IXM MANUFACTURING PROCESSES POLYMERS STACK EMISSIONS TEST REPORT TEST DATES: 25-26 SEPTEMBER 2019

THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA

Prepared for:

THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306

Prepared by:

WESTON SOLUTIONS, INC. 1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380

October 2019

W.O. No. 15418.002.017

TABLE OF CONTENTS

Section

1.	INTR	ODUCTION1	
	1.1	FACILITY AND BACKGROUND INFORMATION1	
	1.2	TEST OBJECTIVES1	
	1.3	TEST PROGRAM OVERVIEW1	_
2.	SUMN	MARY OF TEST RESULTS4	ļ
3.	PROC	CESS DESCRIPTIONS5	;
	3.1	POLYMERS	j
	3.2	PROCESS OPERATIONS AND PARAMETERS	j
4.	DESC	CRIPTION OF TEST LOCATIONS	j
	4.1	POLYMERS STACK)
5.	SAMI	PLING AND ANALYTICAL METHODS8	;
	5.1	STACK GAS SAMPLING PROCEDURES8	;
		5.1.1 Pre-Test Determinations	;
	5.2	STACK PARAMETERS	;
		5.2.1 EPA Method 00108	;
		5.2.2 EPA Method 0010 Sample Recovery10)
		5.2.3 EPA Method 0010 – Sample Analysis	j
	5.3	EPA METHOD 3/3A (GAS STREAM COMPOSITION)14	ŀ
6.	DETA	AILED TEST RESULTS AND DISCUSSION15	;
APPE	NDIX .	A PROCESS OPERATIONS DATA	
APPE	NDIX 1	B RAW AND REDUCED TEST DATA	
APPE	NDIX	C LABORATORY ANALYTICAL REPORT	
APPE	NDIX I	D SAMPLE CALCULATIONS	

- APPENDIX E EQUIPMENT CALIBRATION RECORDS
- APPENDIX F LIST OF PROJECT PARTICIPANTS

LIST OF FIGURES

Title	Page
Figure 4-1 Polymers Stack Test Port and Traverse Point Locations	7
Figure 5-1 EPA Method 0010 Sampling Train	9
Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010	

LIST OF TABLES

Title	Page
Table 1-1 Sampling Plan for Polymers Stack	3
Table 2-1 Summary of HFPO Dimer Acid Test Results	4
Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Polymers Sta	ick 16

1. INTRODUCTION

1.1 FACILITY AND BACKGROUND INFORMATION

The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. The Chemours operating areas on the site include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse.

Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride, captured as HFPO Dimer Acid emission testing on the Polymers Stack. Testing was performed on 25-26 September 2019 and generally followed the "Emission Test Protocol" reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program.

1.2 TEST OBJECTIVES

The specific objectives for this test program were as follows:

- Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid Fluoride from the Polymers stack which is located in the IXM processes.
- Monitor and record process data in conjunction with the test program.
- Provide representative emissions data.

1.3 TEST PROGRAM OVERVIEW

During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid Fluoride were measured on the Polymers stack.

Table 1-1 provides a summary of the test location and the parameters that were measured along with the sampling/analytical procedures that were followed.

Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test locations. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6.

Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data packages are provided in electronic format.

Sampling Point & Location	Polymers Stack								
Number of Tests:	3								
Parameters To Be Tested:	HFPO Dimer Acid Fluoride (HFPO-DAF)	Volumetric Flow Rate and Gas Velocity	Carbon Dioxide	Oxygen	Water Content				
Sampling or Monitoring Method	EPA M-0010	EPA M1 and M2 in conjunction with M-0010 tests	EPA N	I3/3A	EPA M4 in conjunction with M-0010 tests				
Sample Extraction/ Analysis Method(s):	LC/MS/MS	NA ⁶	NA	A	NA				
Sample Size	> 1m ³	NA	NA	NA	NA				
Total Number of Samples Collected ¹	3	3	3	3	3				
Reagent Blanks (Solvents, Resins) ¹	1 set	0	0	0	0				
Field Blank Trains ¹	1 per source	0	0	0	0				
Proof Blanks ¹	1 per train	0	0	0	0				
Trip Blanks ^{1,2}	1 set	0	0	0					
Lab Blanks	1 per fraction ³	0	0	0	0				
Laboratory or Batch Control Spike Samples (LCS)	1 per fraction ³	0	0	0	0				
Laboratory or Batch Control Spike Sample Duplicate (LCSD)	1 per fraction ³	0	0	0	0				
Media Blanks	1 set ⁴	0	0	0	0				
Isotope Dilution Internal Standard Spikes	Each sample	0	0	0	0				

Table 1-1Sampling Plan for Polymers Stack

Total No. of Samples Key:

¹ Sample collected in field.

² Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.

³ Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).

 7^{5}

3

3

3

3

⁴ One set of media blank archived at laboratory at media preparation.

⁵ Actual number of samples collected in field.

⁶ Not applicable.

