set ⁴	0	0	0	0				
Isotope Dilution Internal Standard Spikes	Each sample	0	0	0	0				
Total No. of Samples	65	2	2	2	2				

Table 1-1Sampling Plan for Semi-Works Stack

Key:

¹ Sample collected in field.

² Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.

³ Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).

⁴ One set of media blank archived at laboratory at media preparation.

⁵ Actual number of samples collected in field.

⁶Not applicable.

2. SUMMARY OF TEST RESULTS

A total of two tests were performed on the Semi-Works Stack. Table 2-1 provides a summary of the HFPO Dimer Acid emission test results. Detailed test results summaries are provided in Section 6.

It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and in this report include a percentage of each of the three compounds.

Source	Dun No	Emission Rates				
Source	Run No.	lb/hr	g/sec			
	1	1.00E-03	1.26E-04			
Semi-Works	2	6.19E-04	7.79E-05			
	Average	8.10E-04	1.02E-04			

 Table 2-1

 Summary of HFPO Dimer Acid Test Results

3. PROCESS DESCRIPTIONS

The Semi-Works area is included in the scope of this test program.

3.1 SEMI-WORKS AREA

Semi-Works is generally a Research and Development facility. However, there are two products made in this unit on a periodic basis: Dimer Peroxide and a high Equivalent Weight (EW) polymer. The Dimer Peroxide is then used in the IXM Polymers manufacturing area and the high EW polymer is used in the IXM Products area to make a specific membrane product.

The following process streams vent to the Semi-Works building stack:

- Continuous Polymerization Process when making high EW polymer
- Batch Polymerization when making the Dimer Peroxide

3.2 PROCESS OPERATIONS AND PARAMETERS

Source	Operation/Product	Batch or Continuous
Semi- Works	Dimer Peroxide	Batch

There are no parameters to monitor from Semi-Works, as there is no control device associated with this stack.

5

4. DESCRIPTION OF TEST LOCATIONS

4.1 SEMI-WORKS STACK

The Semi-Works stack is a circular steel stack outside the laboratory building. The ID fan is located at ground level. The stack ID is 27 inches. Two sample ports, 90° apart are installed 4.5 feet down from the top of the stack and 15 feet up from the ID fan discharge. Per EPA Method 1, sixteen traverse points, eight per port, were used for sampling.

Figure 4-1 provides a schematic of the test port and traverse point locations.

Note: All measurements at the test location were confirmed prior to sampling.

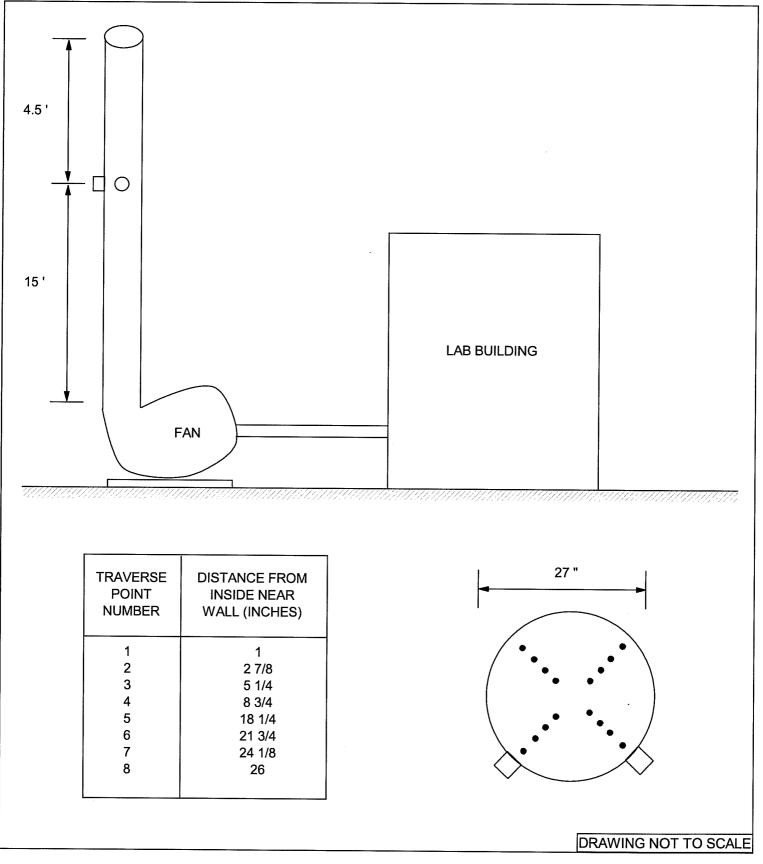


FIGURE 4-1 SEMI-WORKS STACK TEST PORT AND TRAVERSE POINT LOCATION

5. SAMPLING AND ANALYTICAL METHODS

5.1 STACK GAS SAMPLING PROCEDURES

The purpose of this section is to describe the stack gas emissions sampling train and to provide details of the stack sampling and analytical procedures utilized during the emissions test program.

5.1.1 Pre-Test Determinations

Preliminary test data was obtained at the test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements.

A check for the presence or absence of cyclonic flow was previously conducted at the test location. The cyclonic flow check was negative ($< 20^{\circ}$) verifying that the source was acceptable for testing.

Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures.

Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures.

5.2 STACK PARAMETERS

5.2.1 EPA Method 0010

The sampling train utilized to perform the HFPO Dimer Acid sampling was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter.

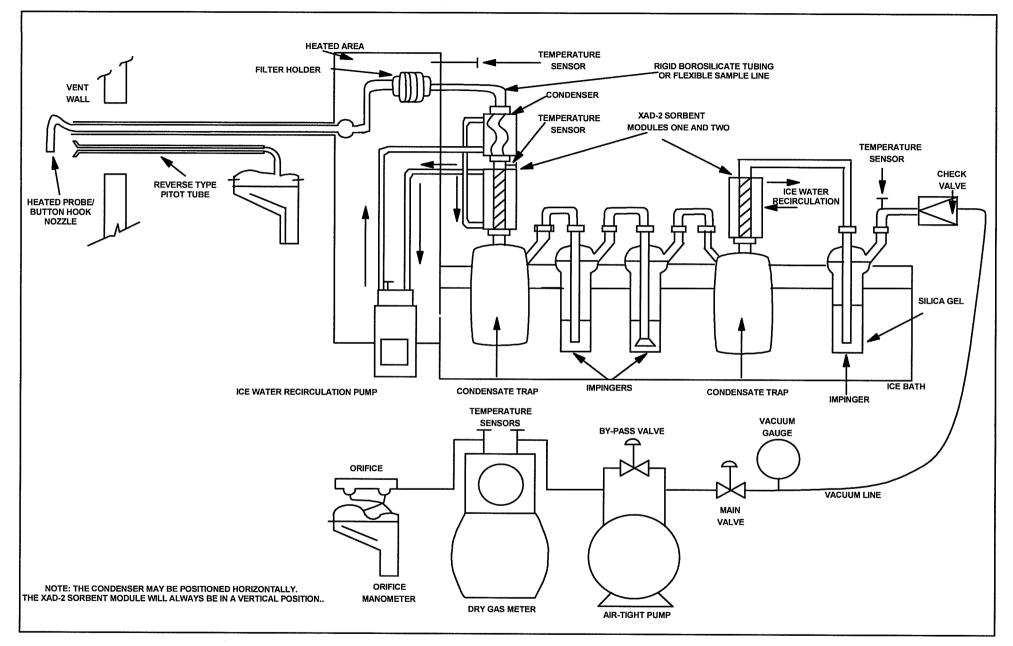


FIGURE 5-1 EPA METHOD 0010 SAMPLING TRAIN

A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that each contained 100 milliliters of high purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and both XAD-2 modules to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train.

HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride undergoes hydrolysis instantaneously in water in the sampling train and during the sample recovery step and will be converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represents a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid.

During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at $100\% \pm 10$. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required). or during midpoint port changes.

5.2.2 EPA Method 0010 Sample Recovery

At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery.

A consistent procedure was employed for sample recovery:

- 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled.
- 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments.
- 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed.
- 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.
- 5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed.
- 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.
- 7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed.
- 8. The silica gel in the final impinger was weighed and the weight gain value recorded.
- 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool.

During the test campaign, an M-0010 blank train was set up near the test location, leak checked and recovered along with the sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis.

See Figure 5-2 for a schematic of the M-0010 sample recovery process.

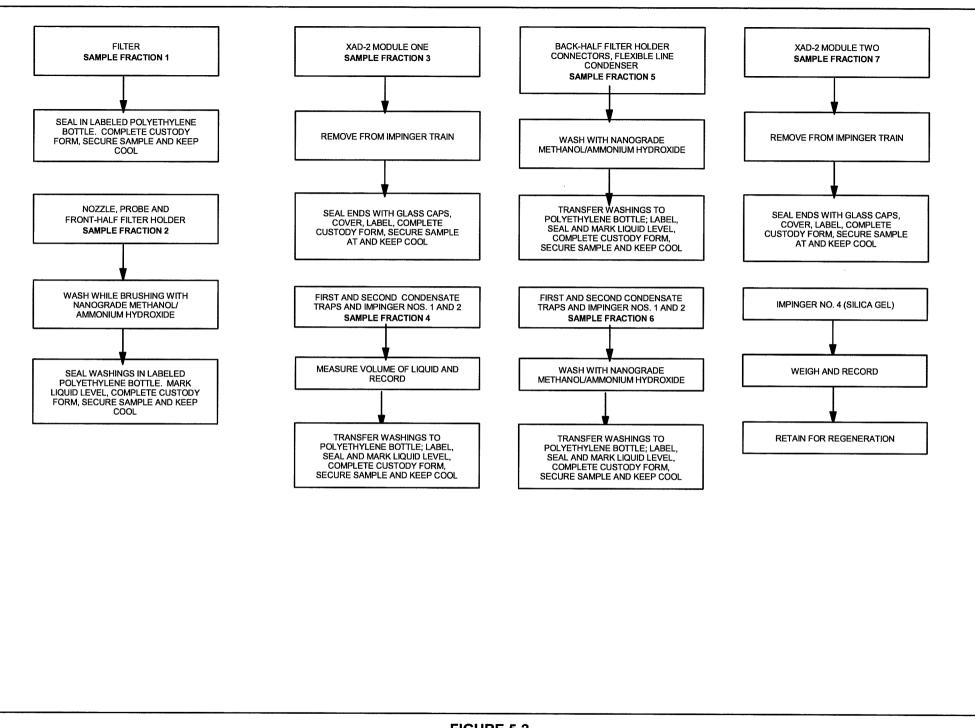


FIGURE 5-2 HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010

5.2.3 EPA Method 0010 – Sample Analysis

The Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:

- Front-Half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;
- Back-Half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;
- Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;
- Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers.

The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough.

The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS.

Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries.

TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test.

5.3 GAS COMPOSITION

The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO_2) and oxygen (O_2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3.

Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintains the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment.

The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to ensure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier.

The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run.

