FLUOROMONOMERS MANUFACTURING PROCESS VE SOUTH STACK EMISSIONS TEST REPORT TEST DATE: 09 JANUARY 2019

THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA

Prepared for:

THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306

Prepared by:

WESTON SOLUTIONS, INC.

1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380

21 February 2019

W.O. No. 15418.002.009

TABLE OF CONTENTS

Section

1.	INTR	ODUCTION1
	1.1	FACILITY AND BACKGROUND INFORMATION1
	1.2	TEST OBJECTIVES1
	1.3	TEST PROGRAM OVERVIEW1
2.	SUMN	MARY OF TEST RESULTS4
3.	PROC	CESS DESCRIPTIONS
	3.1	FLUOROMONOMERS
	3.2	PROCESS OPERATIONS AND PARAMETERS
4.	DESC	RIPTION OF TEST LOCATIONS
	4.1	VE SOUTH STACK
5.	SAMI	PLING AND ANALYTICAL METHODS8
	5.1	STACK GAS SAMPLING PROCEDURES
		5.1.1 Pre-Test Determinations
	5.2	STACK PARAMETERS
		5.2.1 EPA Method 00108
		5.2.2 EPA Method 0010 Sample Recovery
		5.2.3 EPA Method 0010 Sample Analysis
	5.3	GAS COMPOSITION14
6.	DETA	AILED TEST RESULTS AND DISCUSSION16
APPE	NDIX /	A PROCESS OPERATIONS DATA
APPE	NDIX]	B RAW AND REDUCED TEST DATA
APPE	NDIX	C LABORATORY ANALYTICAL REPORT

- APPENDIX D SAMPLE CALCULATIONS
- APPENDIX E EQUIPMENT CALIBRATION RECORDS
- APPENDIX F LIST OF PROJECT PARTICIPANTS

LIST OF FIGURES

Title	Page
Figure 4-1 VE South Stack Test Port and Traverse Point Location	7
Figure 5-1 EPA Method 0010 Sampling Train	9
Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010	12
Figure 5-3 WESTON Sampling System	

LIST OF TABLES

Title	Page
Table 1-1 Sampling Plan for VE South Stack	
Table 2-1 Summary of HFPO Dimer Acid Test Results	4
Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results VE South Stack	17

1. INTRODUCTION

1.1 FACILITY AND BACKGROUND INFORMATION

The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. The Chemours operating areas on the site include the Fluoromonomers, IXM and Polymer Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse.

Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid emission testing on the Vinyl Ethers (VE) South Stack. Testing was performed on 09 January 2019 and generally followed the "Emissions Test Protocol" reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program.

1.2 TEST OBJECTIVES

The specific objectives for this test program were as follows:

- Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid from the VE South stack which is located in the Fluoromonomers process area.
- Monitor and record process data in conjunction with the test program.
- Provide representative emissions data.

1.3 TEST PROGRAM OVERVIEW

During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured on the VE South Stack.

Table 1-1 provides a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed. Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test locations. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6.

1

Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data packages are provided in electronic format and on CD with each hard copy.

Sampling Point & Location	VE South Stack										
Number of Tests:		3									
Parameters To Be Tested:	HFPO Dimer Acid (HFPO-DA)	Volumetric Flow Rate and Gas Velocity	Oxygen	Water Content							
Sampling or Monitoring Method	EPA M-0010	EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests	EPA I	M3A	EPA M4 in conjunction with M-0010 tests						
Sample Extraction/ Analysis Method(s):	LC/MS/MS	NA ⁶	NA	4	NA						
Sample Size	> 1m ³	NA	NA	NA	NA						
Total Number of Samples Collected ¹	3	3	3	3	3						
Reagent Blanks (Solvents, Resins) ¹	1 set	0	0	0	0						
Field Blank Trains ¹	1 per source	0	0	0	0						
Proof Blanks ¹	1 per train	0	0	0	0						
Trip Blanks ^{1,2}	1 set	0	0	0							
Lab Blanks	1 per fraction ³	0	0	0	0						
Laboratory or Batch Control Spike Samples (LCS)	1 per fraction ³	0	0	0	0						
Laboratory or Batch Control Spike Sample Duplicate (LCSD)	1 per fraction ³	0	0	0	0						
Media Blanks	1 set ⁴	0	0	0	0						
Isotope Dilution Internal Standard Spikes	Each sample	0	0	0	0						
Total No. of Samples	7 ⁵	3	3	3	3						

Table 1-1Sampling Plan for VE South Stack

Key:

¹ Sample collected in field.

² Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.

³ Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).

⁴ One set of media blank archived at laboratory at media preparation.

⁵ Actual number of samples collected in field.

⁶ Not applicable.

3

2. SUMMARY OF TEST RESULTS

Three tests were performed on the VE South stack. Table 2-1 provides a summary of the HFPO Dimer Acid emission test results. Detailed test results summaries are provided in Section 6.

It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and in this report include a percentage of each of the three compounds.

Table 2-1

Emission Rates Run No. Source lb/hr g/sec 5.20E-03 6.55E-04 1 2 6.81E-03 8.58E-04 **VE South Stack** 3 5.11E-03 6.44E-04 5.71E-03 7.19E-04 Average

Summary of HFPO Dimer Acid Test Results

3. PROCESS DESCRIPTIONS

The Fluoromonomers area is included in the scope of this test program.

3.1 FLUOROMONOMERS

These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Teflon® Polymers and Viton®, as well as sales to outside customers.

The VE South Waste Gas Scrubber is vented to a process stack (NEP-Hdr2). In addition, the following building air systems are vented to this stack:

- Permeators
- RV Catch Pots
- Tower HVAC
- Nitrogen Supply to Catch Tanks
- Catalyst Feed Tank Pot Charge Vent

3.2 PROCESS OPERATIONS AND PARAMETERS

Source	Operation/Product	Batch or Continuous
VE South	PMVE/PEVE	Semi-continuous – Condensation is continuous, Two Agitated Bed Reactors are batch for 30-40 mins at end of each run, Refining (ether column) is batch

During the test program, the following parameters were monitored by Chemours and are included in Appendix A.

5

- Fluoromonomers Processes
 - VE South Waste Gas Scrubber
 - Caustic recirculation flow rate

4. DESCRIPTION OF TEST LOCATIONS

4.1 VE SOUTH STACK

Two 6-inch ID test ports are installed on the 42-inch ID steel stack. The ports are placed 150 inches (3.6 diameters) from the location where the waste gas scrubber vent enters the stack and 20 feet (5.7 diameters) from the stack exit.

Per EPA Method 1, a total of 24 traverse points (12 per axis) were used for M0010 isokinetic sampling. It should be noted that near the port locations are a number of small ducts leading to the stack. These are catch pots which, under normal operation, do not discharge to the stack. They are used to vent process gas to the stack in the event of a process upset. For the purpose of test port location, and given the fact that there is no flow from these catch pots, they are not considered a flow contributor or a disturbance.

6

See Figure 4-1 for a schematic of the test port and traverse point locations.

Note: All measurements at the test location were confirmed prior to sampling.

FIGURE 4-1 VE SOUTH STACK TEST PORT AND TRAVERSE POINT LOCATION

5. SAMPLING AND ANALYTICAL METHODS

5.1 STACK GAS SAMPLING PROCEDURES

The purpose of this section is to describe the stack gas emissions sampling train and to provide details of the stack sampling and analytical procedures utilized during the emissions test program.

5.1.1 Pre-Test Determinations

Preliminary test data were obtained at the test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements.

A check for the presence or absence of cyclonic flow was previously conducted at the test location. The cyclonic flow check was negative ($< 20^{\circ}$) verifying that the source was acceptable for testing.

Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures.

Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures.

5.2 STACK PARAMETERS

5.2.1 EPA Method 0010

The sampling train utilized to perform the HFPO Dimer Acid sampling was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter.

FIGURE 5-1 EPA METHOD 0010 SAMPLING TRAIN

A section of borosilicate glass (or flexible polyethylene) tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that each contained 100 milliliters of high purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and both XAD-2 modules to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train.

HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that was present in the stack gas was captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid.

During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at $100\% \pm 10$. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required), or during midpoint port changes.

5.2.2 EPA Method 0010 Sample Recovery

At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery.

A consistent procedure was employed for sample recovery:

- 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled.
- 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments.
- 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed.
- 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.
- 5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed.
- 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.
- 7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed.
- 8. The silica gel in the final impinger was weighed and the weight gain value recorded.
- 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool.

During each test campaign, an M-0010 blank train was set up near the test location, leak checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis.

See Figure 5-2 for a schematic of the M-0010 sample recovery process.

FIGURE 5-2 HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010

5.2.3 EPA Method 0010 – Sample Analysis

The Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:

- Front-Half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;
- Back-Half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;
- Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;
- Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers.

The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough.

The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS.

Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries.

5.3 GAS COMPOSITION

The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO_2) and oxygen (O_2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3.

Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintained the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment.

The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to ensure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier.

The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run.

FIGURE 5-3 WESTON SAMPLING SYSTEM

6. DETAILED TEST RESULTS AND DISCUSSION

Preliminary testing and the associated analytical results required significant sample dilution to bring the HFPO Dimer Acid concentration within instrument calibration; therefore, sample times and sample volumes were reduced for the formal test program. This was approved by the North Carolina Department of Environmental Quality (NCDEQ).

Each test was a minimum of 96 minutes in duration. A total of three test runs were performed on the VE South stack.

Table 6-1 provides detailed test data and test results for the VE South stack.

The Method 3A sampling during all tests indicated that the O_2 and CO_2 concentrations were at ambient air levels (20.9% O_2 , 0% CO_2), therefore, 20.9% O_2 and 0% CO_2 values were used in all calculations.

TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VE SOUTH STACK

Test Data

Location VE South Stack VE South Stack VE South Stack VE South Stack Date 01/09/19 01/09/19 01/09/19 01/09/19 SAMPLING DATA: 5 7 6 0.000491	Run number	1	2	3
Date 01/09/19 01/09/19 01/09/19 Time period 0840-1032 1140-1328 01/09/19 SAMPLING DATA: 5 5 1140-1328 1408-1538 SAMPLING DATA: 5 5 5 5 5 Sampling duration, min. 96.0 96.0 96.0 0.300 0.300 Cross sectional nozzle area, sq.ft. 0.000491 0.000491 0.000491 0.000491 Barometric perssure, in. Hg 29.94 29.94 29.94 29.94 Avg. orbit gy gas meter temp, deg F 50.3 55.9 57.0 57.0 Avg. abs. dry gas meter temp, deg F 510 516 517 510 516 517 Total liquid collected by train, ml 28.2 20.2 30.8 53.9 57.0 30.9 10.9 10.5 Dry gas meter temp, deg F 510 516 517 50.9 10.9 10.2 50.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 <th>Location</th> <th>VE South Stack</th> <th>VE South Stack</th> <th>VE South Stack</th>	Location	VE South Stack	VE South Stack	VE South Stack
Time period 0840-1032 1140-1328 1408-1558 SAMPLING DATA:	Date	01/09/19	01/09/19	01/09/19
SAMPLING DATA: Sampling duration, min. 96.0 96.0 96.0 96.0 Nozzle diameter, in. 0.300 0.300 0.300 Cross sectional nozzle area, sq.ft. 0.000491 0.000491 0.000491 Barometric pressure, in. Hg 29.94 29.94 29.94 Avg. orifice press. diff, in H ₂ O 1.31 1.51 1.41 Avg. orifice press. diff, in H ₂ O 50.3 55.9 57.0 Avg. abs. dry gas meter temp, deg. R 510 516 517 Total liquid collected by train, ml 28.2 20.2 30.8 Std. vol. of H ₂ O vapor coll., euft. 1.3 1.0 1.5 Dry gas meter temp, deg. R 62.551 65.028 63.392 Sample vol. at meter cond, def 62.551 65.028 63.392 Sample vol. at std. cond, def ⁽¹⁾ 64.435 66.2552 64.430 Percent of isokinetic sampling 0.9 0.0 0.0 CO ₂ , % by volume, dry basis 79.1 79.1 79.1 Molecutar wt. of dry gas, ltbl mole </th <th>Time period</th> <th>0840-1032</th> <th>1140-1328</th> <th>1408-1558</th>	Time period	0840-1032	1140-1328	1408-1558
Sampling duration, min. 96.0 96.0 96.0 Nozzle diameter, in. 0.300 0.300 0.300 Cross sectional nozzle area, sq.ft. 0.000491 0.000491 0.000491 Barometric pressure, in. Hg 29.94 29.94 29.94 Avg. origins meter temp, deg F 50.3 55.9 57.0 Avg. dry gas meter temp, deg R 510 516 517 Total liquid collected by train, ml 28.2 20.2 30.8 Std. vol. of H ₂ O vapor coll., cu.ft. 1.3 1.0 1.5 Dry gas meter calibration factor 0.9915 0.9915 0.9915 Sample vol. at meter cond., dcf 62.591 65.028 63.392 Sample vol. at text cond., dscf ⁽¹⁾ 64.436 66.252 64.430 Percent of isokinetic sampling 109.5 100.9 100.2 GAS STREAM COMPOSITION DATA: 20.9 20.9 20.9 N ₂ % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 <t< td=""><td>SAMPLING DATA:</td><td></td><td></td><td></td></t<>	SAMPLING DATA:			
Nozzle diameter, in. 0.300 0.300 0.300 Cross sectional nozzle area, sq.ft. 0.000491 0.000491 0.000491 Barometric pressure, in. Hg 29,94 29,94 29,94 Avg. orifice press. diff., in H ₂ O 1.31 1.51 1.41 Avg. abs. dry gas meter temp, deg F 50.3 55.9 57.0 Avg. abs. dry gas meter temp, deg F 510 516 517 Total liquid collected by train, ml 28.2 20.2 30.8 Std. vol. of H ₂ O vapor coll., cu.ft. 1.3 1.0 1.5 Dry gas meter teraibration factor 0.9915 0.9915 0.9915 Sample vol. at meter cond., def 62.591 65.028 63.392 Sample vol. at std. cond, dscf ⁽¹⁾ 64.436 66.252 64.430 Percent of isokinetic sampling 109.5 100.9 100.2 CAS StrEAM COMPOSITION DATA: 79.1 79.1 79.1 Kolecular wt. of dry gas, hb/b mole 28.84 28.84 28.84 H ₂ 0 vapor in gas stream, prop. by vol. 0.020	Sampling duration, min.	96.0	96.0	96.0
Cross sectional nozzle area, sq.ft. 0.000491 0.000491 0.000491 Barometric press.uff., in H ₂ O1.311.511.41Avg. orific press.uff., in H ₂ O1.311.511.41Avg. dry gas meter temp, deg F50.355.957.0Avg. asb. dry gas meter temp, deg R510516517Total liquid collected by train, ml28.220.230.8Std. vol. of H ₂ O vapor coll., cu.ft.1.31.01.5Dry gas meter calibration factor0.99150.99150.9915Sample vol. at meter cond, dcf62.59165.02863.392Sample vol. at std. cond, dscf ⁽¹⁾ 64.43666.25264.430Percent of isokinetic sampling109.5100.9100.2CO ₂ , % by volume, dry basis0.00.0Q., % by volume, dry basis20.920.920.9N ₂ , % by volume, dry basis20.920.920.9N ₂ , % by volume, dry basis79.179.179.1Molecular wt. of dry gas, lb/lb mole28.6228.6828.60CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. Hg29.9829.9829.98Ass. do 25.773539539Avg. emperature, deg. F777979Avg	Nozzle diameter, in.	0.300	0.300	0.300
Barometric pressure, in. Hg 29.94 29.94 29.94 Avg. orifice press. diff., in H ₂ O 1.31 1.51 1.41 Avg. orifice press. diff., in H ₂ O 1.31 1.51 1.41 Avg. origizes meter temp., deg R 510 516 517 Avg. abs. dry gas meter temp., deg R 510 516 517 Total liquid collected by train, ml 28.2 20.2 30.8 Std. vol. of H ₂ O vapor coll., cu.ft. 1.3 1.0 1.5 Dry gas meter calibration factor 0.9915 0.9915 0.9915 Sample vol. at std. cond., descf 64.436 66.252 64.430 Percent of isokinetic sampling 109.5 100.9 100.2 GAS STREAM COMPOSITION DATA: E 20.9 20.9 20.9 CO ₂ , % by volume, dry basis 0.0 0.0 0.0 20.9 N ₃ , % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 H ₀ 0 vapor in gas stream, prop. by vol. 0.020 <	Cross sectional nozzle area, sq.ft.	0.000491	0.000491	0.000491
Avg. orifice press. diff., in H_2O 1.311.511.41Avg. dy gas meter temp., deg F50.355.957.0Avg. abs. dyr gas meter temp., deg R510516517Total liquid collected by train, ml28.220.230.8Std. vol. of H_Q vapor coll., cu.ft.1.31.01.5Dry gas meter calibration factor0.99150.99150.9915Sample vol. at meter cond., dcf62.59165.02863.392Sample vol. at std. cond., dscf ⁽¹⁾ 64.43666.25264.430Percent of isokinetic sampling109.5100.9100.2CO ₂ , % by volume, dry basis0.00.00.0Qo, % by volume, dry basis20.920.920.9N2, % by volume, dry basis79.179.179.1Molecular wt. of dry gas, lb/b mole28.8428.8428.84H ₂ O vapor in gas stream, prop. by vol.0.0200.0140.022Molecular wt. of wet gas, lb/b mole28.6228.6828.60CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. H ₂ O0.500.50Avg. temperature, deg, F777979Avg. absolute temperature, deg, F377539539Piot tube coefficient0.840.840.84Total number of traverse points242424Avg. gas stream volumetric flow, wat/fmin.12/4471385213669	Barometric pressure, in. Hg	29.94	29.94	29.94
Avg. dry gas meter temp., deg F50.355.957.0Avg. abs. dry gas meter temp., deg R510516517Total liquid collected by train, ml28.220.230.8Std. vol. of H ₂ O vapor coll., cu.ft.1.31.01.5Dry gas meter calibration factor0.99150.99150.9915Sample vol. at meter cond., dcf62.59165.02863.392Sample vol. at meter cond., dcf64.43666.25264.430Percent of isokinetic sampling109.5100.9100.2CO., % by volume, dry basis0.00.00.0O2, % by volume, dry basis20.920.920.9N, % by volume, dry basis79.179.179.1Molecular wt. of dry gas, lb/lb mole28.8428.8428.84H_0 vapor in gas stream, prop. by vol.0.0200.0140.022GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:29.9829.9829.98GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:537539539Static pressure, in. H ₂ O0.500.500.500.50Avg. temperature, deg, F77797979Avg. gas stream velocity, fl./sec.21.624.023.7Stack/duct cress sectional area, sq.ft.9.629.629.62Avg. gas stream velocity, fl./sec.21.624.023.7Stack/duct cress sectional area, sq.ft.9.629.629.62Avg. gas stream velocity, fl./sec.21.624.023.7 <td>Avg. orifice press. diff., in H₂O</td> <td>1.31</td> <td>1.51</td> <td>1.41</td>	Avg. orifice press. diff., in H ₂ O	1.31	1.51	1.41
Avg. abs. dry gas meter temp., deg. R 510 516 517 Total liquid collected by train, ml 28.2 20.2 30.8 Std. vol. of H ₂ O vapor coll., cu.ft. 1.3 1.0 1.5 Dry gas meter calibration factor 0.9915 0.9915 0.9915 Sample vol. at meter cond., dcf 62.591 65.028 63.392 Sample vol. at std. cond., dsef ⁽¹¹⁾ 64.436 66.252 64.430 Percent of isokinetic sampling 109.5 100.9 100.2 GAS STREAM COMPOSITION DATA: CO.2, % by volume, dry basis 0.0 0.0 0.0 Q.2, % by volume, dry basis 0.0 0.0 0.0 0.0 Q.2, % by volume, dry basis 79.1 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.62 28.68 28.60 CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: 1.5 0.50 0.50 0.50 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: 537 539 539 539 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: 537 539 539 539 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: 537<	Avg. dry gas meter temp., deg F	50.3	55.9	57.0
Total liquid collected by train, ml 28.2 20.2 30.8 Std. vol. of H ₂ O vapor coll., cu.ft.1.31.01.5Dry gas meter calibration factor 0.9915 0.9915 0.9915 Sample vol. at meter cond., dcf 62.591 65.028 63.392 Sample vol. at meter cond., dscf ⁽¹⁾ 64.436 66.252 64.430 Percent of isokinetic sampling 109.5 100.9 100.2 GAS STREAM COMPOSITION DATA:CO ₂ , % by volume, dry basis 0.0 0.0 0.0 Q. 0.9 20.9 20.9 Q. 0.9 20.9 20.9 N ₂ , % by volume, dry basis 79.1 79.1 Molected at wt. of dry gas, Ib/Ib mole 28.84 28.84 28.84 H ₂ O vapor in gas stream, prop. by vol. 0.020 0.014 0.022 Molecular wt. of wt gas, Ib/Ib mole 28.62 28.68 28.60 Static pressure, in. H ₂ O 0.50 0.50 0.50 Absolute pressure, in. H ₂ O 0.50 0.50 0.50 Absolute temperature, deg. F 77 79 79 Avg. absolute temperature, deg. R 537 539 539 Pitot tube coefficient 0.84 0.84 0.84 Other coefficient 0.84 0.84 Avg. gas stream volumetric flow, wac/min. 21.64 24.04 24 Avg. gas	Avg. abs. dry gas meter temp., deg. R	510	516	517
Std. vol. of H2O vapor coll., cu.ft.1.31.01.5Dry gas meter calibration factor0.99150.99150.9915Sample vol. at meter cond., dcf62.59165.02863.392Sample vol. at std. cond., dscf ⁽¹⁾ 64.43666.25264.430Percent of isokinetic sampling109.5100.9100.2CAS STREAM COMPOSITION DATA:CO2, % by volume, dry basis0.00.00.0Q2, % by volume, dry basis0.00.00.00.0Q2, % by volume, dry basis79.179.179.1Molecular wt. of dry gas, lb/lb mole28.8428.8428.84H,0 vapor in gas stream, prop. by vol.0.0200.0140.022Mole fraction of dry gas, lb/lb mole28.6228.6828.60CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. Hg29.9829.9829.98Avg. absolute pressure, in. Hg29.9829.9829.9829.98Avg. absolute pressure, in. Hg0.840.840.840.84Total number of traverse points242424Avg. gas stream volucity, fl./sec.21.624.023.7Stack/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, dsc//min.1201413114	Total liquid collected by train, ml	28.2	20.2	30.8
Dry gas meter calibration factor0.99150.99150.9915Sample vol. at meter cond., dcf62.59165.02863.392Sample vol. at std. cond., dscf ⁽¹⁾ 64.43666.25264.430Percent of isokinetic sampling109.5100.9100.2GAS STREAM COMPOSITION DATA:CO2, % by volume, dry basis0.00.00.0Q.3, % by volume, dry basis20.920.920.9N.3, % by volume, dry basis79.179.179.1Molecular wt. of dry gas, lb/lb mole28.8428.8428.84H_0 vapor in gas stream, prop. by vol.0.0200.0140.022Mole fraction of dry gas0.9800.9860.978Molecular wt. of wet gas, lb/lb mole28.6228.6828.60Static pressure, in. H ₂ O0.500.500.50Absolute pressure, in. H ₂ O0.500.50Absolute pressure, in. H ₂ 29.9829.9829.98Avg. absolute pressure, in. H ₂ 337539539Avg. absolute points24242424Avg. gas stream velocity, ft./sec.21.624.023.7Static press extenin area, sq.ft.9.629.629.629.62Avg. gas stream volumetric flow, wact/min.120141341013134	Std. vol. of H ₂ O vapor coll., cu.ft.	1.3	1.0	1.5
Sample vol. at meter cond., def 62.591 65.028 63.392 Sample vol. at std. cond., dscf ⁽¹⁾ 64.436 66.252 64.430 Percent of isokinetic sampling 109.5 100.9 100.2 GAS STREAM COMPOSITION DATA:CO2, % by volume, dry basis 0.0 0.0 0.0 Q.9 20.9 20.9 N2, % by volume, dry basis 79.1 79.1 Molecular wt. of dry gas, lb/lb mole 28.84 28.84 28.84 R8.44 28.84 28.84 Q.9Molecular wt. of dry gas 0.986 0.978 Molecular wt. of wet gas, lb/lb mole 28.62 28.68 28.60 CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. Hg 29.98 29.98 29.98 Avg. absolute temperature, deg. F 77 79 79 Avg. absolute temperature, deg. R 537 539 539 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream volumetric flow, wac//min. 24.62 9.62 9.62 Avg. gas stream volumetric flow, wac//min.100.2	Dry gas meter calibration factor	0.9915	0.9915	0.9915
Sample vol. at std. cond., dscf ⁽¹⁾ 64.436 66.252 64.430 Percent of isokinetic sampling109.5100.9100.2GAS STREAM COMPOSITION DATA:CO ₂ , % by volume, dry basis0.00.0O ₂ , % by volume, dry basis0.00.00.0O ₂ , % by volume, dry basis79.179.179.1Molecular wt. of dry gas, lb/lb mole28.8428.8428.84H ₂ 0 vapor in gas stream, prop. by vol.0.0020.0140.022Mole fraction of dry gas0.9800.9860.978Molecular wt. of wet gas, lb/lb mole28.6228.6828.60CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. H ₂ O0.500.500.50Absolute pressure, in. Hg29.9829.9829.9829.98Avg. temperature, deg. F77797979Avg. absolute temperature, deg. R337539533533Pitot tube coefficient0.840.840.840.84Total number of traverse points24242424Avg. gas stream volumetric flow, wact/min.21.624.0023.7Stack/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wact/min.120141314013134	Sample vol. at meter cond., dcf	62.591	65.028	63.392
Percent of isokinetic sampling 109.5 100.2 00.2 GAS STREAM COMPOSITION DATA: 0.0	Sample vol. at std. cond., dscf ⁽¹⁾	64 436	66 252	64 430
GAS STREAM COMPOSITION DATA: CO_2 , % by volume, dry basis0.00.0 O_2 , % by volume, dry basis20.920.9 N_2 , % by volume, dry basis79.179.1 N_2 , % by volume, dry basis79.179.1Molecular wt. of dry gas, lb/lb mole28.8428.84 H_20 vapor in gas stream, prop. by vol.0.0200.0140.0200.0140.022Mole fraction of dry gas0.9800.986Molecular wt. of wet gas, lb/lb mole28.6228.6828.5228.6828.60Static pressure, in. H_2O 0.500.50Absolute pressure, in. Hg29.9829.98Avg. temperature, deg. F777979Avg. temperature, deg. R537539539Pitot tube coefficient0.840.840.84Total number of traverse points242424Avg. gas stream volumetric flow, wacf/min.21.624.023.7Avg. gas stream volumetric flow, wacf/min.120141341013134	Percent of isokinetic sampling	109.5	100.9	100.2
CO_2 , % by volume, dry basis0.00.00.0 O_2 , % by volume, dry basis20.920.920.9 N_2 , % by volume, dry basis79.179.179.1Molecular wt. of dry gas, lb/lb mole28.8428.8428.84 H_20 vapor in gas stream, prop. by vol.0.0200.0140.022Mole fraction of dry gas0.9800.9860.978Molecular wt. of wet gas, lb/lb mole28.6228.6828.60CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. H_2 O0.500.500.50Avg. temperature, deg. F777979Avg. absolute temperature, deg. R537539539Pitot tube coefficient0.840.840.840.84Total number of traverse points24242424Avg. gas stream velocity, ft./sec.21.624.023.7State/Aduct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wact/min.124471385213699Avg. gas stream volumetric flow, wact/min.120141341013134	GAS STREAM COMPOSITION DATA:			
O_2 , % by volume, dry basis20.920.920.9N2, % by volume, dry basis79.179.179.1Molecular wt. of dry gas, lb/lb mole28.8428.8428.84H20 vapor in gas stream, prop. by vol.0.0200.0140.022Mole fraction of dry gas0.9800.9860.978Molecular wt. of wet gas, lb/lb mole28.6228.6828.60CAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. H2O0.500.500.50Absolute pressure, in. Hg29.9829.9829.98Avg. temperature, deg. F777979Avg. absolute temperature, deg. R537539539Pitot tube coefficient0.840.840.84Total number of traverse points242424Avg. gas stream velocity, ft./sec.21.624.023.7Statc/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wacf/min.120141341013134	CO ₂ , % by volume, dry basis	0.0	0.0	0.0
N2, % by volume, dry basis79.179.1Molecular wt. of dry gas, lb/lb mole28.8428.8428.84H20 vapor in gas stream, prop. by vol.0.0200.0140.022Mole fraction of dry gas0.9800.9860.978Molecular wt. of wet gas, lb/lb mole28.6228.6828.60GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. H200.500.500.50Avg. temperature, deg. F777979Avg. absolute temperature, deg. R537539539Pitot tube coefficient0.840.840.84Total number of traverse points242424Avg. gas stream velocity, ft./sec.21.624.023.7Stack/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wacf/min.120141341013134	O_2 , % by volume, dry basis	20.9	20.9	20.9
Molecular wt. of dry gas, lb/lb mole28.8428.8428.84 H_20 vapor in gas stream, prop. by vol.0.0200.0140.022Mole fraction of dry gas0.9800.9860.978Molecular wt. of wet gas, lb/lb mole28.6228.6828.60GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. H_2O 0.500.500.50Absolute pressure, in. H_2 29.9829.9829.98Avg. temperature, deg. F777979Avg. absolute temperature, deg. R537539539Pitot tube coefficient0.840.840.84Total number of traverse points242424Avg. gas stream velocity, ft./sec.21.624.023.7Stack/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wacf/min.124471385213699Avg. gas stream volumetric flow, wacf/min.120141311413134	N_2 , % by volume, dry basis	79.1	79.1	79.1
H20 vapor in gas stream, prop. by vol.0.0200.0140.022Mole fraction of dry gas0.9800.9860.978Molecular wt. of wet gas, lb/lb mole 28.62 28.68 28.60 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. H20 0.50 0.50 0.50 Absolute pressure, in. Hg 29.98 29.98 29.98 Avg. temperature, deg. F 77 79 79 Avg. absolute temperature, deg. R 537 539 539 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec. 21.6 24.0 23.7 Stack/duct cross sectional area, sq.ft. 9.62 9.62 9.62 Avg. gas stream volumetric flow, wact/min. 12014 13410 13134	Molecular wt. of dry gas, lb/lb mole	28.84	28.84	28.84
Mole fraction of dry gas0.9800.9860.978Molecular wt. of wet gas, lb/lb mole 28.62 28.68 28.60 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:Static pressure, in. Hg 29.98 29.98 29.98 Avg. temperature, deg. F 77 79 79 Avg. absolute temperature, deg. R 537 539 539 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec. 21.6 24.0 23.7 Stack/duct cross sectional area, sq.ft. 9.62 9.62 9.62 Avg. gas stream volumetric flow, wact/min. 12447 13852 13699 Avg. gas stream volumetric flow, dscf/min. 12014 13410 13134	H_20 vapor in gas stream, prop. by vol.	0.020	0.014	0 022
Molecular wt. of wet gas, lb/lb mole 0.500 0.500 0.500 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: 28.62 28.68 28.60 GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: 0.50 0.50 0.50 Static pressure, in. Hg 29.98 29.98 29.98 Avg. temperature, deg. F 77 79 79 Avg. absolute temperature, deg. R 537 539 539 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec. 21.6 24.0 23.7 Stack/duct cross sectional area, sq.ft. 9.62 9.62 9.62 Avg. gas stream volumetric flow, wacf/min. 12447 13852 13699 Avg. gas stream volumetric flow, dscf/min. 12014 13410 13134	Mole fraction of dry gas	0.980	0.986	0.022
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA: Static pressure, in. H20 0.50 0.50 0.50 Absolute pressure, in. Hg 29.98 29.98 29.98 Avg. temperature, deg. F 77 79 79 Avg. absolute temperature, deg.R 537 539 539 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec. 21.6 24.0 23.7 Stack/duct cross sectional area, sq.ft. 9.62 9.62 9.62 Avg. gas stream volumetric flow, wacf/min. 12447 13852 13699 Avg. gas stream volumetric flow, dscf/min. 12014 13410 13134	Molecular wt. of wet gas, lb/lb mole	28.62	28.68	28.60
Static pressure, in. H_2O 0.500.500.50Absolute pressure, in. Hg29.9829.9829.98Avg. temperature, deg. F777979Avg. absolute temperature, deg.R537539539Pitot tube coefficient0.840.840.84Total number of traverse points242424Avg. gas stream velocity, ft./sec.21.624.023.7Stack/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wacf/min.124471385213699Avg. gas stream volumetric flow, dscf/min.120141341013134	GAS STREAM VELOCITY AND VOLUMETRIC FLOW DAT	A:		
Absolute pressure, in. Hg 29.98 29.98 29.98 Avg. temperature, deg. F 77 79 79 Avg. absolute temperature, deg.R 537 539 539 Pitot tube coefficient 0.84 0.84 0.84 Total number of traverse points 24 24 24 Avg. gas stream velocity, ft./sec. 21.6 24.0 23.7 Stack/duct cross sectional area, sq.ft. 9.62 9.62 9.62 Avg. gas stream volumetric flow, wacf/min. 12447 13852 13699 Avg. gas stream volumetric flow, dscf/min. 12014 13410 13134	Static pressure, in. H ₂ O	0.50	0.50	0.50
Avg. temperature, deg. F777979Avg. absolute temperature, deg.R537539539Pitot tube coefficient0.840.840.84Total number of traverse points242424Avg. gas stream velocity, ft./sec.21.624.023.7Stack/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wacf/min.124471385213699Avg. gas stream volumetric flow, dscf/min.120141341013134	Absolute pressure, in. Hg	29.98	29.98	29.98
Avg. absolute temperature, deg.R537539539Pitot tube coefficient0.840.840.84Total number of traverse points242424Avg. gas stream velocity, ft./sec.21.624.023.7Stack/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wacf/min.124471385213699Avg. gas stream volumetric flow, dscf/min.120141341013134	Avg. temperature, deg. F	77	79	79
Pitot tube coefficient0.840.840.84Total number of traverse points242424Avg. gas stream velocity, ft./sec.21.624.023.7Stack/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wacf/min.124471385213699Avg. gas stream volumetric flow, dscf/min.120141341013134	Avg. absolute temperature, deg.R	537	539	539
Total number of traverse points2424Avg. gas stream velocity, ft./sec.21.624.023.7Stack/duct cross sectional area, sq.ft.9.629.629.62Avg. gas stream volumetric flow, wacf/min.124471385213699Avg. gas stream volumetric flow, dscf/min.120141341013134	Pitot tube coefficient	0.84	0.84	0.84
Avg. gas stream velocity, ft./sec. 21.6 24.0 23.7 Stack/duct cross sectional area, sq.ft. 9.62 9.62 9.62 Avg. gas stream volumetric flow, wacf/min. 12447 13852 13699 Avg. gas stream volumetric flow, dscf/min. 12014 13410 13134	Total number of traverse points	24	24	24
Stack/duct cross sectional area, sq.ft. 9.62 9.62 9.62 Avg. gas stream volumetric flow, wacf/min. 12447 13852 13699 Avg. gas stream volumetric flow, dscf/min. 12014 13410 13134	Avg. gas stream velocity, ft./sec.	21.6	24.0	23.7
Avg. gas stream volumetric flow, wacf/min. 12447 13852 13699 Avg. gas stream volumetric flow, dscf/min. 12014 13410 13134	Stack/duct cross sectional area, sq.ft.	9.62	9.62	9.62
Avg. gas stream volumetric flow, dscf/min.120141341013134	Avg. gas stream volumetric flow, wacf/min.	12447	13852	13699
	Avg. gas stream volumetric flow, dscf/min.	12014	13410	13134