2. SUMMARY OF TEST RESULTS

A total of three test runs were performed on the Polymers Stack. Table 2-1 provides a summary of the HFPO Dimer Acid emission test results. Detailed test results summaries are provided in Section 6.

It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and in this report include a percentage of each of the three compounds.

Courses	Dun No	Emission Rates					
Source	Kull INO.	lb/hr	g/sec				
	1	1.49E-04	1.87E-05				
Dolymon Stool	2	1.50E-04	1.88E-05				
Polymers Stack	3	2.25E-04	2.84E-05				
	Average	1.74E-04	2.20E-05				

 Table 2-1

 Summary of HFPO Dimer Acid Test Results

3. PROCESS DESCRIPTIONS

The IXM area is included in the scope of this test program.

3.1 POLYMERS

The Polymers area consists of a polymerization process, finishing and recycle. There are two types of polymer produced, using products made in the Fluoromonomers and IXM Precursors areas: SR polymer and CR polymer. Both SR and CR polymerization processes take place in a solvent. The reaction is initiated and sustained by continuous addition of Dimer Peroxide initiator. There is a Recycle Still that takes solution and removes any impurities, allowing the solution to be used again. The finishing area takes the polymer produced during polymerization and transforms it into pellets.

3.2 PROCESS OPERATIONS AND PARAMETERS

Source	Operation/Product	Batch or Continuous
Polymers Stack	CR Polymer	Continuous – Polymerization Batch – Recycle Still Batch – Line Four extrusion

During the test program, operations parameters were monitored by Chemours and are included in Appendix A.

5

4. DESCRIPTION OF TEST LOCATIONS

4.1 POLYMERS STACK

The Polymers stack is a 30-inch ID fiberglass stack located near the roof edge. Vent lines enter the stack at various points and a significant straight run of vertical stack without flow disturbances is not available. Two sample ports are installed in the stack 30 inches down from the stack exit and 58 inches up from the last vent line entry point. Per EPA Method 1, 24 traverse points, 12 per port, were used for sampling.

See Figure 4-1 for a schematic of the test port and traverse point locations.

Note: All measurements at the test location were confirmed prior to sampling.

POLYMERS STACK TEST PORT AND TRAVERSE POINT LOCATIONS

5. SAMPLING AND ANALYTICAL METHODS

5.1 STACK GAS SAMPLING PROCEDURES

The purpose of this section is to describe the stack gas emissions sampling trains and to provide details of the stack sampling and analytical procedures utilized during the emissions test program.

5.1.1 Pre-Test Determinations

Preliminary test data were obtained at the test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements.

A check for the presence or absence of cyclonic flow was previously conducted at the test location. The cyclonic flow checks were negative ($< 20^{\circ}$) verifying that the source was acceptable for testing.

Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures.

Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures.

5.2 STACK PARAMETERS

5.2.1 EPA Method 0010

The sampling train utilized to perform the HFPO Dimer Acid sampling was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter.

IASDATA/CHEMOURS/15418.002.017/FIGURE 5-1 METHOD 0010

FIGURE 5-1 EPA METHOD 0010 SAMPLING TRAIN

A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 mL of high purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and the XAD-2 module to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train.

HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride undergoes hydrolysis instantaneously in water in the sampling train and during the sample recovery step and will be converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represents a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid.

During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at $100\% \pm 10$. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required), or during midpoint port changes.

5.2.2 EPA Method 0010 Sample Recovery

At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery.

A consistent procedure was employed for sample recovery:

- 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled.
- 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments.
- 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed.
- 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.
- 5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed.
- 6. The volume of liquid in the impingers one, two, and second condensate trap were measured, the values recorded, and sample was placed in the same container as Step 4 above, then sealed.
- 7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed.
- 8. The silica gel in the final impinger was weighed and the weight gain value recorded.
- 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool.

During each test campaign, an M-0010 blank train was setup near the test location, leak checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to Eurofins TestAmerica (TestAmerica) for sample extraction and analysis.

See Figure 5-2 for a schematic of the M-0010 sample recovery process.

IASDATA\CHEMOURS\15418.002.017\FIGURE 5-2 EPA 0010 HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010

5.2.3 EPA Method 0010 – Sample Analysis

Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:

- Front-Half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses,
- Back-Half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses,
- Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses,
- Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers.

The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough.

The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The Condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS.

Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries.

TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol.

5.3 EPA METHOD 3/3A (GAS STREAM COMPOSITION)

Stack gas stream composition (carbon dioxide and oxygen concentrations) was determined utilizing EPA Method 3/3A and also in combination with Method 0010 procedures discussed in the previous sections.

The fixed gases (carbon dioxide and oxygen) sampling train was utilized in accordance with the EPA Reference Method 3 specifications. The fixed gases were collected utilizing a diaphragm pump with a flow rotometer and Tedlar® sample bag.

The gas stream composition samples were collected from the exhaust of the control console calibrated orifice at a constant rate of ~ 0.5 liters per minute. This provided an integrated, conditioned (dry) sample. The gas passing through the control console orifice was conditioned by the impinger train. The sample was integrated with respect to time and location in the stack.