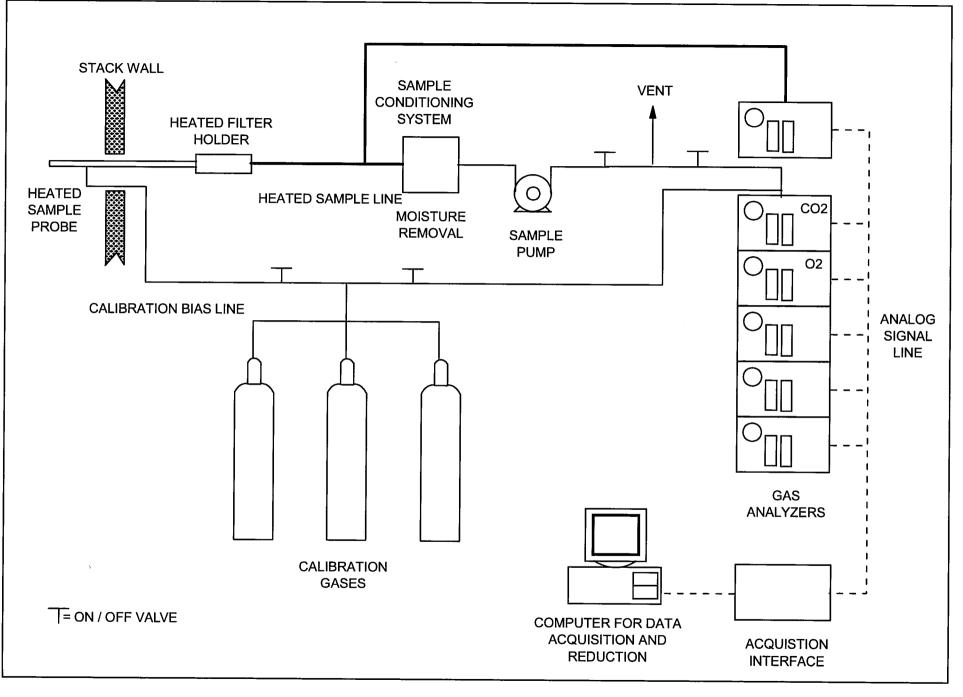


FIGURE 5-3 WESTON SAMPLING SYSTEM

6. DETAILED TEST RESULTS AND DISCUSSION

Preliminary testing and the associated analytical results required significant sample dilution to bring the HFPO Dimer Acid concentration within instrument calibration, therefore, sample times and sample volumes were reduced for the formal test program. This was approved by the North Carolina Department of Environmental Quality (NCDEQ).

Each test was 96 minutes in duration. A total of two tests were performed on the Semi-Works Stack.

Table 6-1 provides detailed test data and test results for the Semi-Works stack.

The Method 3A sampling on all sources indicated that the O_2 and CO_2 concentrations were at ambient air levels (20.9% O_2 , 0% CO_2), therefore, 20.9% O_2 and 0% CO_2 values were used in all calculations.

TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS

Test Data		
Run number	1	2
Location	Semi-Works	Semi-Works
Date	1/10/2019	1/11/2019
Time period	1310-1458	0851-1049
SAMPLING DATA:		
Sampling duration, min.	96.0	96.0
Nozzle diameter, in.	0.235	0.235
Cross sectional nozzle area, sq.ft.	0.000301	0.000301
Barometric pressure, in. Hg	29.93	30.24
Avg. orifice press. diff., in H_2O	1.37	1.34
Avg. dry gas meter temp., deg F	60.5	52.9
Avg. abs. dry gas meter temp., deg. R	521	513
Total liquid collected by train, ml	36.8	25.8
Std. vol. of H_2O vapor coll., cu.ft.	1.7	1.2
Dry gas meter calibration factor	0.9915	0.9915
Sample vol. at meter cond., dcf	61.011	58.493
Sample vol. at std. cond., dscf ⁽¹⁾	61.563	60.510
Percent of isokinetic sampling	104.4	100.9
GAS STREAM COMPOSITION DATA:		
CO_2 , % by volume, dry basis	0.0	0.0
O_2 , % by volume, dry basis	20.9	20.9
N_2 , % by volume, dry basis	79.1	79.1
Molecular wt. of dry gas, lb/lb mole	28.84	28.84
H_20 vapor in gas stream, prop. by vol.	0.027	0.020
Mole fraction of dry gas	0.973	0.980
Molecular wt. of wet gas, lb/lb mole	28.54	28.62
		20102
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:		
Static pressure, in. H_2O	-0.21	-0.22
Absolute pressure, in. Hg	29.91	30.22
Avg. temperature, deg. F	61	54
Avg. absolute temperature, deg.R	521	514
Pitot tube coefficient	0.84	0.84
Total number of traverse points	16	16
Avg. gas stream velocity, ft./sec.	34.5	34.0
Stack/duct cross sectional area, sq.ft.	3.98	3.98
Avg. gas stream volumetric flow, wacf/min.	8229	8117
Avg. gas stream volumetric flow, dscf/min.	8108	8252

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

TABLE 6-1(cont.)CHEMOURS - FAYETTEVILLE, NCSUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS

TEST DATA Run number Location Date Time period	1 Semi-Works 1/10/2019 1310-1458	2 Semi-Works 1/11/2019 0851-1049
LABORATORY REPORT DATA, ug. HFPO Dimer Acid	57.6084	34.2887
EMISSION RESULTS, ug/dscm. HFPO Dimer Acid	33.0	20.0
EMISSION RESULTS, Ib/dscf. HFPO Dimer Acid	2.06E-09	1.25E-09
EMISSION RESULTS, Ib/hr. HFPO Dimer Acid	1.00E-03	6.19E-04
EMISSION RESULTS, g/sec. HFPO Dimer Acid	1.26E-04	7.79E-05

.

APPENDIX A RAW AND REDUCED TEST DATA

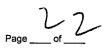
CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS

Test Data		
Run number	1	2
Location	Semi-Works	Semi-Works
Date	1/10/2019	1/11/2019
Time period	1310-1458	0851-1049
Operator	JM	JM
Inputs For Calcs.		
Sq. rt. delta P	0.61496	0 (14(1
Delta H	1.3744	0.61461 1.3428
Stack temp. (deg.F)	60.9	54.1
Meter temp. (deg.F)	60.5	52.9
Sample volume (act.)	61.011	58.493
Barometric press. (in.Hg)	29.93	30.24
Volume H_2O imp. (ml)	20.4	11.0
Weight change sil. gel (g)	16.4	14.8
% CO ₂	0.0	0.0
% O ₂	20.9	20.9
% N ₂	79.1	79.1
Area of stack (sq.ft.)	3.976	3.976
Sample time (min.)	96.0	96.0
Static pressure (in.H ₂ O)	-0.21	-0.22
Nozzle dia. (in.)	0.235	0.235
Meter box cal.	0.9915	0.9915
Cp of pitot tube	0.84	0.84
Traverse points	16	16

•

	J	-	<i>a</i> . 1	-	aver		a Sneet - Metho </th <th></th>	
		Client_	Chemo		-	C	$\frac{1}{2\sqrt{22}}$	17
	Los	ction/Plant Source	CMI W	orks	-	W.O	Date <u>3/27/ /</u> . Number	18
1	Duct Type						Indicate appropriate type	=
	Traverse			Traverse		Rectangular Duct Velocity Traverse	CEM Traverse	
Distance fr	om far wall	to outside of p	port (in.) = C	45]		Flow Disturbances	J
Port Depth	(in.) = D			18	1	Upstream - A (ft)		4.5
Depth of D	uct, diamet	er (in.) = C-D		27	1	Downstream - B (ft)		15
Area of Du	ct (ft²)			3.98		Upstream - A (duct o	liameters)	⁷ Z
Total Trave	erse Points			16		Downstream - B (due	ct diameters)	6.5
Total Trave	erse Points	per Port		8			Diagram of Stack	-
		Flange-Threa	ded-Hole)					
Monorail Le	enath			[ļ			$ l \zeta$
	ar Ducts O				1			
		ular duct only	(in.)				OP .	T
		r duct only)			1			
Equivalent	Diameter =	(2*L*W)/(L+V	V)		ļ			1 ,
								15'
								1-
	Tra	verse Point l	ocation*		1			
	1	Distance from		· · · · · · · · · · · · · · · · · · ·	1			
Traverse		Inside Duct		rom Outside of				
Point	% of Duct	Wall (in)		ort (in)	Į	1		
1	3.2		/	9				
2	10.5	27/8	2	07/8	ĺ			
3	19.4	514	2	3 1/4		Dust Diseast	ers Upstream from Flow Disturbanc	
4	323	83/4	2	6314		0.5 1.0	1.5	2.0 2.5
5	677	18 1/4	3	61/4				
6	4061	213/4	3	9 3/4		St	ack Diameter > 24 inches	Janaro
7	895	2418	4	21/8		ю		
	910	20	- <u>`</u>	<u>u</u>				
8	96.9	16	/	٦				
9	ļ					Minimum Number of		B + Meansmart 5
10					3	Particulate Traverse Pr	書物	
Ī	- i					24 (circular) 25 (rectanged	erducta)	Oniverse
11			_					↓ { `
12		v.					<i>cu</i>	
	1 Dol-41 **	easurownt Line) I		Location	2	0 - Travense Points for Velo	=Tv 16	L
1								
1	0.167							12
2	0.50		_		1	0 (Disturbutors affect)	Expension, Contraction, etc.)	8 (chcular) 9 (nutargular)
3	0.833							
		dia < 12 inch	se EPA Meth	nod 1A	:		Sheck ()	in or Squindert Din + 12 - 24 Inches
M		port upstream						
		then adjust trav en adjust traver				2 3 4	5 6 7	8 9 10
							ownstream from Flow Disturbance (Dista	
	Tava	rse Point Location	n Percent of Stac Traverse Points	t -Circular	_	T	na Point Location Parcast of Stack -Rec	taronalar 1
i i	2 3		7 8	9 1 10 1 11 1	12		Number of Traverse Points	
T 1 T 2	14.6	6.7 4.4 25 14			21	1 2 3 T 1 25,0 16	4 5 6 7 8 9 7 12.5 10.9 83 7.1 63 5.6	10 11 12 5.0 4.5 4.2
: 3		75 29.			6.7 1.8	r 2 75.0 50	0 37.5 30.0 25.0 21.4 18.8 16.7	15.0 13.6 12.5
v L 4		93.3 70.	1 32.3	22.6	7.7		3 62.5 50.0 41.7 35.7 31.3 27.8 87.5 70.0 58.3 50.0 43.8 38.9	25.0 22.7 20.8 35.0 31.8 29.2
r c 5 + 4 6		85.			25 5.6	r e 5	90.0 75.0 64.3 56.3 50.0	45.0 40.9 37.5
• ! 7	<u>i I</u>		89.5	77.4 0	4.4	s = 6 1 1 1 1 1 1 1 1 1	91.7 78.6 68.0 61.1	
P 0 8			96.8		<u>75</u> 2.3	P 8 1	93.8 83.3	75.0 68.2 62.5
on <u>7</u> 1 10					8.2	o n 9		85.0 77.3 70.8 95.0 86.4 79.2
n 111	1				3.3	11111		95.5 87.5
. [12]	<u> </u>		<u>1. []</u>		7.9	1 12		95.8
"+ mo	nornil	for	split	train		104		ESTREM

...