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VE SOUTH STACK OUTLET

TEST DATA			
Run number	1	2	3
Location	VE South Stack	VE South Stack	VE South Stack
Date	1/09/19	1/09/19	1/09/19
Time period	0840-1032	1140-1328	1408-1558
LABORATORY REPORT DATA, ug.			
HFPO Dimer Acid	210.8818	254.4730	189.6000
EMISSION RESULTS, ug/dscm.			
HFPO Dimer Acid	115.55	135.61	103.90
EMISSION RESULTS, lb/dscf.			
HFPO Dimer Acid	7.22E-09	8.47E-09	6.49E-09
EMISSION RESULTS, lb/hr.			
HFPO Dimer Acid	5.20E-03	6.81E-03	5.11E-03
EMISSION RESULTS, g/sec.			
HFPO Dimer Acid	6.55E-04	8.58E-04	6.44E-04

3

APPENDIX A PROCESS OPERATIONS DATA

Date 1/9/2019

Time	800					9	00		1000			1100			12	.00	1300			1400				150	00		
Stack Testing		RUN 1 - 0840-1032 RUN 2 - 1140-1328 RUN 3 - 1408								8-155	58																
VES Product		PMPE																									
VES Precursor																											
VES Condensation (HFPO)																											
VES ABR																											
VES Refining																											
VES WGS Recirculation Flow		18500 kg/h																									
Dimer ISO venting																											

APPENDIX B RAW AND REDUCED TEST DATA

CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS VE SOUTH STACK

Test	Data
------	------

Run number	1	2	3
Location	VE South Stack	VE South Stack	VE South Stack
Date	01/09/19	01/09/19	01/09/19
Time period	0840-1032	1140-1328	1408-1558
Operator	AS	AS/SR	AS
Inputs For Calcs.			
Sq. rt. delta P	0.37963	0.42228	0.41666
Delta H	1.3051	1.5054	1.4100
Stack temp. (deg.F)	76.8	78.5	79.4
Meter temp. (deg.F)	50.3	55.9	57.0
Sample volume (act.)	62.591	65.028	63.392
Barometric press. (in.Hg)	29.94	29.94	29.94
Volume H ₂ O imp. (ml)	10.0	-6.0	10.0
Weight change sil. gel (g)	18.2	26.2	20.8
% CO ₂	0.0	0.0	0.0
% O ₂	20.9	20.9	20.9
% N ₂	79.1	79.1	79.1
Area of stack (sq.ft.)	9.620	9.620	9.620
Sample time (min.)	96.0	96.0	96.0
Static pressure (in.H ₂ O)	0.50	0.50	0.50
Nozzle dia. (in.)	0.300	0.300	0.300
Meter box cal.	0.9915	0.9915	0.9915
Cp of pitot tube	0.84	0.84	0.84
Traverse points	24	24	24

ISOKIN	NETIC	FIELD	DATA SH	EET		Metho	d 0010 (HFPO I	Dimer A	Acid			Page_(of	
Client		Chemours	1.5	Stack Condit	ions	Meter Box ID		21	K Easter a dur					
W.O.#	15	418.002.009.00	01	Assum	ned Actual	Meter Box Y		0.99	915 V	-		K Factor	8.95	
Project ID		Chemours	% Moisture	- 3		Meter Box De	I H	2.0	089 1	Leak Chec	ks	Initial	Mid-Poir	it Final
Mode/Source I	D	VE South	Impinger Vol	(ml)		Probe ID / Lei	ngth	694	5'	Sample Trail	n (ft ³) d	0,010	0,000	0,000
Samp. Loc. ID		STK	Silica gel (g)	New York	(8.2	Probe Materia	al	B	oro	Leak Check	@ (in Hg)	15	110	A"
Run No.ID		1	CO2, % by Ve	ol 🥂 🥖	0.0	Pitot / Thermo	couple ID	694	614	Pitot good		ves/ no.	000 / no	/ no
Test Method ID	M 00	10 HFPO Dime	Acid O2, % by Vol	_ 21	20.9	Pitot Coefficie	ent	0	.84	Orsat good		(yes) no	yes)/ no	(yes / no
Date ID		9JAN2019	Temperature	(°F) <u>80</u>		Nozzle ID		0.300)	Temp Che	ck	Pre-T	est Set	Post-Test Set
Source/Location	n <u></u>	E South Stac	<u>k 🔄 🕴</u> Meter Temp ((°F) 🔒 🕼	0	Avg Nozzie D	ia (in)	0,300		Meter Box T	emp	47		150
Sample Date		1-9-19	J Static Press ((in H ₂ O) 0,5	0.51	Area of Stack	(ft ²)	9.62	י טי	Reference T	emp	46	.9	50.5
Baro. Press (in	Hg)	<u>19.94 J</u>		•		Sample Time			96	Pass/Fail (+/	- 2 [°])	(Base	7 Fail	Paser Fail
Operator		24.94 AS	Ambient Tem	р(°F) <u>4</u>	2	Total Travers	e Pts	2	4 1	Temp Chang	e Response '	yes	/ no	yes) / no
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM IM F	DGM	PROBE	FILTER	IMPINGER	SAMPLE	XAD	
POINT	TIME (min)	(plant time)	PRESSURE Delta	PRESSURE	READING (ft*)	TEMP ("E)	TEMP (°E)	OUTLET	TEMP (°F)	BOX TEMP	EXIT TEMP	TRAIN VAC	11.0	COMMENTS
NO.	~	0:40	P (in H2O)	Delta H (in H2O)	744 217		1	TEMP (°F)		(F)	(°F)	(in Hg)	TEMD	
A 1		<u> <u> </u></u>	0 11	1 2 4	217 1333			976	1	.01	<u>u</u> a		112	
M1	<u> </u>		0,15	<u> </u>	747.0	- 11	<u> </u>	78	100	101	<u> </u>	5	47	
2	X		0.11	1.56	249.8	78		99	100	101	47		97	
3	12		0.14	1.61	252.6	78		49	100	105	47	6	47	
9	<u> </u>		0.17	1.52	255.3	75		49	100	110	45	5	Yb	
5			0.18	1.61	258.1	78		49	100	104	47	6	46	
6	24		0.17	1.52	200.8	78		49	100	107	47	6	43	
1	28		0,15	1,34	263.4	78		49	100	102	47	10	42	
4	32.		0.15	1.34	266.0	78		49	100	104	48	là	41	
9	36		0 13	1.16	208.7	78		49	100	106	17	6	40	
10	40		0 13	1.16	271.8	76		6	160	100	47	6	41	
1	4.1	1	0.10	.60	7747	70		50	100	100	Ú. m		40	
h		1.10	0 10 1	Goj	7710 671	121		<u> </u>	100	100		ي ر	+0	
}' \		1.68	0,10 4	<u> </u>	L 14, 030	. , , , ,		<u> </u>	100	100	71		-40	201 0111
	<i></i>	On data	4.10	120	1-10 .			50					. 5	276.744
<u> </u>	56	1:44	0.15	1.24	219.6	72	<i> </i>	50	100	101	48	<u>(</u>	40	- 1108
	<u> </u>		0.17	1.52	282.3	_ 17		51	100	104	48		43	
3	60		0.17	1.52	285.2	77		51	100	102	47	6	42	
4	64		0.18	1.61	247.9	78		50	100	102	47	6	43	
5	69		0.14	1.61	290.7	77		51	100	106	48	6	42	
6	72.		0.19	1.61	293.5	77		51	100	106	Ψ.	6	41	
1	16		0.16	1.432	2910.1	7%		51	100	109	Vg	6	42	
d	80		0.13	1.16	298.6	-18		51	100	166	3	6	41.	
9	\$4		0.10	90	200.10	78		52	Lint	104	119	10	47	
ho	<u> </u>		0.10	90	202 7	77		52	100	102		<u> </u>		· · · · · · · · · · · · · · · · · · ·
<u> </u>	Q 7		0.10	00	2.5				100	10.1		le	43	
	<u></u>	1			201 127		<u>├ </u>	$+ \frac{1}{2} + $	100		<u></u>	<u> </u>	46	
	<u> </u>	110 76			70 1. 0 70			<u> > う ヾ</u>	00	106	50	Ų.	48	
						Avg 15	AV	"<"o.1 a√				Max Vac	Max Temp	
۲. ۲.	ST CE	КI I	0.270:2	Ava Sart Dal H		[ψ. [1		10.01	100	11-100	J	v	1	ĺ
	Solum	JN15	0.107.1		Comments:									
			A. iHelle	1.1561										
			505	1,13579 6	/		24.							