Analysis of the Tedlar[®] bag samples were performed using EPA Reference Method 3A analytical procedures. The conditioned Tedlar[®] bag samples were analyzed by calibrated analyzers such as a paramagnetic O2 analyzer and a non-dispersive infrared (NDIR) CO₂ analyzer. The O₂ and CO₂ analyzers were configured and calibrated in accordance with the gas analyzer requirements outlined in EPA Reference Method 3A. The dry molecular weight of the gas stream was calculated using the measured oxygen and carbon dioxide concentrations. The balance of the gas stream was assumed to be nitrogen. The dry molecular weight of the gas stream was used to calculate the stack gas volumetric flow rate.

6. DETAILED TEST RESULTS AND DISCUSSION

Each test was a minimum of 96 minutes in duration. A total of three test runs were performed on the Polymers Stack.

Table 6-1 provides detailed test data and test results for the Polymers Stack.

The Method 3/3A sampling indicated that the O₂ and CO₂ concentrations were at ambient air levels (20.9% O₂, 0% CO₂), therefore, 20.9% O₂ and 0% CO₂ values were used in all calculations.

TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS POLYMERS STACK

Test Data			
Run number	1	2	3
Location	Polymers Stack	Polymers Stack	Polymers Stack
Date	09/25/19	09/26/19	09/26/19
Time period	1300-1648	0833-1023	1100-1245
SAMPLING DATA:			
Sampling duration, min.	96.0	96.0	96.0
Nozzle diameter, in.	0.215	0.235	0.235
Cross sectional nozzle area, sq.ft.	0.000252	0.000301	0.000301
Barometric pressure, in. Hg	29.72	29.81	29.81
Avg. orifice press. diff., in H_2O	0.75	1.34	1.45
Avg. dry gas meter temp., deg F	92.3	76.6	80.8
Avg. abs. dry gas meter temp., deg. R	552	537	541
Total liquid collected by train, ml	18.2	30.4	33.3
Std. vol. of H ₂ O vapor coll., cu.ft.	0.9	1.4	1.57
Dry gas meter calibration factor	1.0069	1.0069	1.0069
Sample vol. at meter cond., dcf	45.585	57.848	60.409
Sample vol. at std. cond., dscf ⁽¹⁾	43.654	57.271	59.353
Percent of isokinetic sampling	97.8	95.1	95.4
GAS STREAM COMPOSITION DATA:			
CO_2 , % by volume, dry basis	0.0	0.0	0.0
O_2 , % by volume, dry basis	20.9	20.9	20.9
N_2 , % by volume, dry basis	79.1	79.1	79.1
Molecular wt. of dry gas, lb/lb mole	28.84	28.84	28.84
H_20 vapor in gas stream, prop. by vol.	0.019	0.024	0.026
Mole fraction of dry gas	0.981	0.976	0.974
Molecular wt. of wet gas, lb/lb mole	28.63	28.57	28.56
GAS STREAM VELOCITY AND VOLUMETRIC FLOW	DATA:		
Static pressure, in. H ₂ O	-0.05	-0.16	-0.20
Absolute pressure, in. Hg	29.72	29.80	29.80
Avg. temperature, deg. F	82	78	79
Avg. absolute temperature, deg.R	542	538	539
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	24	24	24
Avg. gas stream velocity, ft./sec.	32.4	36.4	37.7
Stack/duct cross sectional area, sq.ft.	4.91	4.91	4.91
Avg. gas stream volumetric flow, wacf/min.	9549	10729	11114
Avg. gas stream volumetric flow, dscf/min.	9055	10226	10565

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS POLYMERS STACK

TEST DATA			
Run number	1	2	3
Location	Polymers Stack	Polymers Stack	Polymers Stack
Date	09/25/19	09/26/19	09/26/19
Time period	1300-1648	0833-1023	1100-1245
LABORATORY REPORT DATA, ug.			
HFPO Dimer Acid	5.42	6.33	9.57
EMISSION RESULTS, ug/dscm.			
HFPO Dimer Acid	4.38	3.90	5.69
EMISSION RESULTS, lb/dscf.			
HFPO Dimer Acid	2.74E-10	2.44E-10	3.55E-10
EMISSION RESULTS, lb/hr.			
HFPO Dimer Acid	1.49E-04	1.50E-04	2.25E-04
EMISSION RESULTS, g/sec.			
HFPO Dimer Acid	1.87E-05	1.88E-05	2.84E-05