104 21

	TIC FI	ELD I	DATA SH			Method	d 0010]			Acid		и	Page of	2
np. Loc. ID	15418.0 Chi Sami D	STK	% Moisture		ned Actual 70.4 164	Meter Box ID Meter Box Y Meter Box De Probe ID / Ler Probe Materia	ngth al	<u>2.0</u> B	*/ *9.55 ~ 1689 	Leak Ched Sample Trai	n (ft ³)	K Factor Initial 0.008 /5	3.58 Mid-Poin 0010	Final
No:ID t Method ID e ID rce/Location pple Date b. Press (in Hg)	9JA Division 01 / 2	AN2019 orr Stack (0/19 -9,93		(°F) °F) in H₂O) -0,7		Pitot / Thermo Pitot Coefficie Nozzle ID Avg Nozzle D Area of Stack Sample Time	ent ia (in) (ft ²)	10.23 0.23 3,9 96	16/	_ Pitot good _ Orsat good _ Temp Che _ Meter Box T _ Reference T _ Pass/Fail (+,	emp Temp /- 2 ⁰)	- 48 - 50 - (Pai)	yes / no yes / no est Set	Post-Test S
OINT TIM		OCK TIME lant time)	Ambient Tem VELOCITY PRESSURE Delta	ORIFICE PRESSURE	DRY GAS METER READING (ft ³)	Total Traverse STACK TEMP (°F)	e Pts XAD DGNT INLET TEMP (°F)	OULTEI	PROBE TEMP (°F)	FILTER BOX TEMP		SAMPLE TRAIN VAC)/ no	COMMENTS
NO	3 13	<i>HO</i>	P (in H20)	Delta H (in H2O)	436,682 438,9 440,8	62	<u>39</u> 37	TEMP (°F)	<u>99</u> 99	(F) <u>105</u> 108	(°F) 42 41	(in Hg)		
3	9 12- 15		0.46	1.65 1.65 1.57	442,9 445-1 447.4	62.	37 37 38	62 62 62	99 100 98	106 106 107 107	41 42 42	5		
4 1 4	24		0,44	1.57 1.57 1.57	449.3	61 59	39 40 41	60 62 67	99 97 98	107 106 108	42	555		
ć i	27 30 33		0.40 0.40 0.33 0.32	1.43	455,2 457,2 459,0	62	41 42 42	64 64 64	98 98 98	104 104 109	-// 	4.5		29.653
7 7	36 39 12 15		0,12 0,23 0,20	1.14 0.79 0.82	460.6 - 463.7 - 463.7 - 465.2	60 59 57 57	41 41 41	6.7 67 67 63	100 99 100 100	104 103 111 106	41 42 43	- 13 13 13		
		55	0,18,	0641	466,335	575	41	63	99	105	44	3		
<u> </u>			Avg Sqrt Delta P	Avg Delta H Avg Sqrt Del H	Total Volume	Avg Ts	Avg	Tm	Min/Max	Min/Max	Max Temp	Max Vac	Max Temp	
	LINIIIANI.				Comments.		22							amd

amd

ISOKINETIC FIELD DATA SHEET

Method 0010 HFPO Dimer Acid

Client	(Chemours	Operator	Mills										
Source Sem Sample Loc.	works .	Division	Run No.		1		+ ~							
Sample Loc.		Stack	Date	01/10/19		K Factor	3-58			_	-			
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER		XA	DGM		FILTER	IMPING	SAMPLE		
POINT	TIME (min)		PRESSURE Delt	a PRESSURE	READING (ft ³)	STACK	DOM INLET	OUTLET	PROBE	BOX TEMP		TRAIN VAC		COMMENTS
NO.	0	14/10	P (in H2O)	Delta H (in H2O)	411,170	TEMP (°F)	TEMP (°F)	TEMP (°F)	TEMP (°F)	(F)	(°F)	(in Hg)		
	0	$\gamma \gamma \gamma \sigma$	N.48	1.72	466.430	62	43	//	79	1.01	44			
<u> </u>			049	1.75	467.0	62	40	6/		101 109		5	1	
7	9		0 117	1,68	4/23.2	62	41	61	48 99	102	43	<u> </u>	1	
2	12		0.46	1.65	475.2	63	40	62	- <u>71</u> -99	104	41	5 5		
3	15		10.45	1.61	477.1	63	10		100	104	42	- 5		
3	18		0,45	1.61	479.5	63	42	61	100	107	40	5 5		
4	21		043	1.54	481.6	63	UI	59	99	107	411	5		
4	24		0.43	1.54	483.6	63	47-	58	99	101	41	5		31.358
5	27		0,41	1.47	485.5	62	41	58	99	108 106	41	4.5	<u> </u>	
5	<u>30</u> 33	<u> </u>	0.40	1.43	487.4	62	41	58	99	106	142	4,5		
6			0.38	1,36	489.2	61	41	57	99	107	42	4		
6	36		0.38	1.36	491.0	61	41	57	99	104	41	4		
7	39	0.7	120.25	1.18	493.0	59	-41	56 55	99 99	107	4/1	<u> 4 </u>		
7	42		0132		4947	57	4/	55	99	110	41	4		<u> </u>
B	45		0.27	0.97	4196:1	57	4/	35 5 ² /./	99	104	41	کر ج		
ð_	48	1458	0.27	0.1/	497,788		40	<u> </u>	.98	107	41	7.5		<u> </u>
	~					-								
														l
					<u>.</u>		· · · ·							
													1	
								1						
										[
1														
6														
*		ļ												
¢		ļ												
			Avg Cart Dalls D	Aug Date 11	Total Mature		MAY							
			Avg Sqrt Delta P 0 61495	Avg Detta H J 1.37438	Total Volume 61.011		MAX AVG	605	Min/Max 18 100	Min/Max 07	Max Temp 46	Max Vac	Max Temp	
	STIEL		1.0 01717	Avg Sqrt Del H			U BO (00.)	701100	<u> ~ []]</u>	76	<u> </u>		
		b3		1.163301	Comments: Λιφ ΔF = Ο	38406	/							
•	X-(_)				1.1.4	U U								

Samp. Loc. ID STK Run No.ID 2 Test Method ID M 0010 HFPO Dime Date ID 9JAN2019 Source/Location	001 % Moisture Impinger Vol Silica gel (g) CO2, % by Vol r Acid O2, % by Vol Temperature	Stack Condit Assur 2 (ml) 0 0 0 0 20,0 (°F) 55 (°F) 50 (°F) 50 (°F) 50	ned Actual	Meter Box ID Meter Box V Meter Box De Probe ID / Ler Probe Materia Pitot / Thermo Pitot Coefficie Nozzle ID Avg Nozzle D Area of Stack Sample Time Total Traverse	ngth al pocouple ID ent ia (in) (ft ²) e Pts	<u>— WC</u> <u>0.</u> <u>2.</u> <u>Р764</u> <u>0</u> <u>0</u> <u>3.9</u> <u>3.9</u>	21 9915 0089 84 76 J	Leak Check Sample Trai Leak Check Pitot good Orsat good Temp Che Meter Box T Reference T Pass/Fail (+//	n (ft ³) @ (in Hg) //4 ck emp femp	32 32 Eass	Page 1 of 3.500 Mid-Poir yes / no yes / no est Set 4. Fail no	it Final
TRAVERSE SAMPLE CLOCK TIM POINT TIME (min) (plant time) NO. 0 \Im (plant time) V 1 3 1 V 1 3 1 V 1 3 1 V 1 3 1 V 1 3 1 V 1 1 3 V 1 1 3 V 1 1 3 V 1 1 1 V 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td>ORIFICE PRESSURE Delta H (in H2O) 7.6 % 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.7</td> <td>DRY GAS METER READING (1³) 478.302 502,7 502,4 502,4 502,4 508,5 510:4 512,4 514,2 516,1 518,1 518,1 518,1 518,1 518,1 518,2 523,2 524,7 524,7 524,7 524,7 524,7 524,7</td> <td>STACK TEMP (°F) 52 53 53 54 54 54 54 54 54 54 54 54 57 57 57 57 57 57 57 57 57 57</td> <td>XAD DOM INLET TEMP (°F) 74/ 33 36 38 36 37 40 4/ 37 35 35 34 34 34 34 34 34 34 34 34 34</td> <td>DGM OUTLET TEMP (°F) 45 45 45 45 45 45 45 45 45 45 45 45 45</td> <td>PROBE TEMP (°F) 97 97 97 98 98 98 98 98 98 98 98 98 98 97 97 97 97 97 97 97 97 97 97 97</td> <td>FILTER BOX TEMP (F) 103 104 102 104 104 104 105 104 105 106 107 105 106 107 107 107</td> <td>IMPING EXIT TEMP (°F) 372 34 35 35 35 35 35 35 35 35 35 35 35 35 35</td> <td>SAMPLE TRAIN VAC (in Hg)</td> <td></td> <td>COMMENTS</td>		ORIFICE PRESSURE Delta H (in H2O) 7.6 % 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.7	DRY GAS METER READING (1 ³) 478.302 502,7 502,4 502,4 502,4 508,5 510:4 512,4 514,2 516,1 518,1 518,1 518,1 518,1 518,1 518,2 523,2 524,7 524,7 524,7 524,7 524,7 524,7	STACK TEMP (°F) 52 53 53 54 54 54 54 54 54 54 54 54 57 57 57 57 57 57 57 57 57 57	XAD DOM INLET TEMP (°F) 74/ 33 36 38 36 37 40 4/ 37 35 35 34 34 34 34 34 34 34 34 34 34	DGM OUTLET TEMP (°F) 45 45 45 45 45 45 45 45 45 45 45 45 45	PROBE TEMP (°F) 97 97 97 98 98 98 98 98 98 98 98 98 98 97 97 97 97 97 97 97 97 97 97 97	FILTER BOX TEMP (F) 103 104 102 104 104 104 105 104 105 106 107 105 106 107 107 107	IMPING EXIT TEMP (°F) 372 34 35 35 35 35 35 35 35 35 35 35 35 35 35	SAMPLE TRAIN VAC (in Hg)		COMMENTS
WISTON	Avg Sqrt Delta P	Avg Delta H Avg Sqrt Del H	Total Volume Comments:	Avg Ts	Avg	Tm	Min/Max	Min/Max •	Max Temp	Max Vac	Max Temp	I