ISOKINETIC FIELD DATA SHEET					Metho	d 0010]	HFPO	Page of						
Client		Chemours		Stack Condit	ions	Meter Box ID		21					Alex	五 .
W.O.#	154	418.002.009.000	01	Assun	ned Actual	Meter Box Y		.991	15 V	-		K Factor	873 8	.055
Project ID		Chemours	% Moisture	- 3		Meter Box De	el H	2.00	ś9 V	_ Leak Cheo	:ks	Initial	Mid-Poin	t Final
Mode/Source I	ID	VE South	Impinger Vol	(ml)	~6	Probe ID / Le	ngth	694	6	Sample Tra	in (ft³)	,003	.001	0,002
Samp. Loc. ID		STK	Silica gel (g)		26,2	Probe Materia	al	B	koro	Leak Check	@ (in Hg)	15 *	10"	Ru
Run No.ID		2	CO2, % by Ve	ol <u>O</u>	a_0	Pitot / Thermo	ocouple ID	614	614	Pitot good		Cor I no	Jes / no	(yes) / no
Test Method ID	M 001	10 HFPO Dimer	Acid O2, % by Vol		207	Pitot Coefficie	ent	0	.84	Orsat good		(yes) no	Tres / no	yes / no
Date ID		9JAN2019	Temperature	(°F) <u>bo</u>		Nozzle ID		.30	0	Temp Che	ck	Pre-T	est Set	Post-Test Set
Source/Locatio	n <u>V</u>	E South Stack	🔁 Meter Temp ((°F) <u>6</u> 0		Avg Nozzle D	lia (in)	30	o V	Meter Box T	emp	53		67
Sample Date	· —	-9-19	Static Press ((in H₂O)S	0.51	_Area of Stack	: (ft²)	962	20 1	Reference 1	emp	534		56.5
Baro. Press (in	Hg)	2994 1				Sample Time		9(<u>s</u> 1	_Pass/Fail (+	/- 2°)	Pass	y/ Fail	Fass) / Fail
Operator		AS/SLª	Ambient Tem	ιρ (°F)	<u>_5°</u>	_Total Travers	e Pts	2'	4 J	_Temp Chan	ge Response		Dno	Yes / no
										and the second		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM PLET	DGM	PROBE	FILTER	IMPING	SAMPLE	440	
NO		(plant time)	PRESSURE Delta	PRESSURE	READING (ff*)	TEMP ("F)	TEMP (°F)	OUTLET	TEMP (^o F)	BOX TEMP	EXITIEMP	TRAIN VAC	Temp	COMMENTS
	0	11.40	F (00020)		207237		1	IEMP(F)		(F)	(°F)	(in Hg)		and the second
Δι	<u> </u>		10	1/1	2101	-11	5		4.9.0	1.01-	EL	/	40	
			10		312 2			55	100	105	50	6	18	
	\$		107	1.10	15.6	-18	<u> </u>	56	700	100	50	6	48	
<u> </u>	12		, 20	1.74	316.0	79		56	100	102	32	le	49	
<u> </u>	<u>[</u>]		:70	1.19	318.9	80		55	100	102	54		49	
5	20	ļ	.20	1.79	321.8	79		55	100	104	51	6	48	
6	24		.20	1.79	324.8	79		55	100	102	58	6	49	
1	28		.20	1.79	327.7	79		55	100	103	40	6	44	
8	32		.18	161	330.6	79		55	100	103	61	6	55	· · · · · · · · · · · · · · · · · · ·
9	36		17	1.52	333.3	79		55	100	106	107.	4	54	
10	40		.15	1.21	335.9	78		56	100	108	67	1	61.	
41	44		15	1.21	338.1	78		55	100	100	1.1	6	50	
12	44	12:29	13	1.05 1	340 365	701		EEJ	100	100			<u> </u>	240 149
	· a	10/-4			210: 343	10-1	+ $+$	77	100	100		<u>ع</u>	- 76	570.481
121	52	12:00	10	1 1 3 6	n -7/12 4		<u>├── /</u> ──	er	101	120	F.			1167
· · · · ·	<u> </u>	16.40	74 1		245.7	12	<i>├───<i>│</i>───</i>	55	101	10	56	ļ (ģ	55	
			10 1.		376.0	19		33	100	105	58	6	55	
				1.67	540.9	700		35	100	100	59	Le_	56	
	67		_20	1.61	-351.7			56	100	104	59	6	57	
5	66		,20	1.61	-354.6	80		56	100	101	62	6	60	
6	-72		,19	1.53	351,3	80		57	100	103	57	6	53	
1	- 14		.20	1.61	31.0.0	80		57	100	105	45	6	53	
9	80		117	1.36	362.6	51		57	100	102	45	6	59	
9	84		.16	1.29	315.1	50		57	160	105	45	1.	5%	
10	84		15	120	367.6	ำจ	1	5-7	100	105	-U 	1	- U	
11	q1		110	1.12	270 0	74	<u> </u>	ca .		107		7.	<u> 27</u> Su	
<u> </u>	91	17:74		1.12	217 1161	58 5		Sec J	100	105				
	10	1 13,60	Avg Sgrt Delta P	Ava Delta Hr	Total Volume		Δισ		Min/Max	Min/May	May Toma		> J	
			1118	1 SOLAN	15 ADet	TOCL		56 40	100/1.51	100/100	wax remp		Max remp	
SELV.Y					Commont	11.0 4		70.08	, ,,,,,	108	42	<u> </u>	UO	
VV/150		-	7917.1	1.17.1	comments:									
			1	1.001	J									

1.2282

ISOKIN	VETIC	FIELD	DATA SH	EET		Metho	d 0010 H	IFPO J	Dimer A	Acid			Page /_ of	
Client	and taken of	Chemours	ter and	Stack Condit	ions	Meter Box ID		21	ł	_		K Factor	0 15	
W.O.#	15	5418.002.009.000	01	Assun	ned Actual	Meter Box Y		.99	115 V	•			3.03	
Project ID		Chemours	% Moisture			Meter Box De	l H	2.0	0089 1	Leak Chec	- (1 ³)	Initial	Mid-Poin	t Final
Samp Loc ID			impinger voi	(mi)	7.0.9	Probe ID / Lei Brobo Motorir	ngth	<u>677</u>	6	Sample I rai	n (tt*) @ (in Ha)	<u></u>	.005	105
Run No ID	•	3	0%2 ger (g)	ol 0	00	Pitot / Thermo	a vounte ID			Pitot good	@ (in Hg)	(ves) / no	600 L no	Chief I no
Test Method ID	M 00	10 HFPO Dimer	Acid O2, % by Vol	21	249	Pitot Coefficie	ent	 0	84	Orsat good		ves 1 no	000/10	ves/ no
Date ID		9JAN2019	Temperature	(°F) \$0		Nozzie ID		.3	Ø 0	Temp Che	ck	Pre-T	est Set	Post-Test Set
Source/Locatio	n 🛝	/E South Stack	K Meter Temp ((°F) 00	A later states of	Avg Nozzle D	ia (in)	.3	300 /	Meter Box T	emp	5-	1	57
Sample Date		1-9-19	Static Press ((in H ₂ O) .5	0.51	Area of Stack	(ft ²)	9.6	,20 √	Reference T	emp	56	do	50.4
Baro. Press (in	Hg)	29.94	<u> </u>		·······	Sample Time		90	6	Pass/Fail (+/	/- 2 ⁰)	Pass	/ Fail	Pass / Fail
Operator		<u>AG 1</u>	Ambient Tem	ip (°F)	50	Total Travers	e Pts	2	4 1	Temp Chan	ge Response	(A)	/ no	Jes / no
TDAVEDSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER			DGM		CH TEO	MONGER	CANDLE.	3/15	
POINT	TIME (min)) (plant time)	PRESSURE Delta	PRESSURE	READING (ft ³)	STACK	DGM INLET	OUTLET	PROBE	BOX TEMP	EXIT TEMP	TRAIN VAC	XAG	COMMENTS
NO.			P (in H2O)	Delta H (in H2O)		TEMP ("F)	TEMP (°F)	TEMP (°F)	TEMP (°F)	(F)	(°F)	(in Hg)	Trup	
	0	1408			373.010	-							1.21 10	
MI	나		.19	1.53	375.9	16	NA	57	101	100	56	8	52	
2	8		.20	1.61	378.7	79		57	100	102	54	8	54	
3	12		20	1.61	381.5	80		57	100	101	46	8	53	
4	16		,20	1.61	384.4	80		57	100	104	43	8	53	
5	20		.20	1.61	387.1	80		57	100	104	93	8	51	
6	24		,20	1.61	390.0	80		57	100	104	43	8	51	
, i	28		. 19	1.53	392.7	80		57	100	104	43	8,	51	
4	32	_	.16	1.29	394.9	80		54	100	104	43	\$6	52	
٩	36		.15	1.21	397.7	80		57	100	104	43	10	57	
lə 📃	40		.13	1.05	400.0	80		51	100	104	44	6	52	
11	44		, 13	1.05	402.2	- jq		57	100	102	44	6	53	
n	48	14:56	I . () J	. 89 J	404.308	715		51J	100	104	44	5	53	
					404 449									-, 141
BI	52	15:10	.19	1.53	407.2	76		56	100	105	51	8	52	· · · · ·
Z	56		. 20	1.61	410.2	Su		56	100	100	83	8	51	
3	60		.20	1.61	412.9	50		57	100	105	57.	8	51	<u>.</u>
4	64		7.0	141	415.8	รเ		57	100	10%	52	8	50	
5	68		20	1.61	418.6	<u> </u>		57	100	107	53	8	57.	
6	71		20	1.61	421.5	80		57	100	104	52	8	51	
1	76		.20	1.61	424.3	80		57	100	107	50	Ŷ	53	
8	80		. 14	1.45	426.9	80		56	100	105	54	×	56	
9	84		. 16	1.29	+29.5	80		ร์ห้	100	104	55	4	56	· · · · · · · · · · · · · · · · · · ·
01	48		.14	1.21	432.1	80		58	100	104	55	6	56	<u> </u>
11	92		113	1.05	434.3	80		58.	100	107	58	- Ū	54	
12	90	15:58	131	1.05 J	436.543	11		54 5	100	104	54	6	52	
Legeneratur I	,-		Avg Sqrt Delta P	Avg Delta H /	Total Volume, /	Avg Ts 🗸	Avg	Tm 7	Min/Max	Min/Max	Max Temp	Max Vac	Max Temp	
			.417 1	1.41001	63.392	79,315		571	104/01	10/101	58	8	56	
WVIER			0,41666	Avg Sqrt Del H/	Comments:	-						•	· · · · · · · · · · · · · · · · · · ·	

Avg Sqrt Del H/ Com 17 560

SAMPLE RECOVERY FIELD DATA

Method 0010 HFPO Dimer Acid

Client		Chemours			W.O. # 1541			02.009.0001		
Location/Pla	int	Fayettevil	le, NC	Source	e & Location		VE South Stack			-
Run No. Sample I.D.	 Chemours - V	/E South - STK	- 1 - M 0010	HFPO Dimer	Sample Date	E/ 8/19		Recove Filter N	ery Date Number	1/2/09 NA
					Impinge	er	•			
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents									56	
Final	へ	28	708	r					J 68.2	
Initial	0	100	<i>[0</i> 0	0					700	\bigcirc
Gain	2	~2	G	2			6	VID	VIBA	20,2
Impinger Cold)r	cher			Labeled?		y			28.Z
Silica Gel Cor	ndition	Gent			Sealed?		/			
Run No	2				Sample Date	rlul	a	Pacovo	ny Data	1/91,0
							2 A		iy Dale	11111
Sample I.D.	Chemours - V	E South - STK	- 2 - M 0010 I	-IFPO Dimer	A Analyst	y w	1	Filter N	lumber	MA
	1	2	3	4	Impinge	er e	7	Imp Total	0	Tatal
Contents	· · · · · · · · · · · · · · · · · · ·	2	<u>_</u>		<u>J</u>	0	· · · · · · · · · · · · · · · · · · ·	imp.rota	56	Total
Final	2	45	\$5	2					326.2	
Initial	0	(00)	LQA	.O					300	
Gain	Z	~5	-5	2				69%	26.2	202
Impinger Cold	or	clear			Labeled?		/	(Tay		20.2
Silica Gel Cor	ndition	Courd			Sealed?		60-			
			······································			1. r				7.7
Run No.	3				Sample Date	119/18	ł	Recove	ry Date	er pr
Sample I.D.	Chemours - V	E South - STK	- 3 - M 0010 H	HFPO Dimer	A Analyst	<i>tum</i>	· .	Filter N	lumber	MK
Impinger										
Contonto	1	2	3	4	5	6	7	Imp.Total		Total (
		Ç Ĝ#		- U					2008	
Final		198	10	7					520,0	
Initial	· ·	~iu	100	0					300	
Gain	L		10	7			/	10	20.8	30. V
Impinger Colc	r	<u> </u>	N.		Labeled?		, ,		<u></u>	
Silica Gel Cor	dition	900			Sealed?					

Check COC for Sample IDs of Media Blanks

١

SAMPLE RECOVERY FIELD DATA

Method 0010 HFPO Dimer Acid

Client		Chemours		W.O. #			15418.002.009.0001			_
Location/Pla	int	Fayettevil	le, NC	Source	& Loaction		VE South Stack			
Run No.	<u>B1</u>	E Couth STK	PT M 0010	S	Sample Date	1/2 ha	!	Recove	ry Date	(19/18 NA
Sample I.D.		E South - STK	- B1 - WI 00 IC		Impine			Filler IN	umber	
	1	2	3	4	5		7	Imp.Total	8	Total
Contents									SC:	
Final	I	100	600	ø					300	
Initial	0	Lep 0	fær	0		-			3-40	
Gain	Ø	Ó	Ø	-v				0	0	0
Impinger Col	or	يعل	yr 👘		Labeled?					
Silica Gel Co	ndition	Ca	ið		Sealed?	~ >				-
Run No.				S	Sample Date Recovery Date					
Sample I.D.					Analyst		Filter Number			
					Imping	jer		- -		
Contents	1	2	3	4	5	6	7	Imp.Total	8	Total
Final										
Initial										
Gain									<u> </u>	
	1				l ab al ad 0					
	or				Labeled?	<u></u>				-
Silica Gel Co	ndition				Sealed?					
Run No.				s	ample Date			Recover	ry Date	
Sample I.D.					Analyst			Filter N	umber	
	Impinger									
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents										
Final										
Initial										
Gain										
Impinger Color Labeled?							_			
Silica Gel Condition					Sealed?					-

Check COC for Sample IDs of Media Blanks

METHODS AND ANALYZERS

Client: Chemours Location: CHEMOURS Source: VE South

Project Number: **15418.002.009** Operator: **CMH** Date: **9 Jan 2019**

File: C:\DATA\Chemours\010919 VE South.cem Program Version: 2.1, built 19 May 2017 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108

Channel 1

Analyte	02
Method	EPA 3A. Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.0
Channel 2	

.

Analyte	CO 2
Method	FPA 3A Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	20.0
Span Concentration, %	16.6

WESTON

CALIBRATION DATA

Number 1

Client: Chemours Location: CHEMOURS Source: VE South

Project Number: 15418.002.009 Operator: CMH Date: 9 Jan 2019

Start Time: 07:23

Method	EPA 3A
Calibration Type: Line	ear Zero and High Span
Calibration	Standards
%	Cylinder ID
12.0	ČC18055
21.0	SG9169108
Calibratic	on Results
Zero	10 mv
Span, 21.0 %	7989 mv
Curve Co	pefficients
Slope	Intercept
380.0	10

CO₂ Method: EPA 3A Calibration Type: Linear Zero and High Span							
Calibration Standards							
%	Cylinder ID						
8.9	ČC18055						
16.6	SG9169108						
Calibration							
Zero	-1 mv						
Span, 16.6 %	5519 mv						
Curve Coefficients							
Slope	Intercept						
 332.9	-1						

CALIBRATION ERROR DATA

Number 1

Client: Location: Source:	Chemours CHEMOURS VE South		Calibration 1	F	Project Number: Operator: Date:	15418.002.009 CMH 9 Jan 2019	
			Start Time: 07:23	3			
_		Slope 38	O₂ Method: EPA 3A Span Conc. 21.0 9 80.0 Int	% ærcept 10.0			
	Standard	Result	Difference	Error			
	%	%	%	%	Status	5	
	Zero	0.0	0.0	0.0	Pass		
	12.0	12.1	0.1	0.5	Pass		
=	21.0	21.0	0.0	0.0	Pass		
			CO₂ Method: EPA 3A Span Conc. 16.6 %	6			
		Slope 33	2.9 Int	ercept -1.0	-1.0		
_	Standard % Zero 8.9 16.6	Result % 0.0 8.6 16.6	Difference % 0.0 -0.3 0.0	Error % 0.0 -1.8 0.0	Status Pass Pass Pass Pass		
=	8.9 16.6	8.6 16.6	-0.3 0.0	-1.8 0.0	Pass Pass Pass		

s.