APPENDIX A PROCESS OPERATIONS DATA

Polymers Stack

4																					
Date	9/25/2019																				
Time		1400		15	00			16	600												
Stack Testing					RUN	l 1: 1500-1	1648														
Recycle Still																					
Polymerization				CR 10	50																
Line 4 Extrusion																					
Line 3 Extrusion																					
Data	9/26/2019																				
Date	512012015																	 			
Time	512012013	800		91	00			10	00			1	100			1:	200		1:	300	
Time Stack Testing	512012013	800		90 RUN 2 : 0	00 <mark>833-1023</mark>			10	00			1'	ioo RUI	N 3 - 1100	-1245	1:	200		1:	300	
Time Stack Testing Recycle Still		800		91 RUN 2 : 0	00 <mark>833-1023</mark>			10				1 	ioo RUI	<mark>N 3 - 1100</mark>	-1245	- 1: 	200		1	300	
Time Stack Testing Recycle Still Polymerization		800		91 RUN 2 : 0	00 833-1023			10	000	CR 10	50	1	ioo RUI	N 3 - 1100 	<mark>-1245</mark>	1:	200		1:	300	
Time Stack Testing Recycle Still Polymerization Line 4 Extrusion		800		91 RUN 2 : 0	00 <mark>833-1023</mark>			1(CR 10	50	1 	ioo RUI	N 3 - 1100 	-1245	 	200		1:	300	
Time Stack Testing Recycle Still Polymerization Line 4 Extrusion Line 3 Extrusion		800		91 RUN 2 : 0	00 833-1023			1(CR 10	50	1 	00 RUI	<mark>N 3 - 1100</mark>	-1245				1:		
Time Stack Testing Recycle Still Polymerization Line 4 Extrusion Line 3 Extrusion		800		90 RUN 2 : 0	00 833-1023			1(CR 10	50			<mark>N 3 - 1100</mark>	-1245						
Time Stack Testing Recycle Still Polymerization Line 4 Extrusion Line 3 Extrusion		800		90 RUN 2 : 0	00 833-1023					CR 10	50			N 3 - 1100	-1245						
Time Stack Testing Recycle Still Polymerization Line 4 Extrusion Line 3 Extrusion		800		91 RUN 2 : 0	00 833-1023					CR 10	50			N 3 - 1100	-1245						
Time Stack Testing Recycle Still Polymerization Line 4 Extrusion Line 3 Extrusion		800		91 RUN 2 : 0	00 833-1023					CR 105	50			N 3 - 1100	-1245 -1245						
Time Stack Testing Recycle Still Polymerization Line 4 Extrusion Line 3 Extrusion		800		90 RUN 2 : 0	00 833-1023					CR 10	50			N 3 - 1100	-1245 -1245						