Ş

24

ISOKINETIC FIELD DATA SHEET Method 0010 HFPO Dimer Acid

and

Client	c	Chemours	Operator	M:115	>			/						
Source	Emi Mirds.	Division	Run No.		2		26							
Sample Loc.		Stack	Date	01/11/10	7	K Factor	3.5			_				
TRAVERSE POINT NO.	SAMPLE TIME (min)	CLOCK TIME (plant time)		ORIFICE PRESSURE Deita H (in H2O)	DRY GAS METER READING (ft ³)	STACK TEMP (°F)	COM INLET	DGM OUTLET TEMP (°F)	PROBE TEMP (°F)	FILTER BOX TEMP (F)	IMPING EXIT TEMP (°F)	SAMPLE TRAIN VAC (in Hg)		COMMENTS
	0	1001			528,180			-		#			and the second second	
1	3	/ /	0,417	1,64	530.2	53	37	57	97	108	35	4.0		
1 1	6		0.48	1,68	532,3	र्ड्ड	38	56	97	101	35	40		
Z	G		0.46	1.61	534.2	55	36	56	98	102	35	4.0		
Z	IZ		0.46	1.61	536.3	56	36	57	97	100	36	4.0)	
3	15		0.42	1.47	538.2	50	40	58	98	102	36 37	40		
3	18		0,43	1.50	540,2	56	41	60	98	102	38	4.0		
ý V	71		0.41	1.43	542.0	56	42	60	91	103	37	3.5		
4	24		0.41	1.43	544.2	56 56 56	-44-	101	97	104	37	3.5	·	
<	27		0.37	1,30	545.8	56	43	61	97	101	37	3		
	30		0.36	1.26	517.8	El.	44	62	97	104	27	3		····
6	33		D129	1.01	549.4	55	41	60	97	1	-2/			
][0,29		551.3	55 54	42	-61	97	100	1200	245		
	39		0.27	0.95		57		62		102	26	2.5	ļ	
					552,65	54	44	63	97	102	28	2.5		
2	42		0.27	0.45	211	54	E/6	63	97	102	39	25		,
8	45		0.24	0.81	535,8	55 54 J	46	65	98	102	41	2		
8	48	1049	0.24 1	0.841	557,163	54 J	45	661	97	103	40	2		78,927
		101												
										<u> </u>			<u> </u>	
÷														
										<u> </u>				
			Ava Sart Dalta D	Aug Dalla II	Tetel Maline	A		-						
			Avg Sqrt Delta P 0.61461 V	Avg Delta H	Total Volume /	Ayg Ts 54, 2	SZ,		Min/Max 9798	Min/Max	Max Temp	Max Vac	Max Temp	
						2111	50,0	ЦÌ	1 478	(00/108	41	4	I	
<u>\v\</u>		A	16=0.382151	Avg Sqrt Del H	Comments:									
	NOTOHIONS.		- 0.700.0		J									md

Semi Worker (Sw) SAMPLE RECOVERY FIELD DATA Method 0010 HEPO Dimer Acid

			Met	noa UUIUI	HFPO Din	her Acid	بالأ	ر ک		
Client		Chemo	urs		W.O. #		15418.002	2.009.0001		_
Location/Pla	nt	Fayettevil	le, NC	Source	& Location		Division	Stack		_
Run No.	1	らい		ę	Sample Date	1/10/	<u> </u> ?	Recove	ery Date	1/10/19
Sample I.D.		Division - STK -	1 - M 0010 H	FPO Dimer Ac	Analyst 🗧	mit	m	Filter N	lumber	NA
				•	Imping	er /				
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	DO			DO		XAD I	XAD Z		56	
Final			103	2		289,2	2824		316.4	
Initial	0	100	100	0		R87.2	<u>7850</u>		300	
Gain	<u>ר</u>		3	r		2.0	4	20,4	16.4	
Impinger Colo	or <u>O</u>	110e	<u>n</u>		Labeled?	\swarrow	/			-
Silica Gel Cor	ndition <u>ไ</u>	ble g	<u>0/0</u>		Sealed?	<u> </u>				
Run No.	2	~ 1			Sample Date	<u> </u>	<u>1</u>	Recove	ery Date	Yuhr
Sample I.D.	Chemours -	SW Swision - STK -	2 - M 0010 HI	FPO Dimer Ac	Analyst		-	Filter N	lumber	N
					Imping					
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents			. 1	•					50	
Final	C	<u>jo 9</u>	109	1					314.8	
Initial	0	100	100	0					300	
Gain		ð	9	t				<u>i</u> e	14.8	15,8
Impinger Colo	r	der			Labeled?					_
Silica Gel Cor	dition	Oav d			Sealed?	<u>-</u>	<u> </u>			<u>. </u>
Run No.	3			ç	Sample Date			Recove	rv Date	
							-		•	
Sample I.D.	Chemours - L	Division - STK -	3 - M 0010 H	-PO Dimer Ac	· · · · · · · · · · · · · · · · · · ·		-	Filter N	umber	
	1	2	3	4	Impinge 5	er 6	7	Imp.Total	8	Total
Contents	•	<u> </u>		т		<u>_</u>	· · · · ·	inp.rotai	0	
Final										
Initial										
Gain										
Impinger Colo	r	·			Labeled?			١		_
Silica Gel Cor					Sealed?					_
Check COC for	Sample IDs o	f Media Blanks Call Call		Ca	n me	GJUr~1	Ţ	MEST	BN	
Bala	nce	Call	/10/10	1 500	> 44	19.6	Tho 1			
Bala	ie.	lal "	lall?	5-00	. 49	7.8	eW			

Semi Words (S2) SAMPLE RECOVERY FIELD DATA

			Meth	nod 0010	HFPO Di	mer Acid	<	6		
Client		Chemo	ours		W.O. #		-	D2.009.0001		
Location/Pla	nt -	Fayettevil	le, NC	Source	& Loaction			in Stack		
Run No.	<u> </u>	su		S	ample Date	1/1/1	9	Recove	ry Date	1/0/19
Sample I.D.	Chemours -	- Division - STK -	BT - M 0010 H	IFPO Dimer	Analyst	mol:	m	Filter N	umber	NA
					Imping					
Contonto	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents		100	120							
Final	0	100	100	0					· ·	
Initial	<u>D</u>	100	[00	0						
Gain	D	0	70	0						
Impinger Cold	or	allo	en		Labeled?		\checkmark			
Silica Gel Cor	-		0 %		Sealed?		\checkmark			_
		<i>ju</i>								
Run No.				S	ample Date		-	Recove	ry Date	
Sample I.D.					Analyst	•	_	Filter N	umber	
					Imping	jer				
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents										
Final			•							
Initial										
Gain										
Impinger Colo	л. Л				Labeled?					
Silica Gel Cor	- ndition		—		Sealed?		<u></u>			
						· · · · · · · · · · · · · · · · · · ·				
Run No.				S	ample Date		-	Recover	y Date	
Sample I.D.					Analyst			Filter N	umber	
					Imping	jer	-			
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents										
Final										
Initial										
Gain										
Impinger Colo	r _				Labeled?		· · · · · ·			
Silica Gel Cor	dition				Sealed?					

Check COC for Sample IDs of Media Blanks

METHODS AND ANALYZERS

Client: Chemours Location: CHEMOURS Source: Semi Works

Project Number: **15418.002.009** Operator: **CW** Date: **10 Jan 2019**

File: C:\DATA\Chemours\011019 Semi Works.cem Program Version: 2.1, built 19 May 2017 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108

Channel 1

Analyte	O2
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.0
Channel 2	
Analyte	CO ₂

Analyte	CO ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	20.0
Span Concentration, %	16.6

CALIBRATION DATA

Number 1

Client: Chemours Location: CHEMOURS Source: Semi Works

Project Number: **15418.002.009** Operator: **CW** Date: **10 Jan 2019**

.....

_

Start Time: 12:02

O₂ Method: EF Calibration Type: Linear 2	Zero and High Span	
Calibration Sta % 12.0 21.0	andards Cylinder ID CC18055 SG9169108	
Calibration R Zero Span, 21.0 %	Results 5 mv 8014 mv	
 Curve Coeffi Slope 381.4	cients Intercept 5	
CO₂ Method: EF Calibration Type: Linear Z		
Calibration Sta % 8.9 16.6	andards Cylinder ID CC18055 SG9169108	
Calibration R Zero Span, 16.6 %	esults 1 mv 8279 mv	
 Curve Coeffi Slope 499.3		

CALIBRATION ERROR DATA

Number 1

ation:	Chemours CHEMOURS Semi Works		Calil	bration 1	Proje	ct Number: 15418.002.0 Operator: CW Date: 10 Jan 2019
			Start T			
				O ₂		
			Metho	d: EPA 3A		
			Span C	onc. 21.0 %		
		Slop	e 381.4	Interce	ot 5.0	
_	Standard	Response	Result	Difference	Error	
	%	mv	%	%	%	Status
	Zero	5	0.0	0.0	0.0	Pass
	12.0	4565	12.0	0.0	0.0	Pass
=	21.0	8014	21.0	0.0	0.0	Pass
			Metho	CO₂ d: EPA 3A onc. 16.6 %		
		Slop	499.3	Interce	ot 1.0	
_		Response	Result	Difference	Error	
	%	mv	%	%	%	Status
	Zero	1	0.0	0.0	0.0	Pass
	8.9	4286	8.6	-0.3	-1.8	Pass
	16.6	8279	16.6	0.0	0.0	Pass

٠

Number 1

Location:	Chemours CHEMOURS Semi Works		Ca	alibration	1	-	Number: 154 Dperator: CW Date: 10	1
			Star	t Time: 1	12:10			
				O₂ hod: EP, Conc. 2				
			Bi	as Resu	llts			
	Standard	Cal.	Response	Bias	Difference	Error		
	Gas	%	mv	%	%	%	Status	
	Zero	0.0	19	0.0	0.0	0.0	Pass	
	Span	12.0	4575	12.0	0.0	0.0	Pass	
·				CO₂ hod: EP Conc. 1				
			Bi	as Resu	lts			
	Standard	Cal.	Response	Bias	Difference	Error		
	Gas	%	mv	%	%	%	Status	
	Zero	0.0	20	0.0	0.0	0.0	Pass	
	Span	8.6	4258	8.5	-0.1	-0.6	Pass	
=								

RUN DATA

Number 1

Client: Chemours Location: CHEMOURS Source: Semi Works	С	alibration	1	Project Number: Operator: Date:	
	Time	O2 %	CO2 %		
	12.11		····		
	13:11	20.7	0.1		
	13:12	20.8	0.0		
	13:13	20.8	0.0		
	13:14	20.8	0.0		
	13:15	20.8	0.0		
	13:16	20.8	0.0		
	13:17	20.8	0.0		
	13:18	20.8	0.0		
	13:19	20.8	0.0		
	13:20	20.8	0.0		
	13:21	20.8	0.0		
	13:22	20.8	0.0		
	13:23	20.8	0.0		
	13:24	20.8	0.0		
	13:25	20.8	0.0		
	13:26	20.8	0.0		
	13:27	20.8	0.0		
	13:28	20.8	0.0		
	13:29	20.8	0.0		
	13:30	20.8	0.0		
	13:31	20.8	0.0		
	13:32	20.8	0.0		
	13:33	20.8	0.0		
	13:34	20.8	0.0		
	13:35	20.8	0.0		
	13:36	20.8	0.0		
	13:37	20.8	0.0		
	13:38	20.8	0.0		
	13:39	20.8	0.0		
	13:40	20.8	0.0		
	13:41	20.8	0.0		
	13:42	20.8	0.0		
	13:43	20.8	0.0		
	13:44	20.8	0.0		
	13:45	20.8	0.0		
	13:46	20.8	0.0		
	13:47	20.8	0.0		
	13:48	20.8	0.0		
	13:49	20.8	0.0		
	13:50	20.8	0.0		
	13:51	20.8	0.0		
		-			