BIAS

Number 1

Client: Location: Source:	Chemours CHEMOURS VE South		Calib	pration 1	Proje	ect Number: Operator: Date:	15418.002.009 CMH 9 Jan 2019	
			Start T	ime: 07:37				
			Metho Span C	O₂ d: EPA 3A onc. 21.0 %				
	Standard Gas Zero Span	Cal. % 0.0 12.1	Bias Bias % 0.0 11.9	Results Difference % 0.0 -0.2	Error % 0.0 -1.0	Status Pass Pass		
			Methoo Span Co	CO₂ d: EPA 3A onc. 16.6 %				
			Bias	Results				
	Standard	Cal.	Bias	Difference	Error			
	Gas	%	%	%	%	Status		
	Zero	0.0	0.0	0.0	0.0	Pass		
		0.0	ð.4	-0.2	-1.2	Pass		

Number 1

Client: Chemours Location: CHEMOURS Source: VE South		C	alibration	1	Project Number: Operator: Date:	15418.002.009 CMH 9 Jan 2019
	Time	O 2 %	CO2 %			
			Start R1			
		08:40	20.9	0.0		
		08:41	20.9	0.0		
		08:42	20.9	0.1		
		08:43	20.8	0.1		
		08:44	20.8	0.2		
		08:45	20.8	0.2		
		08:46	20.8	0.2		
		08:47	20.8	0.2		
		08:48	20.8	0.2		
		08:49	20.9	0.2		
		08:50	20.9	0.2		
		08:51	20.9	0.2		
		08:52	20.9	0.2		
		08:53	20.9	0.2		
		08:54	20.9	0.2		
		08:55	20.9	0.2		
		08:56	20.9	0.2		
		08:57	20.9	0.2		
		08:58	20.9	0.2		
		08:59	20.9	0.2		
		09:00	20.9	0.2		
		09:01	20.9	0.2		
		09:02	20.9	0.2		
		09:03	20.9	0.2		
		09:04	20.9	0.1		
		09:05	20.9	0.1		
		09:06	20.9	0.1		
		09:07	21.0	0.1		
		09:08	21.0	0.1		
		09:09	20.9	0.1		
		09:10	20.9	0.1		
		09:11	20.9	0.1		
		09:12	20.9	0.1		
		09:13	20.9	0.1		
		09:14	20.9	0.1		
		09:15	21.0	0.1		
		09:16	21.0	0.1		
		09:17	21.0	0.1		
		09:18	21.0	0.1		
		09:19	21.0	0.1		
			33		WIEST	FOR

Client: Chemours Location: CHEMOURS Source: VE South	C	alibration	1	Project Number: Operator: Date:	15418.002.009 CMH 9 Jan 2019
	Time	O 2 %	CO2 %		·····
	09:20	21.0	0.1		
	09:21	21.0	0.1		
	09:22	21.0	0.1		
	09:23	21.0	0.1		
	09:24	21.0	0.1		
	09:25	21.0	0.1		
	09:26	21.0	0.1		
	09:27	21.0	0.1		
	09:28	21.0	0.1		
	E	End Port	1		
	S	tart Port	2		
	09:44	20.9	0.0		
	09:45	20.9	0.0		
	09:46	20.9	0.1		
	09:47	20.9	0.1		
	09:48	20.9	0.1		
	09:49	20.9	0.1		
	09:50	20.9	0.2		
	09:51	20.9	0.2		
~	09:52	20.9	0.2	,	
	09:53	20.9	0.2		
	09:54	20.9	0.2		
	09:55	20.9	0.2		
	09:56	20.9	0.2		
	09:57	20.9	0.2		
	09:58	20.9	0.2		
	09:59	20.9	0.2		
	10:00	20.9	0.2		
	10:01	20.9	0.2		
	10:02	20.9	0.2		
	10:03	20.9	0.2		
	10:04	20.9	0.2		
	10:05	20.9	0.2		
	10:06	20.9	0.2		
	10:07	20.9	0.2		
	10:08	20.9	0.2		
	10:09	20.9	0.2		
	10:10	20.9	0.2		
	10:11	20.9	0.2		
	10:12	20.9	0.2		
	10:13	20.9	0.2		
			-		

Number 1

Client: Chemours Location: CHEMOURS Source: VE South		C	alibration 1		Project Number: 15418.002.009 Operator: CMH Date: 9 Jan 2019
		Time	O2 %	CO2 %	
		10:14	20.9	0.2	
		10:15	20.9	0.2	
		10:16	20.9	0.2	
		10:17	20.9	0.2	
		10:18	20.9	0.2	
		10:19	20.9	0.2	
		10:20	20.9	0.2	
		10:21	20.9	0.2	
		10:22	20.9	0.2	
		10:23	20.9	0.2	
		10:24	20.9	0.2	
		10:25	20.9	0.2	
		10:26	20.9	0.2	
		10:27	20.9	0.2	
		10:28	20.9	0.2	
		10:29	20.9	0.2	
		10:30	20.9	0.2	
		10:31	20.9	0.2	
		10:32	20.9	0.2	
		E Avgs	End Run 1 20.9	0.2	

۲...

RUN SUMMARY

Client: Chemours Location: CHEMOURS Source: VE South		Calibration 1			15418.002.009 CMH 9 Jan 2019
	Method Conc. Units	0₂ EPA 3A %	CO ₂ EPA 3A %		
	Tim	ie: 08:39 to 1	0:32		<u> </u>
	ł	Run Average	!S		
		20.9	0.2		
	Pre-	run Bias at (07:37		
	Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.4 8.9		
	Post	-run Bias at	10:42		
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.0 8.4 8.9		
Run averages	corrected for th	e average of	the pre-run	and post-run bias	5
		21.0	0.2		

BIAS AND CALIBRATION DRIFT

Number 2

Client: Location: Source:	Chemours CHEMOURS VE South	Calibration 1			Proje	ect Number: Operator: Date:	15418.002.009 CMH 9 Jan 2019
			Start T	ime: 10:42			
			Metho Span C	O₂ d: EPA 3A onc. 21.0 %			
1			Bias	Results			
	Standard Gas	Cal.	Bias	Difference	Error	e 4 4	
	Zero			%	%	Status	
	Span	12.1	12.0	-0.1	-0.5	Pass Pass	
			Calibr	ation Drift	·		
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	*Bias No. 1	12.0	0.1	0.5	Pass	
			Methoo Span Co	CO₂ I: EPA 3A onc. 16.6 %			
			Bias	Results			
	Standard Gas	Cal. %	Bias %	Difference %	Error %	Status	
	Zero 0.0 0.0 0.0		0.0	Pass			

Zero Span	0.0 8.6	0.0 8.4	0.0 -0.2	0.0 -1.2	Pass Pass
		Calibra	ation Drift	·····	······
Standard	Initial*	Final	Difference	Drift	
Gas	%	%	%	%	Status
Zero	0.0	0.0	0.0	0.0	Pass
Span	8.4	8.4	0.0	0.0	Pase
-	*Bias No. 1		010	0.0	1 435

Client: Location: Source:	Chemours CHEMOURS VE South	C	Calibration	1	Project Number: Operator: Date:	15418.002.009 CMH 9 Jan 2019	
	Time	O2 %	CO2 %				
			Start D2				
		11.40	20.0	0.0			
		11:40 11:41	20.0	0.0			
		11.42	20.0	0.0			
		11:43	20.0	0.1			
		11:44	20.9	0.1			
		11:45	20.9	0.1			
		11:46	20.9	0.1			
		11:47	20.9	0.1			
		11:48	20.9	0.1			
		11:49	20.9	0.1			
		11:50	20.9	0.1			
		11:51	20.9	0.1			
		11:52	20.9	0.1			
		11:53	20.9	0.1			
		11:54	20.9	0.1			
		11:55	20.9	0.1			
		11:56	20.9	0.1			
		11:57	20.9	0.1			
		11:58	20.9	0.1			
		11:59	20.9	0.1			
		12:00	20.9	0.1			
		12:01	20.9	0.1			
		12:02	20.9	0.1			
		12:03	20.9	0.1			
	,	12:04	20.9	0.1			
		12:05	20.9	0.1			
		12:06	20.9	0.1			
		12:07	20.9	0.1			
		12:08	20.9	0.1			
		12:09	20.9	0.1			
		12:10	20.9	0.1			
		12:11	20.9	0.1			
		12:12	20.9	0.1			
		12:13	20.9	0.1			
		12:14	20.9	0.1			
		12:15	20.9	0.1			
		12:16	20.9	0.1			
		12:17	20.9	0.1			
		12:18	20.9	0.1			
		12:19	20.9	0.1			

Client: Location: Source:	Chemours CHEMOURS VE South	С	alibration	1	Project Number: Operator: Date:	15418.002.009 CMH 9 Jan 2019
		Time	O 2 %	CO2 %		
		12:20	20.9	0.1		
		12:21	20.9	0.1		
		12:22	20.8	0.1		
		12:23	20.8	0.1		
		12:24	20.9	0.1		
		12:25	20.8	0.1		
		12:26	20.8	0.1		
		12:20	20.8	0.1		
		12.28	20.0	0.1		
		12.20	Ind Port 1	0.1 I		
		L (tart Dort	ו ס		
		12.40		∠		
		12.40	20.9	0.1		
		12.41	20.0	0.1		
		12.42	20.0	0.1		
		12.43	20.8	0.1		
		12.44	20.8	0.1		
		12.40	20.8	0.1		
		12:40	20.8	0.1		
		12:47	20.8	0.1		
		12:48	20.8	0.1		
		12:49	20.9	0.1		
		12:50	20.9	0.1		
		12:51	20.9	0.1		
		12:52	20.9	0.1		
		12:53	20.9	0.1		
		12:54	20.9	0.1		
		12:55	20.9	0.1		
		12:56	20.9	0.1		
		12:57	20.9	0.1		
		12:58	20.9	0.1		
		12:59	20.9	0.1		
		13:00	20.9	0.1		
		13:01	20.9	0.1		
		13:02	20.9	0.1		
		13:03	20.9	0.1		
		13:04	20.9	0.1		
		13:05	20.9	0.1		
		13:06	20.9	0.1		
		13:07	20.9	0.0		
		13:08	20.9	0.1		
		13.09	20.9	0.1		
			20.0	0.1		

Client: Location: Source:	Chemours CHEMOURS VE South	C	alibration 1		Project Number: 15418.002.009 Operator: CMH Date: 9 Jan 2019
		Time	O2 %	CO2 %	
		13:10	20.9	0.1	
		13:11	20.9	0.1	
		13:12	20.9	0.1	
		13:13	20.9	0.1	
		13:14	20.9	0.1	
		13:15	20.9	0.1	
		13:16	20.9	0.1	
		13:17	20.9	0.0	
		13:18	20.9	0.1	
		13:19	20.9	0.0	
		13:20	20.9	0.1	
		13:21	20.9	0.1	
		13:22	20.9	0.1	
		13:23	20.9	0.1	
		13:24	20.9	0.0	
		13:25	20.9	0.1	
		13:26	20.9	0.0	
		13:27	20.9	0.1	
		13:28	20.9	0.1	
		E	nd Run 2		
		Avgs	20.9	0.1	

RUN SUMMARY

Number 2

Client: Chemours Location: CHEMOURS Source: VE South	Calibration	Project Number: 15418.002.009 Operator: CMH Date: 9 Jan 2019	
Method Conc. Units	O2 EPA 3A s %	CO ₂ EPA 3A %	
Т	Time: 11:39 to 2	13:28	
	Run Average	es	
	20.9	0.1	
P	re-run Bias at	10:42	
Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.0 8.4 8.9	
Po	st-run Bias at	13:35	
Zero Bias Span Bias Span Gas	0.1 12.0 12.0	0.0 8.4 8.9	
Run averages corrected for	the average o	f the pre-rur	and post-run bias
	20.9	0.1	

.

BIAS AND CALIBRATION DRIFT

Number 3

Client: Location: Source:	Chemours CHEMOURS VE South		Calil	bration 1	Proje	ect Number: Operator: Date:	15418.002.009 CMH 9 Jan 2019
			Start Time: 13:35 O₂ Method: EPA 3A Span Conc. 21.0 %				
			Bias	Results			<u> </u>
	Standard Gas Zere	Cal. %	Bias %	Difference %	Error %	Status	
	Span	12.1	0.1 12.0	0.1 -0.1	0.5 -0.5	Pass Pass	
	Standard Gas Zero		Calibration Drift				
			% 0.1	% 0.1	% 0.5	Status Pass	
	Span	12.0 *Bias No. 2	12.0	0.0	0.0	Pass	
			CO₂ Method: EPA 3A Span Conc. 16.6 %				
	Standard	0.1	Bias	Results			
	StandardCal.Gas%Zero0.0Span8.6		Bias % 0.0 8.4	Difference % 0.0 -0.2	Error % 0.0 -1.2	Status Pass Pass	
	Standard Gas Zero	Initial* % 0.0	Calibra Final % 0.0	ation Drift Difference % 0.0	Drift % 0.0	Status Pass	

Pass

0.0

0.0

8.4

*Bias No. 2

8.4

Span

Number 3

۲

Client: Chemours Location: CHEMOURS Source: VE South	(Calibration	1	Project Number: 15418.002.009 Operator: CMH
			_	Date: 9 Jan 2019
t	Time	O2 %	CO₂ %	
		Start R3		
	14:08	20.8	0.0	
	14:09	20.8	0.1	
	14:10	20.8	0.1	
	14:11	20.8	0.1	
	14:12	20.8	0.2	
	14:13	20.8	0.2	
	14:14	20.8	0.2	
	14:15	20.8	0.2	
	14:16	20.8	0.2	
	14:17	20.8	0.2	
	14:18	20.8	0.2	
	14:19	20.8	0.2	
	14:20	20.8	0.2	
	14:21	20.8	0.2	
	14:22	20.8	0.2	
	14:23	20.8	0.2	
	14:24	20.8	0.2	
	14:25	20.8	0.2	
	14:26	20.8	0.2	
	14:27	20.8	0.2	
	14:28	20.8	0.2	
	14:29	20.9	0.2	
	14:30	20.8	0.2	
	14:31	20.9	0.2	
	14:32	20.8	0.2	
	14:33	20.8	0.1	
	14:34	20.9	0.1	
	14:35	20.9	0.1	
	14:36	20.9	0.1	
	14:37	20.9	0.1	
	14:38	20.9	0.1	
	14:39	20.9	0.1	
	14:40	20.9	0.1	
	14:41	20.9	0.1	
	14:42	20.9	0 1	
	14:43	20.9	0.1	
	14:44	20.9	0.1	
	14:45	20.9	0.1	
	14:46	20.9	0.1	
	14:47	20.9	0.1	

Client: Chemours Location: CHEMOURS Source: VE South	C	alibration	1	Project Number: 15418.002.009 Operator: CMH Date: 9 Jan 2019
	Time	O2 %	CO2 %	
	14:48	20.9	0.1	
	14:49	20.9	0.1	
	14:50	20.9	0.1	
	14:51	20.9	0.1	
	14:52	20.9	0.1	
	14:53	20.9	0.1	
	14:54	20.9	0.1	
	14:55	20.9	0.1	
	14:56	20.9	0.1	
	1 1100	End Port	1	
	9	Start Port	י 2	
	15.10	20.8	~ 01	
	15.11	20.0	0.1	
	15:12	20.0	0.1	
	15.13	20.8	0.1	
	15:14	20.0	0.1	
	15:15	20.0	0.1	
	15:16	20.0	0.1	
	15:17	20.0	0.1	
	15.18	20.0	0.1	
	15:19	20.0	0.1	
	15.20	20.9	0.2	
	15.20	20.0	0.2	
	15:22	20.0	0.2	
	15.22	20.0	0.2	
	15.20	20.0	0.2	
	15.24	20.9	0.2	
	15.25	20.9	0.2	
	15.20	20.9	0.2	
	15.27	20.9	0.2	
	15.20	20.9	0.2	
	15.29	20.0	0.2	
	15.30	20.9	0.2	
	10.01	20.9	0.2	
	15.32	20.9	0.2	
	10.00	20.9	0.2	
	15.04	20.9	0.2	
	10.00	20.9	0.2	
	10.00	20.9	0.2	
	10.07	20.9	0.2	
	10.00	20.9	0.2	
	10.08	20.0	0.2	

Number 3

Client: Chemours Location: CHEMOURS Source: VE South		Calibration 1		Project Number: 15418.002.009 Operator: CMH Date: 9 Jan 2019
	Time	O2 %	CO 2 %	
	15:40	20.8	0.2	
	15:41	20.8	0.2	
	15:42	20.8	0.2	
	15:43	20.8	0.2	
	15:44	20.8	0.2	
	15:45	20.8	0.2	
	15:46	20.8	0.2	
	15:47	20.8	0.2	
	15:48	20.8	0.2	
	15:49	20.8	0.2	
	15:50	20.8	0.2	
	15:51	20.8	0.2	
	15:52	20.8	0.2	
	15:53	20.8	0.2	
	15:54	20.8	0.2	
	15:55	20.8	0.2	
	15:56	20.8	0.2	
	15:57	20.8	0.2	•
	15:58	20.8	0.2	
		End Run 3		
	Avgs	20.8	0.2	

.