APPENDIX B RAW AND REDUCED TEST DATA

Client Chemours Operator Sk Loaction/Plant Funct Kwille Date 3/2/1/8 Source Polymers W.O. Number Duct Type Circular Rectangular Duct Indicate appropriate type Traverse Type Particulate Traverse Velocity Traverse CEM Traverse Distance from far wall to outside of port (in.) = C 4/8 Upstream - A (ft) Z_5 Depth of Duct, diameter (in.) = C-D 3/0 Iownstream - B (ft) 4/83 Depth of Duct (ft ²) 4/91 Upstream - A (duct diameters) 1.0 Total Traverse Points 2/9 Diagram of Stack	
Loaction/Plant Guy the ville Date 3/2//18 Loaction/Plant Guy the ville Date 3/2//18 Source Poly nets W.O. Number Duct Type Circular Rectangular Duct Indicate appropriate type Traverse Type Particulate Traverse Velocity Traverse CEM Traverse Distance from far wall to outside of port (in.) = C 4/4 Upstream - A (ft) 2_5 Depth of Duct, diameter (in.) = C-D 1/2 Downstream - B (ft) 4/9 1.0 Total Traverse Points 24 Downstream - B (duct diameters) 1.0 Deate of Duct, file 1/2 Diagram of Stack	
Duct Type Circular Rectangular Duct Indicate appropriate type Traverse Type Particulate Traverse Velocity Traverse CEM Traverse Distance from far wall to outside of port (in.) = C 4/3 Port Depth (in.) = D 1/3 Depth of Duct, diameter (in.) = C-D 5/0 Area of Duct (ft ²) 4/.91 Total Traverse Points 2/4 Dent Traverse Points per Port 1/2 Distance from far wall to outside of port (in.) = C 4/9 Port Depth (in.) = D 1/3 Depth of Duct, diameter (in.) = C-D 5/0 Area of Duct (ft ²) 4/.91 Total Traverse Points per Port 1/2 Det Diversite (in.) = (Flexen Threaded Unic) 1/2 Diagram of Stack Diagram of Stack	
Duct Type Circular Rectangular Duct Indicate appropriate type Traverse Type Particulate Traverse Velocity Traverse CEM Traverse Distance from far wall to outside of port (in.) = C 443 Port Depth (in.) = D 143 Depth of Duct, diameter (in.) = C-D 300 Area of Duct (ft ²) 4.91 Total Traverse Points 24 Total Traverse Points per Port 172 Dert Out fine to (in.) = C 172 Distance from far wall to outside of port (in.) = C 4.91 Depth of Duct, diameter (in.) = C-D 300 Area of Duct (ft ²) 4.91 Downstream - B (ft) 4.83 Upstream - A (duct diameters) 1.0 Downstream - B (duct diameters) 1.9 Diagram of Stack 0	
Duct Type Circular Rectangular Duct Incluse apopular byte Traverse Type Particulate Traverse Velocity Traverse CEM Traverse Distance from far wall to outside of port (in.) = C 44 Incluse apopular byte Incluse apopular byte Distance from far wall to outside of port (in.) = C 44 Incluse apopular byte Incluse apopular byte Distance from far wall to outside of port (in.) = C 44 Incluse apopular byte Incluse apopular byte Depth of Duct, diameter (in.) = C-D 1/2 Incluse apopular byte Incluse apopular byte Incluse apopular byte Area of Duct (ft ²) 1/2 Incluse apopular byte Incluse apopular byte Incluse apopular byte Total Traverse Points 24 Incluse apopular byte Incluse apopular byte Incluse apopular byte Total Traverse Points per Port 1/2 Incluse apopular byte Incluse apopular byte Incluse apopular byte Deat Diagram of Stack Incluse apopular byte Incluse apopular byte Incluse apopular byte Incluse apopular byte	
Flow Disturbances Distance from far wall to outside of port (in.) = C 44 Port Depth (in.) = D 14 Depth of Duct, diameter (in.) = C-D 30 Area of Duct (ft ²) 4.91 Total Traverse Points 74 Total Traverse Points per Port 17 Der Diagram of Stack Diagram of Stack	
Port Depth (in.) = D 1/2 Depth of Duct, diameter (in.) = C-D SO Area of Duct (ft ²) 4.91 Total Traverse Points 24 Total Traverse Points per Port 1/2 Det Diameter (in.) = C-D 1/2 Downstream - A (duct diameters) 1.0 Downstream - B (duct diameters) 1.9 Diagram of Stack Diagram of Stack	
Depth of Duct, diameter (in.) = C-D SO Area of Duct (ft ²) 4.91 Total Traverse Points 24 Total Traverse Points per Port 17 Det Diagram of Stack Diagram of Stack	
Area of Duct (ft ²) 1 4.91 Total Traverse Points 24 Total Traverse Points per Port 1/2 Det Diagram of Stack Diagram of Stack	
Total Traverse Points C9 Downstream - B (duct diameters) 7.9 Total Traverse Points per Port 12 Diagram of Stack	
Diagram of Stack	
Monorail Length	
Rectangular Ducts Only 30 in	
Width of Duct, rectangular duct only (in.)	
Total Ports (rectangular duct only)	
Equivalent Diameter = (2*L*W)/(L+W)	
Traverse Point Locations	
Distance from	
Traverse Inside Duct Distance from Outside of	
Point % of Duct Wall (in) Port (in)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$2 \frac{1}{0}7 2 0$	
3 119 31/2 211/2	
Duct Diameters Upstream from How Disturbance (Distance A) $A = \frac{1}{77} \frac{5}{1/4} \frac{73}{1/4} \frac{1}{10} \frac{1}{10} \frac{15}{10} \frac{20}{10}$	
$- \gamma \ell + \gamma / \gamma $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•
7 69.4 193/8 37 3/8 40-	
8 75 221/2 40 1/2 1 1+	
9 97 3 74 3 4 47 3/4	nent
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{10}{4 (2 - 2)} \frac{1}{2 (1 - 1)} \frac{1}{2} \frac{1}{2 (1 - 1)} 1$	nas
11 955 28 46	
	<u>_l</u> ¦
CEM 3 Point(Long Managument Line) Stratification Point Locations Traverse Points for Velocity	
2 0.50 10 (Disturbance =Bend, Expansion, Contraction, etc.)	guagy
3 0.833 Sent Dis = 12 - 2	nches
(Sample port upstream of pitot port)	
Note: If stack dia >24" then adjust traverse point to 1 inch from wall	I
If stack dia <24" then adjust traverse point to 0.5 inch from wall 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10
Traverse Point Location Percent of Stack - Circular	
Number of Traverse Points Interest Point Constant Preton to Sector Points 1 2 3 4 5 6 7 8 9 10 11 12 Number of Traverse Points	
T 1 1 2 3 4 5 6 7 8 9 10 11 12 T 1 2 3 4 5 6 7 8 9 10 11 12 T 1 2 3 4 5 6 7 8 9 10 11 12 T 1 2 3 4 5 6 7 8 9 10 11 12	
a 3 75 29.6 19.4 14.6 11.8	
4 93.3 70.4 32.3 22.6 17.7 0 5 1	
r c 5 90.0 75.0 64.3 56.3 50.0 45.0 40.9 37.5 8 a 6 95.6 80.6 65.8 35.6 a 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
P 0 0 1 1 1 1 200.0 1 83.9 1 1 2 1 91.8 82.3 P 0 8 83.3 75.0 68.2 62.5 68.2 62.5 1 93.8 83.3 75.0 68.2 62.5 1 91.8 1 91.8 1 82.3 1 91.8 191.8 191.8 191.8 191.8 191.8 191.8 191.8 191.8 191.8 191.8 191.8 191.8 191.8 191.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS POLYMERS STACK