Client: Chemours				Project Number: Operator:	CW	
Source: Semi Works	C	alibration	1	Date:	10 Jan 2019	
	Time	O 2 %	CO2 %			
	13:52	20.8	0.0			
	13:53	20.8	0.0			
	13:54	20.8	0.0			
	13:55	20.8	0.0			
	13:56	20.8	0.0			
	13:57	20.8	0.0			
	13:58	20.8	0.0			
	13:59	20.8	0.0			
	14:00	20.8	0.0			
	14:01	20.8	0.0			
	14:02	20.8	0.0			
	14:03	20.8	0.0			
	14:04	20.8	0.0			
	14:05	20.8	0.0			
	14:06	20.7	0.0			
	14:07	20.7	0.0			
	14:08	20.7	0.0			
	14:09	20.7	0.0			
	14:10	20.7	0.0			
	14:11	20.7	0.0			
	14:12	20.7	0.0			
	14:13	20.8	0.0			
	14:14	20.8	0.0			
	14:15	20.8	0.0			
	14:16	20.8	0.0			
	14:17	20.8	0.0			
	14:18	20.8	0.0			
	14:19	20.8	0.0			
	14:20	20.8	0.0			
	14:21	20.8	0.0			
	14:22	20.8	0.0			
	14:23	20.8	0.0			
	14:24	20.8	0.0			
	14:25	20.8	0.0			
	14:26	20.8	0.0			
	14:27	20.8	0.0			
	14:28	20.8	0.0			
	14:29	20.8	0.0			
	14:30	20.8	0.0			
	14:30	20.8	0.0			
	14:32	20.8	0.0			
	14.02	20.0	0.0			

Number 1

Client: Chemours Location: CHEMOURS Source: Semi Works	Calibration 1			Project Number: 15418.002.009 Operator: CW Date: 10 Jan 2019
	Time	O 2 %	CO2 %	
	14:33	20.8	0.0	
	14:34	20.8	0.0	
	14:35	20.8	0.0	
	14:36	20.8	0.0	
	14:37	20.8	0.0	
	14:38	20.8	0.0	
	14:39	20.8	0.0	
	14:40	20.8	0.0	
	14:41	20.8	0.0	
	14:42	20.8	0.0	
	14:43	20.8	0.0	
	14:44	20.8	0.0	
	14:45	20.8	0.0	
	14:46	20.8	0.0	
	14:47	20.8	0.0	
	14:48	20.8	0.0	
	14:49	20.8	0.0	
	14:50	20.8	0.0	
	14:51	20.8	0.0	
	14:52	20.8	0.0	
	14:53	20.8	0.0	
	14:54	20.8	0.0	
	14:55	20.8	0.0	
	14:56	20.8	0.0	
	14:57	20.8	0.0	
	14:58	20.8	0.0	
	Avgs	20.8	0.0	

RUN SUMMARY

Number 1

Client: Cl Location: Cl Source: Se	HEMOURS		Calibration	1	Project Number: 15418.002.009 Operator: CW Date: 10 Jan 2019
		Method Conc. Units	0₂ EPA 3A %	CO ₂ EPA 3A %	
		Tim	e: 13:10 to 1	4:58	
		I	Run Average	S	
			20.8	0.0	
		Pre-	run Bias at ′	12:10	
		Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.0 8.5 8.9	,
		Post	-run Bias at	14:59	
		Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.5 8.9	
	Run average	s corrected for th	e average o	f the pre-rur	and post-run bias
			20.9	0.0	

.

• •

BIAS AND CALIBRATION DRIFT

Location:	Chemours CHEMOURS Semi Works		Star	alibration t Time: 7 O ₂ hod: EP	14:59 A 3A	-	Operator:	15418.002.009 CW 10 Jan 2019
	Standard Gas Zero Span	Cal. % 0.0 12.0	Bi Response mv 1 4525	as Resu Bias % 0.0 11.9	Its Difference % 0.0 -0.1	Error % 0.0 -0.5	Status Pass Pass	
	Standard Gas Zero Span	Initial* % 0.0 12.0 *Bias No.	Fina mv 1 4525	ibration al 0.0 11.9	Drift Difference % 0.0 -0.1	Drift % 0.0 -0.5	Status Pass Pass	
_				CO₂ hod: EP/ Conc. 1				°
			Bi	as Resu	lts			
	Standard Gas Zero Span	Cal. % 0.0 8.6	Response mv 22 4226	Bias % 0.0 8.5	Difference % 0.0 -0.1	Error % 0.0 -0.6	Status Pass Pass	5
	Standard Gas Zero Span	Initial* % 0.0 8.5 *Bias No. 7	Fina mv 22 4226	bration al 0.0 8.5	Drift Difference % 0.0 0.0	Drift % 0.0 0.0	Status Pass Pass	5

METHODS AND ANALYZERS

Client: Chemours Location: CHEMOURS Source:

Project Number: **15418.002.009** Operator: Date: **11 Jan 2019**

File: C:\DATA\Chemours\011119 Semi Works.cem Program Version: 2.1, built 19 May 2017 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108

Channel 1

Analyte	O 2
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.0

Channel 2

Analyte	CO ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	20.0
Span Concentration, %	16.6

WESTON SOLUTIONS

CALIBRATION DATA

Number 1

Client: Chemours Location: CHEMOURS Source:

Project Number: **15418.002.009** Operator: Date: **11 Jan 2019**

Start Time: 07:10

O ₂	
Method: EPA 3A	
Calibration Type: Linear Zero and High Span	

Calibration	Standards
%	Cylinder ID
12.0	CC18055
21.0	SG9169108

Calibration Results		
Zero		5 mv
Span, 21.0 %	•	7987 mv

ents
Intercept 5

CC Method: Calibration Type: Linea	EPA 3A	
Calibration	Standards	
%	Cylinder ID	
8.9	CC18055	
16.6	SG9169108	
Calibration	n Results	
Zero	1 mv	
Span, 16.6 %	8285 mv	
Curve Co	efficients	
Slope	Intercept	
499.6	1	

CALIBRATION ERROR DATA

Number 1

Client: Chemours Location: CHEMOURS Source:

Calibration 1

Project Number: 15418.002.009 Operator:

.

Date: 11 Jan 2019

Start Time: 07:10

0	2
4.	

Method: EPA 3A Span Conc. 21.0 %

Standard %	Slop	e 380.1	Intercep		
	Response mv	Result %	Difference %	Error %	Status
Zero	5	0.0	0.0	0.0	Pass
12.0	4558	12.0	0.0	0.0	Pass
21.0	7987	21.0	0.0	0.0	Pass

CO₂ Method: EPA 3A

Span Conc. 16.6 %

	Slop	e 499.6	Intercep		
Standard %	Response mv	Result %	Difference %	Error %	Status
Zero	1	0.0	0.0	0.0	Pass
8.9	4299	8.6	-0.3	-1.8	Pass
16.6	8285	16.6	0.0	0.0	Pass

Number 1

Location:	Chemours CHEMOURS					Project I C	418.002.009					
Source:			C;	alibratior	1 1		Date: 11	Jan 2019				
			Star	t Time: (07:17							
				O ₂ hod: EP i Conc. 2								
	Bias Results											
	Standard	Cal.	Response	Bias	Difference	Error						
	Gas	%	mv	%	%	%	Status					
	Zero	0.0	29	0.1	0.1	0.5	Pass					
	Span	12.0	4573	12.0	0.0	0.0	Pass					
				CO ₂								
			Met	hod: EP	A 3A							
			Span	Conc. 1	6.6 %							
			Bi	as Resu	lts							
	Standard	Cal.	Response	Bias	Difference	Error						
	Gas	%	mv	%	%	%	Status					
	Zero	0.0	16	0.0	0.0	0.0	Pass					
	Span	8.6	4277	8.6	0.0	0.0	Pass					

•

			Operator
С	alibration	1	Operator: Date: 11 Jan 2019
Time	O2 %	CO2 %	
08.22	20.0	0.0	
		0.0	
		0.0	
		0.0	
		0.0	
09:22	21.0	0.0	
09:23	21.0	0.0	
09:24	21.0	0.0	
09:25	21.0	0.0	
09:26	21.0	0.0	
09:27	21.0	0.0	
09:28	21.0	0.0	
09:29	21.0	0.0	
09:30	21.0	0.0	
09:31	21.0	0.0	
	Time 08:52 08:53 08:54 08:55 08:56 08:57 08:58 08:59 09:00 09:01 09:02 09:03 09:04 09:05 09:06 09:07 09:08 09:09 09:10 09:11 09:12 09:13 09:14 09:15 09:16 09:17 09:18 09:19 09:20 09:21 09:22 09:23 09:24 09:25 09:26 09:29 09:30	Time O_2 %08:5220.908:5320.908:5320.908:5421.008:5521.008:5621.008:5721.008:5921.009:0021.009:0121.009:0221.009:0321.009:0421.009:0521.009:0621.009:0721.009:0821.009:0921.009:0921.009:1021.009:1121.009:1221.009:1321.009:1421.009:1521.009:1621.009:1721.009:1821.009:2021.009:2121.009:2221.009:2321.009:2421.009:2521.009:2621.009:2721.009:2821.009:2921.009:2921.009:2921.009:2921.009:3021.009:3121.0	Time O_2 % CO_2 %08:5220.90.008:5320.90.008:5421.00.008:5521.00.008:5621.00.008:5721.00.008:5821.00.009:0021.00.009:0121.00.009:0221.00.009:0321.00.009:0421.00.009:0521.00.009:0621.00.009:0721.00.009:0821.00.009:1021.00.009:1121.00.009:1221.00.009:1321.00.009:1421.00.009:1521.00.009:1621.00.009:1721.00.009:1821.00.009:2021.00.009:2121.00.009:2221.00.009:2321.00.009:2421.00.009:2521.00.009:2621.00.009:2721.00.009:2821.00.009:2921.00.009:2921.00.009:2921.00.009:2921.00.009:2921.00.009:2921.00.0

15418.002.00	
11 Jan 2019	
e.	

Client: Chemours Location: CHEMOURS				Project Number: 15418.002.009 Operator:
Source:	С	alibration	1	Date: 11 Jan 2019
	Time	O 2 %	CO2 %	
	10:16	21.0	0.0	
	10:17	21.0	0.0	
	10:18	21.0	0.0	
	10:19	21.0	0.0	
	10:20	21.0	0.0	
	10:21	21.0	0.0	
	10:22	21.0	0.0	
	10:23	21.0	0.0	
	10:24	21.0	0.0	
	10:25	21.0	0.0	
	10:26	21.0	0.0	
	10:27	21.0	0.0	
	10:28	21.0	0.0	
	10:29	21.0	0.0	
	10:30	21.0	0.0	
	10:31	21.0	0.0	
	10:32	21.0	0.0	
	10:33	21.0	0.0	
	10:34	21.0	0.0	
	10:35	21.0	0.0	
	10:36	21.0	0.0	
	10:37	21.0	0.0	
	10:38	21.0	0.0	
	10:39	21.0	0.0	
	10:40	21.0	0.0	
	10:40	21.0	0.0	
	10:42	21.0	0.0	
	10:42	21.0	0.0	
	10:44	21.0	0.0	
	10:44	21.0	0.0	
	10:45	21.0	0.0	
	10:40	21.0 21.0	0.0	
	10:47	21.0 21.0	0.0	
	10:48	21.0	0.0	
	Avgs	21.0	0.0	

RUN SUMMARY

Client: Chemours Location: CHEMOURS Source:		Calibration	1	Project Number: 15418.002.009 Operator: Date: 11 Jan 2019
	Method Conc. Units	O ₂ EPA 3A %	CO ₂ EPA 3A %	
	Tim	e: 08:51 to 1	0:49	
	I	Run Average	S	
		21.0	0.0	
	Pre-	run Bias at (07:17	
	Zero Bias Span Bias Span Gas	0.1 12.0 12.0	0.0 8.6 8.9	
	Post	-run Bias at	10:55	
	Zero Bias Span Bias Span Gas	0.1 12.0 12.0	0.2 8.6 8.9	
Run averages c	orrected for th	e average o	f the pre-ru	ו and post-run bias
		21.1	0.0	

BIAS AND CALIBRATION DRIFT

Number 2

Client: Chemours Location: CHEMOURS Source:

.....