RUN SUMMARY

Client: Chemours Location: CHEMOURS Source: VE South	Calibration	1	Project Number: 15418.002.009 Operator: CMH Date: 9 Jan 2019
Method Conc. Un	O₂ EPA 3A its %	CO₂ EPA 3A %	
	Time: 14:07 to 1	5:58	
	Run Average	S	
	20.8	0.2	
	Pre-run Bias at 1	3:35	
Zero Bias Span Bias Span Gas	0.1 12.0 12.0	0.0 8.4 8.9	
F	Post-run Bias at	16:11	
Zero Bias Span Bias Span Gas	0.1 12.0 12.0	0.0 8.4 8.9	
Run averages corrected to	or the average of	the pre-run	and post-run bias
	20.9	0.2	

BIAS AND CALIBRATION DRIFT

Number 4

Client: Location: Source:	Chemours CHEMOURS VE South		Calib	pration 1	Proje	ect Number: Operator: Date:	15418.002.009 CMH 9 Jan 2019
			Start T	ime: 16:11			
			Metho Span Co	O₂ d: EPA 3A onc. 21.0 %			
	Standard Gas Zero Span	Cal. % 0.0 12.1	Bias Bias % 0.1 12.0	Results Difference % 0.1 -0.1	Error % 0.5 -0.5	Status Pass Pass	
	Standard Gas Zero Span	Initial* % 0.1 12.0 *Bias No. 3	Calibra Final % 0.1 12.0	ation Drift Difference % 0.0 0.0	Drift % 0.0 0.0	Status Pass Pass	
			(Methoo Span Co	CO₂ I: EPA 3A onc. 16.6 %			

Of a seal a seal	<u> </u>	5.	Results		
Standard	Cal.	Bias	Difference	Error	
Gas	%	%	%	%	Status
Zero	0.0	0.0	0.0	0.0	Pass
Span	8.6	8.4	-0.2	-1.2	Pass
		Calibra	ation Drift		
Standard	Initial*	Final	Difference	Drift	
Gas	%	%	%	%	Status
Zero	0.0	0.0	0.0	0.0	Pass
Span	8.4	8.4	0.0	0.0	Pass
	*Bias No. 3				. 400

,

APPENDIX C LABORATORY ANALYTICAL REPORT

Note: The complete analytical report is included on the attached CD.

Client Sample Resul	ts	5
---------------------	----	---

Client: Chemours Company FC, LLC The Project/Site: VE South Stack - M0010

TestAmerica Job ID: 140-13930-1

Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	,1748 VE S		(1 M0010 F	٠H		l	_ab Sample	e ID: 140-1: Ma	3930-1 trix: Ai
Method: 8321A - PFOA and P Analyte	FOS Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
HFPO-DA	196		2.51	0.271	ug/Sample		01/16/19 06:43	01/23/19 13:07	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fa
13C3 HFPO-DA	103	D	50 - 200				01/16/19 06:43	01/23/19 13:07	2
Client Sample ID: R-1749, Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	1750,1752	VE SOL	JTH R1 M0	010 BH		L	₋ab Sample	e ID: 140-13 Mat	3930-2 trix: Ai
Method: 8321A - PFOA and P	FOS	Qualifier	ы	MDI	l I mié	-	Decement	A	
HFPO-DA	14.8		0.200	0.0400	ug/Sample		01/16/19 06:45	01/23/19 13:36	DIIFa
* Surrogate	%Recoverv	Qualifier	Limits				Prenared	Analyzed	Dil Ea
13C3 HFPO-DA	74		50 - 200				01/16/19 06:45	01/23/19 13:36	
Client Sample ID: R-1751 CONDENSATE	VE SOUTH	H R1 M0(010 IMP 1,;	2&3		L	.ab Sample	e ID: 140-13	8930-3
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUTH	H R1 M00	010 IMP 1,	2&3		L	.ab Sample	e ID: 140-13 Mat	3930-3 rix: Ai
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA	VE SOUTH	H R1 M0(010 IMP 1,;	2&3	Ilait	Ľ	ab Sample	e ID: 140-13 Mat	3930-3 rix: Ai
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA	VE SOUTH	H R1 M00	010 IMP 1,2	2&3 MDL 0.0102	Unit ug/Sample	L 	-ab Sample Prepared 01/21/19 04:09	E ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:12	3930-3 rix: Ai
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA	VE SOUTH	H R1 M00	010 IMP 1,; 	2&3 MDL 0.0102	Unit ug/Sample	L	-ab Sample Prepared 01/21/19 04:09	Analyzed 01/23/19 14:12	3930-3 rix: Ai Dil Fac
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate 13C3 HFPO-DA	VE SOUTH Result ND %Recovery 90	H R1 M00 Qualifier Qualifier	010 IMP 1,3 	2&3 MDL 0.0102	Unit ug/Sample	D	-ab Sample Prepared 01/21/19 04:09 Prepared 01/21/19 04:09	Analyzed 01/23/19 14:12 Analyzed 01/23/19 14:12	3930-3 rix: Air Dil Fac Dil Fac
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate 13C3 HFPO-DA Client Sample ID: R-1753 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUTH	I R1 M00 Qualifier Qualifier I R1 M00 BE	010 IMP 1,3 <u>RL</u> 0.200 - <u>Limits</u> 50 - 200 010	2&3 MDL 0.0102	Unit ug/Sample	L 	-ab Sample Prepared 01/21/19 04:09 Prepared 01/21/19 04:09 .ab Sample	Analyzed 01/23/19 14:12 Analyzed 01/23/19 14:12 E ID: 140-13 Mat	8930-3 rix: Ai Dil Fac 011 Fac 8930-4 rix: Aiu
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate 13C3 HFPO-DA Client Sample ID: R-1753 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - PFOA and PI	VE SOUTH	H R1 M00 Qualifier Qualifier H R1 M00 BE	010 IMP 1,3 <u>RL</u> 0.200 - <u>Limits</u> 50 - 200 010	2&3 MDL 0.0102	Unit ug/Sample	L	-ab Sample Prepared 01/21/19 04:09 Prepared 01/21/19 04:09 .ab Sample	Analyzed 01/23/19 14:12 Analyzed 01/23/19 14:12 EID: 140-13 Mat	8930-3 rix: Air Dil Fac 011 Fac 8930-4 rix: Air
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate 13C3 HFPO-DA Client Sample ID: R-1753 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - PFOA and Pl Analyte	VE SOUTH	I R1 M00 Qualifier Qualifier I R1 M00 BE	010 IMP 1,3 <u>RL</u> 0.200 <u>Limits</u> 50 - 200 010 RL	2&3 MDL 0.0102	Unit ug/Sample	L D L	-ab Sample Prepared 01/21/19 04:09 Prepared 01/21/19 04:09 .ab Sample Prepared	E ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:12 <u>Analyzed</u> 01/23/19 14:12 E ID: 140-13 Mat Analyzed	3930-3 rix: Air Dil Fac 3930-4 rix: Air Dil Fac
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate 13C3 HFPO-DA Client Sample ID: R-1753 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - PFOA and Pl Analyte HFPO-DA	VE SOUTH Result ND %Recovery 90 VE SOUTH RESIN TU FOS Result 0.0818	I R1 M00 Qualifier Qualifier I R1 M00 BE	010 IMP 1,3 <u>RL</u> 0.200 <u>Limits</u> 50 - 200 010 RL 0.200	2&3 MDL 0.0102	Unit ug/Sample	L 	-ab Sample Prepared 01/21/19 04:09 Prepared 01/21/19 04:09 .ab Sample Prepared 01/16/19 06:45	Analyzed 01/23/19 14:12 Analyzed 01/23/19 14:12 DI: 140-13 Mat Analyzed 01/23/19 13:40	8930-3 rix: Air Dil Fac 930-4 rix: Air Dil Fac
Client Sample ID: R-1751 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate 13C3 HFPO-DA Client Sample ID: R-1753 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - PFOA and Pl Analyte HFPO-DA Surrogate	VE SOUTH	H R1 M00 Qualifier Qualifier H R1 M00 BE Qualifier J Qualifier	010 IMP 1,3 <u>RL</u> 0.200 <u>Limits</u> 50 - 200 010 010 <u>RL</u> 0.200 <u>Limits</u>	2&3 MDL 0.0102	Unit ug/Sample	L 	-ab Sample Prepared 01/21/19 04:09 Prepared 01/21/19 04:09 .ab Sample Prepared 01/16/19 06:45 Prepared	Analyzed 01/23/19 14:12 Analyzed 01/23/19 14:12 DI: 140-13 Mat Analyzed 01/23/19 13:40 Analyzed	3930-3 rix: Air Dil Fac 1 3930-4 rix: Air Dil Fac 1 Dil Fac

Client Sample Results

Client: Chemours Company FC, Project/Site: VE South Stack - M	LLC The 0010		-				TestAmerica	Job ID: 140-1	13930-1
Client Sample ID: R-1754, Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	1755 VE S	SOUTH R	2 M0010	FH		L	.ab Sample	e ID: 140-13 Mat	8930-5 trix: Air
Method: 8321A - PFOA and P Analyte	FOS Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	155		2.51	0.271	ug/Sample		01/16/19 06:43	01/23/19 13:10	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	109	D	50 - 200				01/16/19 06:43	01/23/19 13:10	20
Client Sample ID: R-1756, Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	1757,1759	VE SOL	ITH R2 MO	010 Bł	1	L	.ab Sample	e ID: 140-13 Mat	8930-6 rix: Air
Method: 8321A - PFOA and Pl	FOS	A 117				_			
Analyte HEPO-DA	Result	Qualifier	RL	0.160		- <u>D</u>	Prepared	Analyzed	Dil Fac
	55.5		0.000	0.100	ugroampie		01/10/19 00.43	01/23/19 13:43	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	78	D	50 - 200				01/16/19 06:45	01/23/19 13:43	4
L									
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUTI	H R2 M00	010 IMP 1	,2&3		L	.ab Sample	e ID: 140-13 Mat	930-7 rix: Air
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA	VE SOUTI	H R2 M0(010 IMP 1	,2&3	Unit	L	ab Sample	e ID: 140-13 Mat	930-7 rix: Air
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA	VE SOUTI Result 0.173	H R2 M0(Qualifier	010 IMP 1	,2&3 MDL 0.00938	Unit ug/Sample	L 	ab Sample. <u>Prepared</u> 01/21/19 04:09	e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:16	930-7 rix: Air Dil Fac
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA	VE SOUTI Result 0.173	H R2 M0(Qualifier J	010 IMP 1	,2&3 MDL 0.00938	Unit ug/Sample	L 	Prepared 01/21/19 04:09	e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:16	930-7 rix: Air Dil Fac
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate '13C3 HFPO-DA	VE SOUTI Result 0.173 %Recovery 96	H R2 M0(Qualifier J Qualifier	D10 IMP 1 <u> RL</u> 0.184 <u> Limits </u> 50-200	,2&3 MDL 0.00938	Unit ug/Sample	L _ D	ab Sample. Prepared 01/21/19 04:09 Prepared 01/21/19 04:09	e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:16 <u>Analyzed</u> 01/23/19 14:16	930-7 rix: Air Dil Fac 1 <i>Dil Fac</i> 1
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate •13C3 HFPO-DA Client Sample ID: R-1760 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUTI	H R2 M00 <u>Qualifier</u> J Qualifier H R2 M00 BE	010 IMP 1 <u>RL</u> 0.184 <u>Limits</u> 50 - 200 010	,2&3 MDL 0.00938	Unit ug/Sample	L 	ab Sample. <u>Prepared</u> 01/21/19 04:09 <u>Prepared</u> 01/21/19 04:09 .ab Sample	e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:16 <u>Analyzed</u> 01/23/19 14:16 e ID: 140-13 Mat	930-7 rix: Air <u>Dil Fac</u> 1 930-8 rix: Air
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate •13C3 HFPO-DA Client Sample ID: R-1760 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - PFOA and Pl	VE SOUTI	H R2 M00 <u>Qualifier</u> J <u>Qualifier</u> H R2 M00 BE	010 IMP 1 <u>RL</u> 0.184 <u>Limits</u> 50 - 200 010	,2&3 MDL 0.00938	Unit ug/Sample	L 	ab Sample <u>Prepared</u> 01/21/19 04:09 <u>Prepared</u> 01/21/19 04:09 .ab Sample	e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:16 <u>Analyzed</u> 01/23/19 14:16 e ID: 140-13 Mat	930-7 rix: Air <u>Dil Fac</u> 1 930-8 rix: Air
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate • 13C3 HFPO-DA Client Sample ID: R-1760 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - PFOA and Pf Analyte HEPO-DA	VE SOUTI Result 0.173 %Recovery 96 VE SOUTI RESIN TU FOS Result	H R2 M00 <u>Qualifier</u> <u>Qualifier</u> H R2 M00 BE	010 IMP 1 <u>RL</u> 0.184 <u>Limits</u> 50-200 010 RL 0.200	,2&3 MDL 0.00938 MDL	Unit ug/Sample	L 	Prepared 01/21/19 04:09 Prepared 01/21/19 04:09 Ab Sample 01/21/19 04:09 Ab Sample 01/21/19 04:09	e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:16 <u>Analyzed</u> 01/23/19 14:16 e ID: 140-13 Mat	930-7 rix: Air <u>Dil Fac</u> 1 930-8 rix: Air <u>Dil Fac</u>
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA <i>surrogate</i> •13C3 HFPO-DA Client Sample ID: R-1760 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - PFOA and PI Analyte HFPO-DA	VE SOUTI Result 0.173 %Recovery 96 VE SOUTH RESIN TU FOS Result ND	H R2 M00 Qualifier J Qualifier H R2 M00 BE	010 IMP 1 <u>RL</u> 0.184 <u>Limits</u> 50 - 200 010 <u>RL</u> 0.200 	,2&3 MDL 0.00938 MDL 0.0400	Unit ug/Sample	L 	Ab Sample Prepared 01/21/19 04:09 Prepared 01/21/19 04:09 .ab Sample Prepared 01/16/19 06:45	e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:16 <u>Analyzed</u> 01/23/19 14:16 e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 13:46	930-7 rix: Air <u>Dil Fac</u> 1 <u>930-8</u> rix: Air <u>Dil Fac</u> 1
Client Sample ID: R-1758 CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte HFPO-DA Surrogate •13C3 HFPO-DA Client Sample ID: R-1760 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train Method: 8321A - PFOA and Pl Analyte HFPO-DA Surrogate	VE SOUTI Result 0.173 %Recovery 96 VE SOUTI RESIN TU FOS Result ND %Recovery	H R2 M00 Qualifier J Qualifier H R2 M00 BE Qualifier Qualifier	010 IMP 1 <u>RL</u> 0.184 <u>Limits</u> 50 - 200 010 <u>RL</u> 0.200 <u>Limits</u>	,2&3 MDL 0.00938 MDL 0.0400	Unit ug/Sample	L 	ab Sample <u>Prepared</u> 01/21/19 04:09 <u>Prepared</u> 01/21/19 04:09 .ab Sample <u>Prepared</u> 01/16/19 06:45 <u>Prepared</u>	e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 14:16 <u>Analyzed</u> 01/23/19 14:16 e ID: 140-13 Mat <u>Analyzed</u> 01/23/19 13:46 <u>Analyzed</u>	930-7 rix: Air <u>Dil Fac</u> 1 930-8 rix: Air <u>Dil Fac</u> 1 <u>Dil Fac</u>