Test Data			
Run number	1	2	3
Location	Polymers Stack	Polymers Stack	Polymers Stack
Date	09/25/19	09/26/19	09/26/19
Time period	1300-1648	0833-1023	1100-1245
Operator	MW	MW	MW
Inputs For Calcs.			
Sq. rt. delta P	0.56541	0.63797	0.66024
Delta H	0.7463	1.3400	1.4541
Stack temp. (deg.F)	82.2	78.0	78.7
Meter temp. (deg.F)	92.3	76.6	80.8
Sample volume (act.)	45.585	57.848	60.409
Barometric press. (in.Hg)	29.72	29.81	29.81
Volume H ₂ O imp. (ml)	6.0	10.0	20.0
Weight change sil. gel (g)	12.2	20.4	13.3
% CO ₂	0.0	0.0	0.0
% O ₂	20.9	20.9	20.9
% N ₂	79.1	79.1	79.1
Area of stack (sq.ft.)	4.910	4.910	4.910
Sample time (min.)	96	96	96
Static pressure (in.H ₂ O)	-0.05	-0.16	-0.20
Nozzle dia. (in.)	0.215	0.235	0.235
Meter box cal.	1.0069	1.0069	1.0069
Cp of pitot tube	0.84	0.84	0.84
Traverse points	24	24	24

		pou;	MERS	
ISOKINETIC FIELD Client Chemours W.O.# 15418.002.01 Project ID Chemours Mode/Source ID Polymer Samp. Loc. ID STK Run No.ID 1 Test Method ID M0010 Date ID 9SEP2019 Source/Location Polymer Stat Baro. Press (in Hg) 29,772 Operator WT AVA (LA)	DATA SHEET Stack Conditions 7 Assumed Actual % Moisture ₽ 𝔄, 𝔅 𝔅 Impinger Vol (ml) Silica gel (g) 𝔅 𝔅 CO2, % by Vol O, 𝔅 O 𝔅 O2, % by Vol O, 𝔅 𝔅 𝔅 Temperature (°F) 𝔅 𝔅 𝔅 ✓ Static Press (in H₂O) 𝔅 𝔅 ✓ Ambient Temp (°F) 𝔅 𝔅	EPA Method 0016 Meter Box ID Meter Box Y Meter Box Del H Probe ID / Length Probe Material Pitot / Thermocouple ID Pitot Coefficient Nozzle ID Nozzle Dia (in) Area of Stack (ft ²) Sample Time Total Traverse Pts	0 - HFPO Dimer Acid 1 2069 1 8812 297 6 806 Leak Check @ (ii 607 Pitot leak check @ 0.89 Pitot leak check @ 0.215 20,215 0,215 20,215 0,215 20,215 0,215 20,215 0,215 20,215 0,215 20,215 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,215 21,5 0,124 21,5 0,125 21,5 0,125 21,5 0,125 </th <th>Page of K Factor 2.33 Initial Mid-Point Fina Initial Mid-Point</th>	Page of K Factor 2.33 Initial Mid-Point Fina Initial Mid-Point
TRAVERSE POINT NO. TIME (min) (plant time 0 1300 1 1300 1	VELOCITY ORIFICE DRY GAS MET PRESSURE Delta PRESSURE READING (ft P (in H20) Delta H (in H20) 400.00 O 5 2 5 1 1 6 402.25 O 5 2 5 0 58 403.35	STACK DGM OUTLET TE 3) TEMP (°F) 2 2.3 3 3.1 3 3.1	MP PROBE FILTER IMPINGER SA TEMP (°F) BOX TEMP EXIT TEMP TR (0F) (0F) (0F) (0F) 100 102 64	MPLE XAD EXIT IN VAC TEMP (F) 2 53 7 79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.39 0.65 407.44 0.39 0.65 407.44 0.30 0.67 409.20 0.30 0.69 411.10 0.30 0.69 413.3 0.32 0.74 414.90	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.28 0.65 412 65 0.28 0.65 412 65 0.26 0.60 420.3 0.24 0.55 422.0/ 422.100 0.25 0.8 424.010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9 36 9 36 10 40 11 44 12 48 /648	0.35 0.38 0.88 440,34 0.35 0.88 440,34 0.35 0.88 442.67 0.25 0.58 442.67 0.25 0.58 442.67 0.58 442.67 0.58 442.67 0.58 0.88 0.99	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Avg Sqrt Delta P Avg Sq	23 23	177/102 40/102 67 97,9%1	<u>C 177/64</u> Method 0010 from EPA SW-846 25 1,93 % M 9060 dsctn