Calibration 1

Project Number: 15418.002.009 Operator: Date: 11 Jan 2019

Start Time: 10:55

O 2								
Method: EPA 3A								
Span Conc. 21.0 %								

		Bi	as Resu	lts		
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	46	0.1	0.1	0.5	Pass
Span	12.0	4583	12.0	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.1	46	0.1	0.0	0.0	Pass
Span	12.0	4583	12.0	0.0	0.0	Pass
-	*Bias No. 1					

CO ₂								
Method: EPA 3A								
Span Conc. 16.6 %								

.			as Resu			
Standard	Cal.	Response	Bias	Difference	Error	
Gas	%	mv	%	%	%	Status
Zero	0.0	86	0.2	0.2	1.2	Pass
Span	8.6	4278	8.6	0.0	0.0	Pass
		Cali	bration	Drift		
Standard	Initial*	Fina	al	Difference	Drift	
Gas	%	mv	%	%	%	Status
Zero	0.0	86	0.2	0.2	1.2	Pass
Span	8.6	4278	8.6	0.0	0.0	Pass
	'Bias No. <i>'</i>	1				

APPENDIX B LABORATORY ANALYTICAL REPORT

Note: The analytical report is included on the attached CD.

		Clien	t Sample	Resu	lts				
Client: Chemours Company FC, Project/Site: Semi Works Stack 1		0	-				TestAmerica	a Job ID: 140-	13929-1
Client Sample ID: H-2477, M0010 FH	2478 SEN	II WORK	(S 1500 ST	K R1		L	_ab Sampl	e ID: 140-1	3929-1
Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train								Ма	trix: Air
Method: 8321A - PFOA and P Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	54.1		0.604		ug/Sample		•	01/23/19 13:00	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	-	D	50 - 200				01/16/19 06:43		4
Client Sample ID: H-2479,	2480,2482	2 SEMI V	VORKS 150	0 STK		L	ab Sample	e ID: 140-1:	3929-2
R1 M0010 BH	·								
Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train				97 - 17 Mail Aide I - 18 da - 1 - 17 1 - 18				Ma	trix: Air
Method: 8321A - PFOA and Pl Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	3.46		0.250		ug/Sample		•	01/23/19 12:34	1
Surrogate	%Recovery	Qualifier	Limits	•			Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	68		50 - 200				-	01/23/19 12:34	1
Client Sample ID: H-2481 IMP 1,2&3 CONDENSATE Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	SEMI WO	RKS 150	00 STK R1 I	W0010		L	ab Sample.	e ID: 140-13 Mat	3929-3 trix: Air
Method: 8321A - HFPO-DA									
		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.226	0.0115	ug/Sample		01/21/19 04:09	01/23/19 14:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	94		50 - 200				01/21/19 04:09	01/23/19 14:06	1
Client Sample ID: H-2483 S BREAKTHROUGH XAD-2 Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train			0 STK R1 I	VIOO10		L	ab Sample	e ID: 140-13 Mat	8929-4 rix: Air
Method: 8321A - PFOA and PF	os								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.0484	J	0.200	0.0400	ug/Sample		01/15/19 04:25		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	89		50 - 200				01/15/19 04:25	01/23/19 12:38	1

		Clien	t Sample	Resul	ts				
Client: Chemours Company FC, LLC The Project/Site: Semi Works Stack 1500 - M0010						TestAmerica Job ID: 140-13929-1			
Client Sample ID: H-2484, M0010 FH	2485 SEN	II WORK	(S 1500 ST	K R2		I	_ab Sample	e ID: 140-13	3929-5
Date Collected: 01/11/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train								Mat	trix: Air
Method: 8321A - PFOA and Pl Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	32.1		0.302	0.0326	ug/Sample		01/16/19 06:43		2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	106		50 - 200				•	01/23/19 13:04	2
Client Sample ID: H-2486,	2487.2489	SEMIV	VORKS 150	0 STK		I	ab Sample	∋ ID: 140-13	1929-6
R2 M0010 BH	,						Las Gampic		020-0
Date Collected: 01/11/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train								Mat	rix: Air
Method: 8321A - PFOA and PI	os								
Analyte		Qualifier			Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	2.09		0.275	0.0550	ug/Sample		01/15/19 04:25	01/23/19 12:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	87		50 - 200				01/15/19 04:25	01/23/19 12:41	1
Client Sample ID: H-2488 S IMP 1,2&3 CONDENSATE Date Collected: 01/11/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	SEMI WO	RKS 150	00 STK R2 I	M0010		L	.ab Sample	è ID: 140-13 Mat	929-7 rix: Air
Method: 8321A - HFPO-DA									
Analyte		Qualifier	RL	MDL	-	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.0522	J	0.232	0.0118	ug/Sample		01/21/19 04:09	01/23/19 14:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	99		50 - 200				01/21/19 04:09	01/23/19 14:09	1
Client Sample ID: H-2490 S BREAKTHROUGH XAD-2 Date Collected: 01/11/19 00:00			0 STK R2 I	V I0010		L	ab Sample.	D: 140-13 ID: 140-13	929-8 rix: Air
Date Received: 01/13/19 07:30 Sample Container: Air Train									
Method: 8321A - PFOA and PF Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.0465	-	0.200		ug/Sample		•	01/23/19 12:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Anglumod	Dil Fac
13C3 HFPO-DA	89		50 - 200					Analyzed 01/23/19 12:44	<u>1</u>

TestAmerica Knoxville

.

		Clien	t Sample	Resu	lts				
Client: Chemours Company FC Project/Site: Semi Works 1500			-				TestAmerica	a Job ID: 140-	13932-1
Client Sample ID: E-2696 M0010 FH BT	6,2697 SEN	II WORK	(S 1500 ST	K QC			Lab Sampl	e ID: 140-1	3932-1
Date Collected: 01/10/19 00:0 Date Received: 01/13/19 07:3 Sample Container: Air Train								Ма	trix: Ai
Method: 8321A - PFOA and	PFOS		 A definition of the second s						
Analyte		Qualifier	RL		Unit	D		Analyzed	Dil Fac
HFPO-DA	0.0835		0.0260	0.00281	ug/Sample		01/16/19 06:43	01/23/19 13:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	83		50 - 200				01/16/19 06:43	01/23/19 13:20	
Client Sample ID: E-2698	3,2699,2701	SEMIV	VORKS 15	00 STK			Lab Sample	e ID: 140-1;	3932-2
QC M0010 BH BT							•		
Date Collected: 01/10/19 00:0	-							Ma	trix: Aiı
Date Received: 01/13/19 07:30	D								
Sample Container: Air Train	Millio Non Transmissionen en angeget et tet an Angelet et an angelet et an angelet et an angelet et an angelet			an bank oo oo ah oo too iyyyo ayo oyo yo yo toolad kara					
Method: 8321A - PFOA and	PFOS								
Analyte		Qualifier	RL		Unit	_ D		Analyzed	Dil Fac
HFPO-DA	0.0637	J	0.200	0.0400	ug/Sample		01/15/19 04:25	01/23/19 12:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	83		50 - 200				-	01/23/19 12:08	1
Client Sample ID: E-2700		RKS 150	0 STK QC	M0010		l	_ab Sample	e ID: 140-13	3932-3
IMP 1,2&3 CONDENSATI Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	0							Mat	trix: Air
Method: 8321A - HFPO-DA Analyte	Docult	Qualifier			11-14	-			
HFPO-DA	- <u>Result</u> ND	Quaimer	0.00250		Unit ug/Sample	_ D	Prepared	Analyzed 01/23/19 14:32	Dil Fac
			0.00200	0.000.20	ugroumpic		01/21/10 04:00	01/20/13 14.02	
Surrogate 13C3 HFPO-DA	%Recovery 	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	00.0 ⁻¹ 97 - 2010/0-111 - 2010-1-111 - 2010-1-111-2010-2010						01/21/19 04:09	01/23/19 14:32	1
Client Sample ID: E-2702			0 STK QC	M0010		L	.ab Sample	e ID: 140-13	3932-4
BREAKTHROUGH XAD-2	2 RESIN TU	IBE BT							
Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train								Mat	rix: Air

Method: 8321A - PFOA and F Analyte		Qualifier	RL	MDI	Unit	D	Dronared	A mahuma at	D:1 =
HFPO-DA	ND		0.200		ug/Sample		Prepared 01/15/19 04:25	Analyzed 01/23/19 12:15	Dil Fac
Surranata	2 / D	o			- '				-
Surrogate 13C3 HFPO-DA	%Recovery 81	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	81		50 - 200				01/15/19 04:25	01/23/19 12:15	1

		Clien	t Sample	Resu	lts				
Client: Chemours Company FC, Project/Site: Semi Works 1500 Q			•			Τe	estAmerica	Job ID: 140-'	13932-1
Client Sample ID: E-2703 DI WATER RB Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	SEMI WO	RKS 150	00 STK QC	M0010		Lai	o Sample	e ID: 140-1: Ma	3932-5 trix: Air
Method: 8321A - HFPO-DA Analyte HFPO-DA	Result ND	Qualifier	RL 0.00250		Unit ug/Sample		Prepared /21/19 04:09	Analyzed 01/23/19 14:35	Dil Fac
Surrogate 13C3 HFPO-DA	%Recovery 120		Limits 50 - 200				Prepared /21/19 04:09	Analyzed 01/23/19 14:35	Dil Fac
Client Sample ID: E-2704 S MEOH WITH 5% NH4OH R Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train		RKS 150	0 STK QC	M0010		Lat) Sample	e ID: 140-13 Mat	3932-6 rix: Air
Method: 8321A - PFOA and Pl Analyte HFPO-DA Surrogate 13C3 HFPO-DA		Qualifier <i>Qualifier</i>	RL 0.0250 Limits 50 - 200		Unit ug/Sample	- 01/	Prepared	Analyzed 01/23/19 12:18 Analyzed 01/23/19 12:18	Dil Fac 1 Dil Fac 1
Client Sample ID: E-2705 S XAD-2 RESIN TUBE RB Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	SEMI WOI	RKS 150	0 STK QC	M0010		Lat) Sample	D: 140-13 D: 140-13	932-7 rix: Air
Method: 8321A - PFOA and PF Analyte HFPO-DA Surrogate 13C3 HFPO-DA		Qualifier Qualifier	RL 0.200 <i>Limits</i> 50 - 200		Unit ug/Sample		Prepared	Analyzed 01/23/19 12:21 Analyzed 01/23/19 12:21	Dil Fac 1 Dil Fac
Client Sample ID: E-2706 S MEOH WITH 5% NH4OH T Date Collected: 01/10/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train		RKS 150	0 STK QC	M0010				ID: 140-13	932-8 rix: Air
Method: 8321A - PFOA and PF Analyte HFPO-DA		Qualifier J	RL 0.0250	MDL 0.00500	Unit ug/Sample		Prepared 15/19 04:25	Analyzed 01/23/19 12:24	Dil Fac
Surrogate 13C3 HFPO-DA	%Recovery 108	Qualifier	Limits 50 - 200			ŀ	Prepared	Analyzed 01/23/19 12:24	Dil Fac