		Client	t Sample	Resu	ts				
Client: Chemours Company FC, Project/Site: VE South Stack - M	LLC The 0010		-				TestAmerica	a Job ID: 140-	13930-1
Client Sample ID: R-1761, Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	1762 VE S	SOUTH F	3 M0010 I	=H			_ab Sampl	e ID: 140-1 Ma	3930-9 trix: Aiı
Method: 8321A - PFOA and P Analyte	FOS Result	Qualifier	RI	МП	Unit	п	Prepared	Analyzod	Dil Ess
HFPO-DA	163		1.52	0.164	ug/Sample		01/16/19 06:43	01/23/19 13:13	20
Surragata	6/ Decentration	0	1						
13C3 HFPO-DA	103	D	50 - 200				Prepared 01/16/19 06:43	Analyzed 01/23/19 13:13	Dil Fac
Client Sample ID: R-1763, Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	1764,1766	S VE SOL	JTH R3 MC	0010 BH	1	La	ab Sample	ID: 140-139 Ma	930-10 trix: Aiı
Method: 8321A - PFOA and P	FOS								
Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fac
	20.0		0.225	0.0450	ug/sample		01/10/19 00:45	01/23/19 13:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Client Sample ID: P 1765				101				1D. 440.400	,
CONDENSATE Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE 300 M		010 IWIP 1,	203		Lē	ab Sample	ID: 140-13	trix: Air
Method: 8321A - HFPO-DA							99 99 996 10 Kanda -		
	Result	Qualifier		MDL	Unit	_ D	Prepared	Analyzed	Dil Fac
HFFO-DA	ND		0.194	0.00989	ug/Sample		01/21/19 04:09	01/23/19 14:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	91		50 - 200				01/21/19 04:09	01/23/19 14:19	1
Client Sample ID: R-1767 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUTI RESIN TU	H R3 M00 IBE	010			La	ib Sample	ID: 140-139 Mat	}30-12 trix: Air
Method: 8321A - PFOA and Pl	FOS	O117							
HFPO-DA	Result	Qualifier		MDL	Unit	_ <u>D</u>	Prepared	Analyzed	Dil Fac
			0.200	0.0400	uy/Jampie		01/10/19 00:45	01/23/19 13:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1303 HFPU-DA	82		50 - 200				01/16/19 06:45	01/23/19 13:53	

		Clien	t Sample	Resu	lts				
Client: Chemours Company FC, Project/Site: VE South QC Samp	LLC The bles - M0010		•				TestAmerica	a Job ID: 140-	13931-1
Client Sample ID: A-5596, Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	5597 VE \$	SOUTH	QC M0010	FH BT			Lab Sampl	e ID: 140-1: Ma	3931-1 trix: Aiı
Method: 8321A - PFOA and P	FOS	Qualifian			11-24	_	. .		
HFPO-DA	0.321	Quaimer	0.0260	0.00281	ug/Sample		01/16/19 06:43	Analyzed 01/23/19 13:17	Dil Fac
A					-5				
Surrogate 13C3 HEPO-DA	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	33		50-200				01/10/19 00:43	01/23/19 13:17	7
Client Sample ID: A-5598, BT	5599,5601	VE SO	JTH QC M	0010 BI	-1	I	_ab Sample	e ID: 140-13	3931-2
Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train								Mat	rix: Air:
Method: 8321A - PFOA and P	FOS	Qualifian			1 1 *e	-			
HFPO-DA	0.415	Quaimer	0.200	0.0400	unit uo/Sample		01/15/19 04:25	Analyzed	Dil Fac
					-3 þ. •		0111011001120	01120/10 11:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1303 NFF 0-DA	80		50 - 200				01/15/19 04:25	01/23/19 11:46	1
Client Sample ID: A-5600 CONDENSATE BT Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUT	H QC MO	0010 IMP 1	,2&3		L	₋ab Sample	e ID: 140-13 Mat	931-3 rix: Air
Method: 8321A - HFPO-DA						_			
HFPO-DA	0 000574	Qualifier	0.00250	0.000128		- <u>D</u>	Prepared	Analyzed	Dil Fac
		•	0100200	0.000120	agroumpic		01121/10/04.00	01/20/13 14.20	'
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	117		50 - 200				01/21/19 04:09	01/23/19 14:25	1
Client Sample ID: A-5602 BREAKTHROUGH XAD-2 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUTI RESIN TU	H QC MO IBE BT	010			L	₋ab Sample	e ID: 140-13 Mat	931-4 rix: Air
Method: 8321A - PFOA and Pl	=OS	_ ····							
HFPO-DA	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
			0.200	0.0400	ug/Sample		01/10/19 04:25	01/23/19 11:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
IJUJ HEPU-DA	87		50 - 200				01/15/19 04:25	01/23/19 11:49	1

		Clien	t Sample	Resu	lts				
Client: Chemours Company FC, Project/Site: VE South QC Samp	LLC The ples - M0010		-				TestAmerica	a Job ID: 140-	13931-1
Client Sample ID: A-5603 Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUT	H QC M	0010 DI W	ATER R	B	I	Lab Sampl	e ID: 140-1 Ma	3931-5 trix: Air
Method: 8321A - HFPO-DA Analyte	Result	Qualifier	RL	MDL	Unit	п	Pronared	Analyzod	Dil Eso
HFPO-DA	ND		0.00250	0.000128	ug/Sample		01/21/19 04:09	01/23/19 14:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac
13C3 HFPO-DA	130		50 - 200				01/21/19 04:09	01/23/19 14:29	1
Client Sample ID: A-5604 5% NH4OH RB Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUT	H QC M(0010 MEOI	H WITH		L	_ab Sample	e ID: 140-1; Ma	3931-6 trix: Air
Method: 8321A - PFOA and P	FOS	Qualifian	5.			_	_		
HFPO-DA	ND	Qualifier	0.0250	0.00500	Unit ug/Sample		Prepared 01/15/19 04:25	Analyzed 01/23/19 11:52	Dil Fac
Surrogate	% Pocovory	Qualifiar	Limita				- ·		
13C3 HFPO-DA	108	Quanner	50 - 200				01/15/19 04:25	Analyzed 01/23/19 11:52	Dil Fac
Client Sample ID: A-5605 TUBE RB Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30 Sample Container: Air Train	VE SOUTI	H QC MO	0010 XAD-;	2 RESIN	J	L	.ab Sample	e ID: 140-13 Mat	8931-7 rix: Air
Method: 8321A - PFOA and P	FOS								
	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
TIFFO-DA	ND		0.200	0.0400	ug/Sample		01/15/19 04:25	01/23/19 11:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	92		50 - 200				01/15/19 04:25	01/23/19 11:55	1
Client Sample ID: A-5606 5% NH4OH TB Date Collected: 01/09/19 00:00 Date Received: 01/13/19 07:30	VE SOUTI	I QC MO	010 MEOH	I WITH		L	ab Sample.	e ID: 140-13 Mat	931-8 rix: Air
Sample Container. Air Irain		a e de la companya d		n an			20.00000000000000000000000000000000000	197 - Yalio de las comos el manos e como en en entre estatemente entre entre alternativos en entre alternativo	
Method: 8321A - PFOA and PI Analyte	FOS	Qualifier	DI	MO	linit	~	Duese	A	B -
HFPO-DA	ND		0.0250	0.00500	ug/Sample		01/15/19 04:25	Analyzed 01/23/19 11:59	Dil Fac
Surrogate	%Recovery	Qualifier	Limito		- •		Deen	A	
13C3 HFPO-DA	111		50 - 200				01/15/19 04:25	Analyzed 01/23/19 11:59	<i>DII Fac</i>
-									

		Client	Sample	Resul	ts				
Client: Chemours Company Project/Site: VE South QC \$	FC, LLC The Samples - M0010		-				TestAmerica	a Job ID: 140-	13931-1
Client Sample ID: A-5 TUBE TB	607 VE SOUTI	H QC MO	010 XAD-2	RESIN	l	L	ab Sample	e ID: 140-1	3931-9
Date Collected: 01/09/19 0 Date Received: 01/13/19 0 Sample Container: Air Tra	0:00 7:30 ain							Ма	trix: Air
Method: 8321A - PFOA a	nd PFOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.200	0.0400	ug/Sample		01/15/19 04:25	01/23/19 12:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	88		50 - 200				01/15/19 04:25	01/23/19 12:02	1
Client Sample ID: A-5 GLASSWARE RINSES	608 VE SOUTH 6 (MEOH/5% N	1 QC M0 H4OH) F	010 COME 'B	INED		La	ıb Sample	ID: 140-139	931-10
Date Collected: 01/09/19 0 Date Received: 01/13/19 0 Sample Container: Air Tra	0:00 7:30 ain							Mat	trix: Air
Method: 8321A - PFOA an Analyte	nd PFOS Result	Qualifier	PI	MDI	linit	n	Proposed	Anabarad	
							Fiepared	Analyzed	DilFac

	0.00035 0	0.0200	0.00000 ug/sample	01/15/19 04:25	01/23/19 12:05	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	103	50 - 200		01/15/19 04:25	01/23/19 12:05	1

APPENDIX D SAMPLE CALCULATIONS

SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010)

<u>Client: Chemours</u> <u>Test Number: Run 3</u> <u>Test Location: VE South Stack</u>

<u>Plant: Fayetteville, NC</u> <u>Test Date: 01/09/19</u> <u>Test Period: 1408-1558</u> •

1. HFPO Dimer Acid concentration, lbs/dscf.

C+1		W x 2.2046 x 10 ⁻⁹
Conci	-	 Vm(std)
Concl	=	189.6 x 2.2046 x 10-9
conci		64.430
Concl	=	6.49E-09
Where:		
w	=	Weight of HFPO Dimer Acid collected in sample in ug.
Concl	=	Division Stack HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10 ⁻⁹	=	Conversion factor from ug to lbs.
2. HFPO Di	me	r Acid concentration, ug/dscm.
Conc2	-	W / (Vm(std) x 0.02832)
Conc2	=	189.6 / (64.430 x 0.02832)
Conc2	-	103.90
Where:		
Conc2	-	Division Stack HFPO Dimer Acid concentration, ug/dscm.
0.02832	-	Conversion factor from cubic feet to cubic meters.
3. HFPO Di	mei	r Acid mass emission rate, lbs/hr.
MR1(Outlet)	=	Concl x Qs(std) x 60 min/hr
MRI (Outlet)	=	6.49E-09 x 13134 x 60
MR1(Outlet)	=	5.11E-03
Where:		
MR1 _(Outlet)	=	Division Stack HFPO Dimer Acid mass emission rate, lbs/hr.
4. HFPO Di	mer	· Acid mass emission rate, g/sec.
MR2 _(Outlet)	~	PMR1 x 453.59 / 3600
MR2(Outlet)	=	5.11E-03 x 453.59 /3600
MR2 _(Outlet)	=	6.44E-04
Where:		
MR2(Outlet)	=	Division Stack HFPO Dimer Acid mass emission rate, g/sec.
453.6	=	Conversion factor from pounds to grams.
3600		Conversion factor from hours to seconds.

EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS

Client: Chemours Test Number: Run 3 Test Location: VE South Stack

13.6 =

Facility: Fayetteville, NC Test Date: 1/09/19 Test Period: 1408-1558

1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.

Vm(std) =	delta H 17.64 x Y x Vm x (Pb +
	1.410
Vers(and) -	17.04 x 0.3913 x 03.392 x (29.94 +
Vm(std) =	================================
Where:	
Vm(std) =	Volume of gas sample measured by the dry gas meter, corrected to standard conditions. dscf.
Vm =	Volume of gas sample measured by the dry gas meter
Ph =	at meter conditions, dcf.
delt H =	Average pressure drop across the orifice meter in H O
Tm =	Average dry gas meter temperature deg F
Y =	Dry gas meter calibration factor.
17.64 =	Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

Specific gravity of mercury.

Vw(std) =	(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std) =	(0.04707 x 10.0) + (0.04715 x 20.8) = 1.45
Where:	
Vw(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vwc =	Volume of liquid condensed in impingers, ml.
Wwsg =	Weight of water vapor collected in silica gel, g.
0.04707 =	Factor which includes the density of water
	(0.002201 lb/ml), the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in, Hg), ft ³ /ml.
0.04715 =	Factor which includes the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in, Hg), and
	$453.6 \text{ g/lb} \text{ ft}^{3/g}$
	453.6 g/lb, ft ³ /g.

.

3. Moisture content

h	Vw(std)
bws –	Vw(std) + Vm(std)
bws =	1.45 = 0.022 1.45 + 64.430
Where:	

bws = Proportion of water vapor, by volume, in the gas stream, dimensionless.

4. Mole fraction of dry gas.

Md =	1 - bws
Md =	1 - 0.022 = 0.978
Where:	
Md =	Mole fraction of dry gas, dimensionless.

5. Dry molecular weight of gas stream, lb/lb-mole.

MWd =	$(0.440 \times \% \text{ CO}_2) + (0.320 \times \% \text{ O}_2) + (0.280 \times (\% \text{ N}_2 + \% \text{ CO}))$
MWd =	(0.440 x 0.0) + (0.320 x 20.9) + (0.280 x (79.1 + 0.00))
MWd =	28.84
Where:	
MWd =	Dry molecular weight, lb/lb-mole.
% CO2 =	Percent carbon dioxide by volume, dry basis.
% O ₂ =	Percent oxygen by volume, dry basis.
% N ₂ =	Percent nitrogen by volume, dry basis.
% CO =	Percent carbon monoxide by volume, dry basis.
0.440 =	Molecular weight of carbon dioxide, divided by 100.
0.320 =	Molecular weight of oxygen, divided by 100.
0.280 =	Molecular weight of nitrogen or carbon monoxide,
	divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

MWs =	(MWd x Md) + (18 x (1 - Md))
MWs =	(28.84 x 0.978) +(18 (1 - 0.978)) = 28.60
Where:	
MWs = 18 =	Molecular weight of wet gas, lb/lb-mole. Molecular weight of water, lb/lb-mole.

7. Average velocity of gas stream at actual conditions, ft/sec.

	Ts (avg)
$V_S =$	85.49 x Cp x ((delt p) ^{1/2})avg x () ^{1/2}
	Ps x MWs
	539
Vs =	85.49 x 0.84 x 0.41666 x ()^1/2 = 23.7
	29.98 x 28.60
Where:	
Vs =	Average gas stream velocity, ft/sec.
	$(lb/lb-mole)(in, Hg)^{1/2}$
85.49 =	Pitot tube constant, ft/sec x
	(deg R)(in H ₂ O)
Cp =	Pitot tube coefficient, dimensionless.
Ts =	Absolute gas stream temperature, deg $R = Ts$, deg $F + 460$.
	P(static)
Ps =	Absolute gas stack pressure, in. Hg. = Pb +
	13.6
delt p =	Velocity head of stack, in. H ₂ O.