			DOLYN	1 + 7 (• •	
ISOKINETIC FIELD I Client Chemours W.O.# 15418.002.017 Project ID Chemours Mode/Source ID Polymer Samp. Loc. ID STK Run No.ID 2 Test Method ID M0010 Date ID 9SEP2019 Source/Location Polymer Stack Baro. Press (in Hg) Q.9.91 Operator W.O.KELL	Stack Condition % Moisture Impinger Vol (ml) Silica gel (g) CO2, % by Vol O2, % by Vol Temperature (°F) Meter Temp (°F) Static Press (in H2O) Ambient Temp (°F)	EPA M Meter Box ID Meter Box V Meter Box De Probe ID / Le Probe Materia Pitot / Thermo Pitot Coefficie Nozzle ID Nozzle ID Nozzle D Area of Stack Sample Time Total Traverse	Iethod 0010 - I IH Ight al couple ID ont irrements ia (in) (ft ²) e Pts	$\begin{array}{c} $	Acid Sample Train (ft ³) Leak Check @ (in Hg Pitot leak check good Pitot Inspection good Method 3 System go Temp Check Meter Box Temp Reference Temp Pass/Fail (+/- 2°) Temp Change Respo	Page K Factor 3, 2 Initial Mid-F QiOJ 0, C Sign ro yes / yes / ro yes / Pre-Test Set 77 (ass)/ Fail	of Final
TRAVERSE POINT SAMPLE TIME (min) CLOCK TIME (plant time) 0 0° 2.3.3 1° 2 3 1° 1° 2 3 1° 1° 3 1° 1° 1° 4 1° 1° 1° 4 1° 2° 1° 4 1° 2° 1° 4 1° 2° 1° 4 1° 2° 1° 6 2° 1° 0° 6 3° 0° 0° 6 3° 0° 0° 7 2° 0° 0° 10 4° 0° 0° 11 1° 0° 0° 11 1° 0° 0° 12 4° 0° 0° 12 4° 1° 1° 12 <	VELOCITY PRESSURE Delta P (in H2O) ORIFICE PRESSURE Delta H (in H2O) 0.35 1.15 0.35 1.15 0.35 1.15 0.35 1.15 0.35 1.15 0.35 1.25 0.35 1.25 0.35 1.25 0.35 1.25 0.41 1.35 0.41 1.35 0.41 1.44 0.45 1.48 0.41 1.44 0.45 1.48 0.45 1.48 0.45 1.48 0.35 1.35 0.35 1.35 0.35 1.35 0.42 1.38 0.42 1.38 0.42 1.38 0.42 1.38 0.42 1.48 0.43 1.49 0.45 1.48 0.45 1.48 0.45	$\begin{array}{c c} \text{DRY GAS METER}\\ \text{READING (H^3)} & \text{STACK}\\ \text{TEMP ("F)} \\ \hline \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	DGM OUTLET TEMP (oF) 77 77 77 77 77 77 77 79 77 76 75 75 75 75 75 75 75 75 75 75 75 75 75	PROBE TEMP (oF) FILTER BOX TEMP (F) / DD / DD / DD / DO / DD / DO / DD / DO / DD / P / DD 99 / DD 102 / DD 102 / DD 102 / DD 100 /	$\begin{array}{c c} \text{IMPINGER} & \text{SAMI}\\ EXIT TEMP TRAIN(oF) TRAIN(oF) TRAIN(In F66 4 467 462 562 562 562 560 560 560 560 560 560 560 560$	PLE VAC XAD EXIT TEMP (F) 555 55^{-}	COMMENTS
	0.63797 1.15628		24	2,4%	Граме Го23	ethod 0010 from EPA SW-846 95,7 III O dectro	and