TestAmerica Knoxville

		Client	t Sample	Resul	ts				
	lient: Chemours Company FC, LLC The roject/Site: Semi Works 1500 QC Samples						TestAmerica	Job ID: 140-	13932-1
Client Sample ID: E-270 XAD-2 RESIN TUBE TB		RKS 150	0 STK QC	M0010		L	ab Sample	e ID: 140-1:	3932-9
Date Collected: 01/10/19 00: Date Received: 01/13/19 07: Sample Container: Air Trai	00 30							Mat	trix: Air
Method: 8321A - PFOA and Analyte		Qualifier	RL	MDI	Unit	D	Drawawad		BHF -
HFPO-DA		Guaimer	0.200		ug/Sample		Prepared 01/15/19 04:25	Analyzed 01/23/19 12:28	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	88		50 - 200				01/15/19 04:25	01/23/19 12:28	1
Client Sample ID: E-270 COMBINED GLASSWA Date Collected: 01/10/19 00: Date Received: 01/13/19 07: Sample Container: Air Train	RE RINSES (00 30					La	ıb Sample	ID: 140-139 Mat	932-10 trix: Air
Method: 8321A - PFOA and	I PFOS								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.232		0.0250	0.00500	ug/Sample		01/15/19 04:25	01/23/19 12:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	104		50 - 200				01/15/19 04:25	01/23/19 12:31	1

APPENDIX C SAMPLE CALCULATIONS

SAMPLE CALCULATIONS FOR SEMI-VOLATILE ORGANIC COMPOUNDS (METHOD 0010)

<u>Client: Chemours</u> <u>Test Number: Run 1</u> <u>Test Location: Semi-Works</u>

Plant: Fayetteville, NC Test Date: 1/10/2019 Test Period: 1310-1458

1. HFPO Dimer Acid concentration, lbs/dscf.

 $C_1 = \frac{W \times 2.2046 \times 10^{-9}}{Vm(std)}$

~		57.6 x 2.2046 x 10-9
C_1	=	
		61.563

Where:

W	=	Weight of HFPO Dimer Acid collected in sample in ug.
C ₁	=	HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10 ⁻⁹	=	Conversion factor from ug to lbs.

2. HFPO Dimer Acid concentration, ug/dscm.

C ₂	-	W / (Vm(std) x 0.02832)
C ₂	=	57.6 / (61.563 x 0.02832)
	=	3.30E+01

Where:

 C_2 = HFPO Dimer Acid concentration, ug/dscm.

0.02832 = Conversion factor from cubic feet to cubic meters.

3. HFPO Dimer Acid mass emission rate, lbs/hr.

PMR1	-	C ₁ x Qs(std) x 60 min/hr
PMR1	=	2.06E-09 x 8108 x 60
	=	1.00E-03

Where:

PMR1 = HFPO Dimer Acid mass emission rate, lbs/hr.

4. HFPO Dimer Acid mass emission rate, g/sec.

PMR2	=	PMR1 x 453.59 / 3600
PMR2	=	1.00E-03 x 453.59 /3600
	=	1.26E-04

Where:

PMR2	=	HFPO Dimer Acid mass emission rate, g/sec.
454	=	Conversion factor from pounds to grams.
3600	=	Conversion factor from hours to seconds.

,

.

EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS

<u>Client: Chemours</u> <u>Test Number: Run 1</u> <u>Test Location: Semi-Works</u> Facility: Fayetteville, NC Test Date: 1/10/19 Test Period: 1310-1458

.

1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.

Vm(std) =	delta H 17.64 x Y x Vm x (Pb +) 13.6
	1.374 17.64 x 0.9915 x 61.011 x (29.93 +)
	13.6
Vm(std) =	= 61.563 60.53 + 460
Where:	
Vm(std) =	Volume of gas sample measured by the dry gas meter,
Vm =	corrected to standard conditions, dscf. Volume of gas sample measured by the dry gas meter at meter conditions, dcf.
Pb =	Barometric Pressure, in Hg.
delt H =	Average pressure drop across the orifice meter, in H ₂ O
Tm =	Average dry gas meter temperature, deg F.
Y =	Dry gas meter calibration factor.
17.64 =	Factor that includes ratio of standard temperature (528 deg R)
13.6 =	to standard pressure (29.92 in. Hg), deg R/in. Hg. Specific gravity of mercury.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

Vw(std) =	(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std) =	(0.04707 x 20.4) + (0.04715 x 16.4) = 1.73
Where:	
Vw(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vwc =	Volume of liquid condensed in impingers, ml.
Wwsg =	Weight of water vapor collected in silica gel, g.
0.04707 =	Factor which includes the density of water
	(0.002201 lb/ml), the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), ft ³ /ml.
0.04715 =	Factor which includes the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
4	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), and
	453.6 g/lb, ft ³ /g.

3. Moisture content

bws =	Vw(std)
Uws -	Vw(std) + Vm(std)
bws =	$\frac{1.73}{1.73 + 61.563} = 0.027$
Where:	
bws =	Proportion of water vapor, by volume, in the gas stream, dimensionless.
4. Mole fraction of dry	gas.
Md =	1 - bws
Md =	1 - 0.027 = 0.973

Where:

Md = Mole fraction of dry gas, dimensionless.

5. Dry molecular weight of gas stream, lb/lb-mole.

MWd =	(0.440 x % CO ₂) + (0.320 x % O ₂) + (0.280 x (% N ₂ + % CO))
MWd =	(0.440 x 0.0) + (0.320 x 20.9) + (0.280 x (79.1 + 0.00))
MWd =	28.84
Where:	
MWd =	Dry molecular weight, lb/lb-mole.
% CO2 =	Percent carbon dioxide by volume, dry basis.
% O ₂ =	Percent oxygen by volume, dry basis.
% N ₂ =	Percent nitrogen by volume, dry basis.
% CO =	Percent carbon monoxide by volume, dry basis.
0.440 =	Molecular weight of carbon dioxide, divided by 100.
0.320 =	Molecular weight of oxygen, divided by 100.
0.280 =	Molecular weight of nitrogen or carbon monoxide,
	divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

MWs =	(MWd x Md) + (18 x (1 - Md))
MWs =	(28.84 x 0.973) +(18 (1 - 0.973)) = 28.54
Where:	
MWs =	Molecular weight of wet gas, lb/lb-mole.
10 _	

7. Average velocity of gas stream at actual conditions, ft/sec.

$$Vs = 85.49 \text{ x Cp x } ((\text{delt p})^{1/2}) \text{avg x} (------)^{1/2}$$
Ps x MWs

Where:

$V_S =$	Average gas stream velocity, ft/sec.
	(lb/lb-mole)(in. Hg) ^{1/2}
85.49 =	Pitot tube constant, ft/sec x
	$(\deg R)(in H_2O)$
Cp =	Pitot tube coefficient, dimensionless.
Ts =	Absolute gas stream temperature, deg $R = Ts$, deg $F + 460$.
	P(static)
Ps =	Absolute gas stack pressure, in. Hg. = Pb +
	13.6
delt p =	Velocity head of stack, in. H ₂ O.

8. Average gas stream volumetric flow rate at actual conditions, wacf/min.

Qs(act) =	60 x Vs x As
Qs(act) =	60 x 34.5 x 3.98 = 8229
Where:	
Qs(act) =	Volumetric flow rate of wet stack gas at actual conditions, wacf/min.
As =	Cross-sectional area of stack, ft ² .
60 =	Conversion factor from seconds to minutes.

9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.

	Ps
Qs(std) =	17.64 x Md x x Qs(act)
	Ts
Qs(std) =	29.91 17.64 x 0.973 x x 8229 520.9
Qs(std) =	8108
Where:	
Qs(std) =	Volumetric flow rate of dry stack gas at standard conditions, dscf/min.

10. Isokinetic variation calculated from intermediate values, percent.

I =	17.327 x Ts x Vm(std)
1 -	$Vs x O x Ps x Md x (Dn)^2$
I =	17.327 x 521 x 61.563
Where:	= 104.4 34.5 x 96 x 29.91 x 0.973 x (0.235)^2
I =	Percent of isokinetic sampling.
O =	Total sampling time, minutes.
Dn =	Diameter of nozzle, inches.
17.327 =	Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle $D^{2/4}$, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in ²)(min)
	$(\deg R)(ft^2)(sec)$

.

APPENDIX D EQUIPMENT CALIBRATION RECORDS

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console Calibrator PM Meter Box Number 71

21

Ambient Temp

Date 12-Feb-18

Wet Test Meter Number P-2952

Thermocouple Simulator Temp Reference Source (Accuracy +/- 1°F)

Dry Gas Meter Number 17485140

Setting		Volume		Tempe	ratures			Baro Press, in Hg (Pb)	29.64
Orifice Manometer	Wet Test Meter	Dry gas Meter	Wet Test Meter	Dry Gas Meter Calibration R	et lest Dry Gas Meter			Results	
in H₂0 (∆H)	ft ³ (Vw)	ft ³ (Vd)	°F (Tw)	Outlet, °F (Td _o)	iniet, ⁰F (Td _i)	Average, ^o F (Td)	Time, min (O)	Y	ΔH
0.5	5.0	570.015 575.035 5.020	70.0	69.00 71.00 70.00	69.00 71.00 70.00	70.0	13.00	0.9948	1.9159
1.0	5.0	575.035 580.082 5.047	70.0	71.00 72.00 71.50	71.00 72.00 71.50	71.5	9.3	0.9910	1.9555
1.5	10.0	580.082 590.205 10.123	70.0	72.00 74.00 73.00	72.00 74.00 73.00	73.0	15.6	0.9898	2.0575
2.0	10.0	590.205 600.296 10.091	70.0	74.00 75.00 74.50	74.00 75.00 74.50	74.5	13.6	0.9945	2.0792
3.0	10.0	600.296 610.454 10.158	70.0	75.00 76.00 75.50	75.00 76.00 75.50	75.5	11.0	0.9873	2.0365
0		ough the wet test m	,	0 - Time of calibra			Average	0.9915	2.0089

Vd - Gas Volume passing through the dry gas meter

Tw - Temp of gas in the wet test meter

Tdi - Temp of the inlet gas of the dry gas meter

Tdo - Temp of the outlet gas of the dry gas meter

Td - Average temp of the gas in the dry gas meter

Pb - Barometric Pressure

∆H - Pressure differential across

orifice

Y - Ratio of accuracy of wet test meter to dry gas meter

 $Y = \frac{Vw * Pb * (td + 460)}{Vd * \left[Pb + \frac{(\Delta H)}{13.6}\right] * (tw + 460)}$ $\Delta H = \left[\frac{0.0317 * \Delta H}{Pb * (td + 460)}\right] * \left[\frac{(tw + 460) * O}{Vw}\right]^2$