8. Average gas stream volumetric flow rate at actual conditions, wacf/min.

Qs(act) =	60 x Vs x As
Qs(act) =	60 x 23.7 x 9.62 = 13699
Where:	
Qs(act) =	Volumetric flow rate of wet stack gas at actual conditions, wacf/min.
As =	Cross-sectional area of stack, ft ² .
60 =	Conversion factor from seconds to minutes.

9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.

Qs(std) =	Ps 17.64 x Md x x Qs(act) Ts
Qs(std) =	29.98 17.64 x 0.978 x x 13699 539.4
Qs(std) =	13134
Where:	
Qs(std) =	Volumetric flow rate of dry stack gas at standard conditions, dscf/min.

10. Isokinetic variation calculated from intermediate values, percent.

I –	17.327 x Ts x Vm(std)
1	$Vs \ge O \ge Ps \ge Md \ge (Dn)^2$
I –	17.327 x 539 x 64.430
, 1 –	23.7 x 96 x 29.98 x 0.978 x (0.300)^2
Where:	
I =	Percent of isokinetic sampling.
0 =	Total sampling time, minutes.
Dn =	Diameter of nozzle, inches.
17.327 =	Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for
	calculating area of circle D ^{2/4} , conversion of square
	feet to square inches (144), conversion of seconds
	to minutes (60), and conversion to percent (100),
	<u>(in. Hg)(in²)(min)</u>
	(deg R)(ft ²)(sec)

.

APPENDIX E EQUIPMENT CALIBRATION RECORDS

Date Calibration Initials Measured Maintenance and Weight Weight⁽¹⁾ Adjustments 500.0 499,8 500.0 499.9 500.0 500,1 <00.0 500.1 500 500 4996 NA-sa $\mathcal{T}\mathcal{D}\mathcal{D}$ 500 NA-SOC 500 Mo -52 199,6 mo 500 NH-SOC 500 NA. Chen Chi 499.8 7B499% 500 NH Checis 100 500 499,8 Chenf NA Jn 3 499.7 500 NA remous 500 499.7 VA Chemours. 4 499.7 NA nemours 500 499,6 NA 500 han 100 Mangar WA 499.8 500.0

within ± 0.5 grams of calibration weight

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console

Calibrator	PM
------------	----

Meter Box Number 21 Ambient Temp

Date 12-Feb-18

P-2952

71 Thermocouple Simulator

Wet Test Meter Number

Temp Reference Source

(Accuracy +/- 1°F)

Dry Gas Meter Number 17485140

Setting	Gas	Volume		Tempe	ratures			Baro Press, in Ha (Pb)	29.64
Orifice Manometer	Wet Test Meter	Dry gas Meter	Wet Test Meter		Dry Gas Mete	r		Calibration	Results
in H₂0 (∆H)	ft ³ (Vw)	ft ³ (Vd)	°F (Tw)	Outlet, °F (Td _o)	Inlet, °F (Td _i)	Average, °F (Td)	Time, min (O)	Y	ΔΗ
0.5	5.0	570.015 575.035 5.020	70.0	69.00 71.00 70.00	69.00 71.00 70.00	70.0	13.00	0.9948	1.9159
1.0	5.0	575.035 580.082 5.047	70.0	71.00 72.00 71.50	71.00 72.00 71.50	71.5	9.3	0.9910	1.9555
1.5	10.0	580.082 590.205 10.123	70.0	72.00 74.00 73.00	72.00 74.00 73.00	73.0	15.6	0.9898	2.0575
2.0	10.0	590.205 600.296 10.091	70.0	74.00 75.00 74.50	74.00 75.00 74.50	74.5	13.6	0.9945	2.0792
3.0	10.0	600.296 610.454 10.158	70.0	75.00 76.00 75.50	75.00 76.00 75.50	75.5	11.0	0.9873	2.0365
Vw - Gas Volum	e passing thro	ough the wet test m	neter	0 - Time of calibra	tion run		Average	0.9915	2.0089

Vd - Gas Volume passing through the dry gas meter

Tw - Temp of gas in the wet test meter

Tdi - Temp of the inlet gas of the dry gas meter

Tdo - Temp of the outlet gas of the dry gas meter

Td - Average temp of the gas in the dry gas meter

Pb - Barometric Pressure ΔH - Pressure differential across

orifice Y - Ratio of accuracy of wet test

meter to dry gas meter

 $Y = \frac{Vw * Pb * (td + 460)}{Vd * \left[Pb + \frac{(\Delta H)}{13.6}\right] * (tw + 460)}$ $\Delta H = \left[\frac{0.0317 * \Delta H}{Pb * (td + 460)}\right] * \left[\frac{(tw + 460) * O}{Vw}\right]^2$

Reference Temperature Select Temperature		Temperature Reading from Individual Thermocouple Input ¹ Channel Number					Average Temperature	Temp Difference ²
	1	2	3	4	5	6	- Reading	(%)
32	32	32	32	32	32		32.0	0.0%
212	212	212	212	212	212		02.0	0.0%
932	932	032	022	000	212		212.0	0.0%
1020	1002	952	932	932	932		932.0	0.0%
1632	1830	1830	1830	1830	1830		1830.0	0.1%
 Channel Temps must agree w 	/ith +/- 5°F or 3°C		Г/	- (-)		())-	1000.0	0.170

2 - Acceptable Temperature Difference less than 1.5 %

Temp Diff = $\frac{(\text{Reference Temp(°F)} + 460) - (\text{Test Temp(°F)} + 460)}{\text{Reference Temp(°F)} + 460}$

Post Test Calibration

Calibrator	PM	-	Met	er Box Number	21	_	Client	Chemo	urs
Date	1/28/19	-	Wet Test	Meter Number	P-2952	_	Location/Plant	Fayettevill	e, NC
			Dry Gas	Meter Number	17485140	_	PreTest Y	0.991	5
Setting	Gas	Volume		Temper	atures			Baro Press, in Hq (Pb)	29.88
Orifice Manometer	Wet Test Meter	Dry gas Meter	Wet Test Meter		Dry Gas Meter		Ľ		
in H ₂ 0	ft ³	ft ³	°F	Outlet, °F	Inlet, °F	Average, °F	Time, min	v	
(∆H)	(Vw)	(Vd)	(Tw)	(Td _o)	(Td _i)	(Td)	(0)	'	
1.40	10.0	559.252 569.210 9.958	71.5	72.00	73.00	72.5	16.1	1.0027	
1.40	10.0	569.210 579.221 10.011	71.5	73.00	75.00	74.0	16.2	1.0002	
1.40	10.0	579.221 589.194 9.973	71.5	75.00	76.00	75.5	16.0	1.0068	
1 - Tolerance fo	r Y is less tha	n 0.0500					Average	1.0032	

1 - Tolerance for Y is less than 0.0500

Vw - Gas Volume passing through the wet test meter

Vd - Gas Volume passing through the dry gas meter

Tw - Temp of gas in the wet test meter

Tdi - Temp of the inlet gas of the dry gas meter

Tdo - Temp of the outlet gas of the dry gas meter

Td - Average temp of the gas in the dry gas meter

0 - Time of calibration run

Pb - Barometric Pressure

∆H - Pressure differential across orifice

Y - Ratio of accuracy of wet test

meter to dry gas meter

 $Y = \frac{Vw * Pb * (td + 460)}{Vd * \left[Pb + \frac{(\Delta H)}{13.6}\right] * (tw + 460)}$

0.0117

Difference¹

No Long Calibration Required

Y Factor Calibration Check Calculation **MODIFIED METHOD 0010 TEST TRAIN** VE SOUTH STACK **METER BOX NO. 21** 01/09/2019

	Run 1	Run 2	Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.			
0.32 = Molecular weight of oxygen, divided by 100.			
0.44 = Molecular weight of carbon dioxide, divided by 100.			
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.			
% CO ₂ = Percent carbon dioxide by volume, dry basis.	0.0	0.0	0.0
$% O_2 =$ Percent oxygen by volume, dry basis.	20.9	20.9	20.9

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 20.9) + (0.44 * 0) + (0.28 * (100 - (0 + 20.9)))

MWd = (6.69) + (0.00) + (22.15)

MWd ≈	28.84	28.84	28.84
Tma = Source Temperature, absolute(°R)			
Tm = Average dry gas meter temperature, deg F.	50.3	55.9	57.0

Tma = Ts + 460

Tma = 50.29 + 460

Tma =

510.29 515.88 517.00 Ps = Absolute meter pressure, inches Hg.

13.60 = Specific gravity of mercury.			
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	1.31	1.51	1.41
Pb = Barometric Pressure, in Hg.	29.94	29.94	29.94

Pm = Pb + (delta H / 13.6)

Pm = 29.94 + (1.305083333333333 / 13.6)

Pm ≈

Yqa = dry gas meter calibration check value, dimensionless.			
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.			
29.00 = dry molecular weight of air, lb/lb-mole.			
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	62.591	65.028	63 392
Y = Dry gas meter calibration factor (based on full calibration)	0.9915	0.9915	0.9915
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.	2.0089	2.0089	2.0089
avg SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling, in. H_2O	1 1358	1 2228	1 1878
O = Total sampling time, minutes.	96	06	1.1620
		90	1 90

Yqa = (O / Vm) * SQRT (0.0319 * Tma * 29) / (Delta H@ * Pm * MWd) * avg SQRT Delta H

Yqa = (96.00 / 62.59) * SQRT (0.0319 * 510.29 * 29) / (2.01 * 30.04 * 28.84) * 1.14

Yqa = 1.534 * SQRT 472.071 / 1,740.176 * 1.14

Yqa =

0.9452 0.9390

30.05

30.04

30.04

0.9073

Diff = Absolute difference between Yoa and Y	8 40	1.67	5 20
	0.72	4.07	3.30

Diff = ((Y - Yqa) / Y) * 100

Diff = ((0.9915 - 0.907) / 0.9915) * 100

Average Diff = 6.15

Allowable = 5.0

Type S Pitot Tube Inspection Data Form

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI79E15A00E4 CC18055 124 - Riverton (SAP) - NJ B52018 CO2,O2,BALN

Reference Number: 82-401288926-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: 590 Certification Date:

150.5 CF 2015 PSIG Sep 04, 2018

Expiration Date: Sep 04, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted

		Dr	o Not Use This Cylinder below	100 psig, i.e. 0.7 megar	bascals.	
Compon	ent	Requested Concentration	ANALYTICA Actual Concentration	L RESULTS Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON I OXYGEN NITROGE	DIOXIDE .N	9.000 % 12.00 % Balance	8.864 % 12.00 %	G1 G1	+/- 0.7% NIST Traceable +/- 0.4% NIST Traceable -	09/04/2018 09/04/2018
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARD	S Uncertainty	Expiration Date
IN LEXIVE	13060629	CC413730	13.359 % CARBON D	IOXIDE/NITROGEN	+/- 0.6%	May 09, 2019
Instrume	nt/Make/Mod	lel	ANALYTICAL EQUIPMENT Analytical Principle		Last Multipoint Calib	ration
Horiba VIA 510-CO2-19GYCXEG Horiba MPA 510-O2-7TWMJ041			NDIR Paramagnetic		Aug 09, 2018 Aug 09, 2018	

Triad Data Available Upon Request

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI62E15A0224 SG9169108 124 - Riverton (SAP) - NJ B52017 CO2,O2,BALN

Reference Number: 82-401044874-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

157.2 CF 2015 PSIG 590 Nov 18, 2017

Expiration Date: Nov 18, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.							
Compone	ent	Requested Concentration	ANALYTICA Actual Concentration	L RESULTS Protocol Method	Total Relative Uncertainty	Assay Dates	
OXYGEN NITROGEN	N	17.00 % 21.00 % Balance	16.58 % 21.00 %	G1 G1	+/- 0.7% NIST Traceable +/- 0.5% NIST Traceable -	11/18/2017 11/18/2017	
Type NTRM NTRM	Lot ID 12061336 09061415	Cylinder No CC360792 CC273526	CALIBRATION Concentration 11.002 % CARBON E	STANDARDS	Uncertainty +/- 0.6%	Expiration Date Jan 11, 2018	
Instrument/Make/Model CC2/3526 22.53 % OXYGEN/NITROGEN +/- 0.4% M ANALYTICAL EQUIPMENT Analytical Principle Last Multipoint Calibration						Mar 08, 2019	
Horiba VIA Horiba MP/	510-CO2-19GY A 510-O2-7TWI	′CXEG MJ041	NDIR Paramagnetic		Oct 30, 2017 Oct 27, 2017	4001	

Triad Data Available Upon Request

Signature on file **Approved for Release**
INTERFERENCE CHECK

 Date:
 12/4/14-12/5/14

 Analyzer Type:
 Servomex - O2

 Model No:
 4900

 Serial No:
 49000-652921

 Calibration Span:
 21.09 %

 Pollutant:
 21.09%

INTERFERENT GAS	ANALYZER RESPONSE		
	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)
CO ₂ (30.17% CC199689)	0.00	-0.01	0.00
NO (445 ppm CC346681)	0.00	0.02	0.11
NO ₂ (23.78 ppm CC500749)	NA	NA	NA
N ₂ O (90.4 ppm CC352661)	0.00	0.05	0.24
CO (461.5 ppm XC006064B)	0.00	0.02	0.00
SO ₂ (451.2 ppm CC409079)	0.00	0.05	0.23
CH ₄ (453.1 ppm SG901795)	NA	NA	NA
H ₂ (552 ppm ALM048043)	0.00	0.09	0.44
HCl (45.1 ppm CC17830)	0.00	0.03	0.14
NH ₃ (9.69 ppm CC58181)	0.00	0.01	0.03
	1.20		
METHOD SPECIFICATION			< 2.5%

(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>Chad Walter</u>

٠

INTERFERENCE CHECK

<u>Date: 12/4/14-12/5/14</u> <u>Analyzer Type: Servomex - CO₂</u> <u>Model No: 4900</u> <u>Serial No: 49000-652921</u> <u>Calibration Span: 16.65%</u> <u>Pollutant: 16.65% CO₂ - CC418692</u>

	ANALYZEF		
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)
CO ₂ (30.17% CC199689)	NA	NA	NA
NO (445 ppm CC346681)	0.00	0.02	0.10
NO ₂ (23.78 ppm CC500749)	0.00	0.00	0.02
N ₂ O (90.4 ppm CC352661)	0.00	0.01	0.04
CO (461.5 ppm XC006064B)	0.00	0.01	0.00
SO ₂ (451.2 ppm CC409079)	0.00	0.11	0.64
CH ₄ (453.1 ppm SG901795)	0.00	0.07	0.44
H ₂ (552 ppm ALM048043)	0.00	0.04	0.22
HCl (45.1 ppm CC17830)	0.10	0.06	0.60
NH ₃ (9.69 ppm CC58181)	0.00	0.02	0.14
TOTAL INTERFERENCE RESPONSE			2.19
METHOD SPECIFICATION			< 2.5%

(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>ChoOValler</u>

APPENDIX F LIST OF PROJECT PARTICIPANTS

The following Weston employees participated in this project.

Paul Meeter	Senior Project Manager	
Steve Rathfon	Team Member	
Kyle Schweitzer	Team Member	
Chris Hartsky	Team Member	
John Mills	Team Member	