Reference Temperature Select Temperature		Temperature	Reading from I	ndividual Therr	mocouple input ¹		Average Temperature	Temp Difference ²
O°C ●°F			Channe	el Number			Reading	1
⊖t ©r	1	2	3	4	5	6	Reading	(%)
32	32	32	32	32	32		32.0	0.0%
212	212	212	212	212		······································		
932					212		212.0	0.0%
	932	932	932	932	932		932.0	0.0%
1832	1830	1830	1830	1830	1830		1830.0	0.1%
 Channel Temps must agree with the second seco	ith +/- 5°F or 3°C		[/Poforono			(0) (0)		0.170

2 - Acceptable Temperature Difference less than 1.5 %

Temp Diff = $\left[\frac{(\text{Reference Temp}(^{\circ}F) + 460) - (\text{Test Temp}(^{\circ}F) + 460)}{\text{Reference Temp}(^{\circ}F) + 460}\right]$

Y Factor Calibration Check Calculation METER BOX NO. 21

1/10/019 - 1/11/2019

	Run l	Run 2
MWd = Dry molecular weight source gas, lb/lb-mole.		
0.32 = Molecular weight of oxygen, divided by 100.		
0.44 = Molecular weight of carbon dioxide, divided by 100.		
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.		
% CO ₂ = Percent carbon dioxide by volume, dry basis.	0.0	0.0
$% O_2 =$ Percent oxygen by volume, dry basis.	20.9	20.9

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 20.9) + (0.44 * 0) + (0.28 * (100 - (0 + 20.9)))

MWd = (6.69) + (0.00) + (22.15)

28.84 28.84

.

Tma = Source Temperature, $absolute(^{\circ}R)$		
Tm = Average dry gas meter temperature, deg F.	60.5	52.9

MWd =

Tma = Ts + 460

Tma = 60.53 + 460

Tma =

520.53 512.94

Ps = Absolute meter pressure, inches Hg.		
13.60 = Specific gravity of mercury.		
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	1.374	1.343
Pb = Barometric Pressure, in Hg.	29.93	30.24

Pm = Pb + (delta H / 13.6)

Pm = 29.93 + (1.374375 / 13.6)

Pm =

30.03

3 30.34

Yqa = dry gas meter calibration check value, dimensionless.		
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.		
29.00 = dry molecular weight of air, lb/lb-mole.		
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	61.011	58.493
Y = Dry gas meter calibration factor (based on full calibration)	0.9915	0.9915
Delta H $@$ = Dry Gas meter orifice calibration coefficient, in. H2O.	2.0089	2.0089
avg SQRT Detta H = Avg SQRT press. drop across the orifice meter during sampling , in. H_2O	1.1723	1.1588
O = Total sampling time, minutes.	96	96

Yqa = (O / Vm) * SQRT (0.0319 * Tma * 29) / (Delta H@ * Pm * MWd) * avg SQRT Delta H

Yqa = (96.00 / 61.01) * SQRT (0.0319 * 520.53 * 29) / (2.01 * 30.03 * 28.84) * 1.17

Yqa = 1.573 * SQRT 481.543 / 1,739.597 * 1.17

Diff = ((Y - Yqa) / Y) * 100

Diff = ((0.9915 - 0.971) / 0.9915) * 100

Diff =

2.07 0.35

Average Diff = 1.21 Allowable = 5.0

Type S Pitot Tube Inspection Data Form Pitot Tube Identification Number: P-704 If all Criteria PASS Inspection Date 5/30/18 Individual Conducting Inspection Cp is equal to 0.84 SR PASS/FAIL A-Side P Distance to A Plane (PA) - inches PA 0.46 PASS Distance to B Plane (PB) - inches PB 0.46 PASS B-Side Plan Pitot OD (D_t) - inches 0.375 1.05 D_t < P < 1.5 D_t PA must Equal PB Are Open Faces Aligned YES O NO Perpendicular to the Tube Axis PASS Q1 Q1 O2в Angle of Q1 from vertical A Tube- degrees (absolute) 0 PASS Angle of Q2 from vertical B Tube- degrees (absolute) 0 PASS Q1 and Q2 must be < 10° Angle of B1 from Flow vertical A Tubedegrees (absolute) 0 PASS B1(+) B1(-) Angle of B1 from _____ B2(+ or -) vertical B Tubedegrees (absolute) 0 PASS B1 or B2 must be < 5° Horizontal offset between A and B Tubes (Z) - inches 0.015 PASS $Z_{\text{(mu_A)}} t be \leq 0.125 inc)$ Vertical offset between A and B Tubes (W) - inches 0.025 PASS W must be < 0.03125 inches Distance between Sample х Nozzle and Pitot (X) - inches 0.79 PASS Sampling 🚺 D X must be ≥ 0.75 inches Impact Pressure Opening Plane Impact Pressure YES O **NO Opening Plane is** Nozzle Entry Plan above the Nozzle O NA Entry Plane -2 inch + Temperature Thermocouple Ð Type S Pitot Tube $(\square$ YES O **NO** meets the Distance Criteria in the Sample Probe O NA adjacent figure -3 inch 📥 Temperature Thermocouple 3/4 in O YES O **NO** meets the Distance D Type S Pitot Tube Criteria in the NA adjacent figure Sample Probe

P-704 all in one.MOD.xis

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI79E15A00E4 CC18055 124 - Riverton (SAP) - NJ B52018 CO2, O2, BALN

Reference Number: 82-401288926-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: 590 Certification Date:

150.5 CF 2015 PSIG Sep 04, 2018

Expiration Date: Sep 04, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

		D	o Not Use This Cylinder below	/ 100 psig, i.e. 0.7 megap	ascals.	
Compon		Requested Concentration	ANALYTICA Actual Concentration	L RESULTS Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON OXYGEN NITROGE		9.000 % 12.00 % Balance	8.864 % 12.00 %	G1 G1	+/- 0.7% NIST Traceable +/- 0.4% NIST Traceable	09/04/2018
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARDS	S Uncertainty	Expiration Date
NTRM	13060629	CC413730	13.359 % CARBON D	ONTROGEN	+/- 0.6%	May 09, 2019
Instrument/Make/Model Analytical Principle		EQUIPMENT	Last Multipoint Calib	ration		
Horiba VIA 510-CO2-19GYCXEG NDIR Horiba MPA 510-O2-7TWMJ041 Paramagnetic		Aug 09, 2018 Aug 09, 2018				

Triad Data Available Upon Request

Signature on file Approved for Release

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: **PGVP Number:** Gas Code:

E03NI62E15A0224 SG9169108 124 - Riverton (SAP) - NJ B52017 CO2,O2,BALN

Reference Number: 82-401044874-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

157.2 CF 2015 PSIG 590 Nov 18, 2017

Expiration Date: Nov 18, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

			o Not Use This Cylinder below			
Compon		Requested Concentration	ANALYTICA Actual Concentration	L RESULTS Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON OXYGEN NITROGE		17.00 % 21.00 % Balance	16.58 % 21.00 %	G1 G1	+/- 0.7% NIST Traceable +/- 0.5% NIST Traceable	11/18/2017
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARD	S Uncertainty	Expiration Date
NTRM NTRM	12061336 09061415	CC360792 CC273526	11.002 % CARBON D 22.53 % OXYGEN/NI		+/- 0.6% +/- 0.4%	Jan 11, 2018 Mar 08, 2019
	nt/Make/Mod		ANALYTICAL Analytical Princip		Last Multipoint Calib	ration
	510-CO2-19G A 510-O2-7TW		NDIR Paramagnetic		Oct 30, 2017 Oct 27, 2017	

Triad Data Available Upon Request

Signature on file Approved for Release

INTERFERENCE CHECK

Date: 12/4/14-12/5/14 Analyzer Type: Servomex - O, Model No: 4900 Serial No: 49000-652921 Calibration Span: 21.09 % Pollutant: 21.09% O, - CC418692

×

e Check 2014O2-Servomex 4900

INTERFERENT GAS	INTERFERENT GAS RESPONSE (%) INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)		% OF CALIBRATION SPAN ^(a)	
CO ₂ (30.17% CC199689)	0.00 -0.01		0.00	
NO (445 ppm CC346681)	0.00	0.02	Ò.11	
NO ₂ (23.78 ppm CC500749)	NA	NA	NA	
N ₂ O (90.4 ppm CC352661)	0.00	0.05	0.24	
CO (461.5 ppm XC006064B)	0.00	0.02	0.00	
SO ₂ (451.2 ppm CC409079)	0.00	0.05	0.23	
CH4 (453.1 ppm SG901795)	NA	NA	NA	
H ₂ (552 ppm ALM048043)	0.00	0.09	0.44	
HCl (45.1 ppm CC17830)	0.00	0.03	0.14	
NH ₃ (9.69 ppm CC58181)	0.00	0.01	0.03	
	1.20			
	< 2.5%			

(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>Chad Walker</u>

1/22/2019

INTERFERENCE CHECK

Date: 12/4/14-12/5/14 Analyzer Type: Servomex - CO, Model No: 4900 Serial No: 49000-652921 Calibration Span: 16.65% Pollutant: 16.65% CO, - CC418692

ANALYZER RESPONSE				
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%) INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)		% OF CALIBRATION SPAN ⁽ⁿ⁾	
CO ₂ (30.17% CC199689)	NA NA		NA	
NO (445 ppm CC346681)	0.00	0.02	0.10	
NO ₂ (23.78 ppm CC500749)	0.00	0.00	0.02	
N ₂ O (90.4 ppm CC352661)	0.00	0.01	0.04	
CO (461.5 ppm XC006064B)	0.00	0.01	0.00	
SO ₂ (451.2 ppm CC409079)	0.00	0.11	0.64	
CH ₄ (453.1 ppm SG901795)	0.00	0.07	0.44	
H ₂ (552 ppm ALM048043)	0.00	0.04	0.22	
HCl (45.1 ppm CC17830)	0.10	0.06	0.60	
NH ₃ (9.69 ppm CC58181)	0.00	0.02	0.14	
	2.19			
	< 2.5%			

(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

Chad Walker

,

ł

angs (Di Date Calibration Initials Measured Maintenance and Weight Weight⁽¹⁾ Adjustmenta 500.0 499.8 500.0 499.9 500.0 500,1 500.0 ZA 500.1 500 500 499.6 NA-sa $\mathcal{T}\mathcal{D}\mathcal{D}$ 500 NA-SOC 500 NA -SOC Mo 199,6 500 NA-SOC かっ 500 NA. Chen QW 499.8 10 499% 500 Checus 100 NA 500 499,8 Chent NA Vn J 499.7 500 renews 499.7 NA 500 Chemours. 499.7 4500 remours 499,6 NA 500 Ren JP3 Mentarc 499.8 JA 500.0

within ± 0.5 grams of calibration weight

APPENDIX E LIST OF PROJECT PARTICIPANTS

68

The following Weston employees participated in this project.

Paul Meeter	Senior Project Manager
Jeff O'Neill	Technical Manager
Steve Rathfon	Team Leader
Kyle Schweitzer	Team Member
Jack Mills	Team Member
Chad Walker	Team Member