70

ISOKINET	IC EIEI D	DATA SUE	ידיידוי		EDA M	oth od 0010	HEDO	Dimon	Asid				、
ISUNINET	IC FIELD	DATA SHE				ethod 0010	- HFPU	Dimer	Acia		P:	age <u>1</u> of _	<u> </u>
Client -	15418 002 01	17	Stack Condit	li ons ned Actual	Meter Box ID			G			K Factor 3	31	
Project ID	Chemours	% Moisture		neu Actual	Meter Box Del I	н	1 2212	<u>1 V</u>				Mid-Point	 Final
Mode/Source ID	Polymer	Impinger Vol	(mi)		Probe ID / Leng	ith PG	97		Sample Train	n (ft ³)	1169'0	7.201	
Samp. Loc. ID	STK	Silica gel (g)			Probe Material		Boro	1	Leak Check	@ (in Hg)	eis	*6	107
Run No.ID	3	CO2, % by V		2	Pitot / Thermoc	ouple ID	P697	· · · ·	Pitot leak ch	eck good	Ves no	Seev/ no	(yeg) / no
Test Method ID	M0010	O2, % by Vol	20,5	8	Pitot Coefficien	t	0.84	<u></u>	Pitot Inspect	ion good	res/ no	es / no	1 €8 / no
Date ID Source/Location	9SEP2019 Potymer Sta	i emperature ok Meter Temp (Nozzle ID	monto Date	0-235	10-775	Method 3 Sy	stem good	<u> </u>	yes / no	yes / no
Sample Date	912611	Static Press ($(1) = \frac{1}{2} \frac{1}{2$		Ava Nozzle Dia	(in)	<u>0.235</u>	0,00	Meter Box Tr	emn			Post-Test Set
Baro. Press (in Hg)	129 5	<u></u>			Area of Stack (1	(11) it ²)	<u>ردی را</u>	i.ai v	Reference T	emp			
Operator	NINKELE	L J Ambient Tem	₽ (°F) ∽ % C)	Sample Time		96	+ <u>-</u>	Pass/Fail (+/	- 2 [°])	(Pass)	Fail	Pass Fall
r					Total Traverse	Pts	29	\checkmark	Temp Chang	e Response	yes /	no	yes / no
TRAVERSE SAN	APLE CLOCK TIN	AE VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM OUTLET TEMP	PROBE	FILTER	IMPINGER	SAMPLE	XAD EXIT		
POINT NO.	(min) (piant um	PRESSURE Delta P (in H2O)	Delta H (in H2O)	READING (TT)	TEMP (°F)	(OF)	TEMP (oF)	BOX TEMP	EXIT TEMP	TRAIN VAC	TEMP (F)		COMMENTS
	0 1100			504 115					(01)	(mmg)			
A		0.38	1,25	306.40	77	77	100	cor	66	3	-55		
2 4	6	0,42	1.39	509,00	78	78.	100	102	66	3	46		
. 3 (2	0.45	1148	511,60	78	78	101	107	66	3	41		
۲ ۱	6	0,48	1.58	514,30	72	78	101	101	66	2	48		29:895
5 2	ם	0.48	1,58	517.40	78	78	101	101	66	3	46		
6 2	<u>×</u>	0.48	1,58	519,65	72	80	101	101	65	3	48		
7 2	8	0,43	1.58	522,33	78	80	100	100	64	3	48		
8.	32-	0.50	1.65	525.00	79	30'	100	100	<u>63</u>	3	48		
9	56	0.50	1,65	528.10	78	<u> </u>	100	100	63	3	48		
10 6		0.50	1.65	530.10	78	<u> </u>	100	101	63	3	48		
	14	6,55	1.15	532,10	78		100	170	63	2	42		
12	42 1148	0,2	0.69	534.010	68		102	102	64	2	49		
				534,200		<u> </u>							
	7	0.90	1.32	536.8009	Pat	<u> </u>	100	(22	66	5	53		
	<u>×</u>	0.42	1124	538.91	80	<u> </u>	100	100	65		53		30,517
	6	0.40	1,52	371,60		23	1.00	1/02	<u>_65</u> _	<u> </u>			
		-0.10	1.SE	3 11,50		00	1UU	100	63	2	48		
	-0 -4	0.30	1.63	340,74	- 22-		100	100	-63	3			
		2 52	11-22	562 05			100	100	6-	7	4-1		
	2	10.52	1 12	200 20		24	107	100	1.0	- <u>-</u>	14		
a z	b	6152	1	553 310		24	100	125	-92-	E			
6 4	$\tilde{\mathbf{o}}$	1.50	168-	560.60			100	127	15	2	-30-		
	Й	0,35	1.15-	362.70	74	24	1/01-	1438	- Fe	2	50		
12	10 1245	1 0.22	1.722	564.74	79	84	1012	155	<u> </u>	The second secon	-6+		
	14 1.00 12	Avg Delta P	Avg Delta H	, Total Volume	Avg Ts	La MTREVA	Miŋ/Max	Min/Max	Max	Max Vac	Min/Max		
(VVII (TR	\mathbf{N}	D.44083	1.45406	60.101	72.11	20,10	100,00	10/10	66		41/35		
		Avg Sgrt Delta P	Avg Sqrt Del H	Comments:				· · · · ·		EPA Method	0010 from EPA S	SW-846	
		0.66027	1,19708										\
												- •	A.A.
						25						M	Nv.
					-							V	•

POLYMERS

SAMPLE RECOVERY FIELD DATA

1

Client		Che	nous		W.O. #					
Location/Pla	int 🚽	- wet	7.0576	Sourc	e & Location	Po.	hynd	en .		- <u></u>
Run No.					Sample Date	1/25	119	Recove	ery Date	9/35/14
Sample I.D.	Yo	yme	Str	M	Analyst	<u>VII</u>		Filter N	lumber	NA
		t			Imping	ər		1		
Contents		2	3	4	5	6	7	Imp. I otal	8 Silica Gel	
Final	6	120	120	2	1				312.2	
	- Ū	122	102	<u> </u>	+				320	
			150	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				1.1	12.2	12.7
		11 01		V	<u></u>				100 -1	I U d
	or (2		5 5 M	(Labeled ?	<u> </u>				-
Silica Gel Co		yd -	17 19		Sealed?		7			
Run No.	2.				Sample Date	9/26	119	Recove	erv Date C	7/26/19
	The	imen	sha	$\boldsymbol{\mathcal{L}}$	Analyst	m		Filter N	, Jumber	NIE
Gample I.D.			<u></u>		Imping		,			1020
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	<u> </u>	10-							Silica Gel	
Final	10	100	10	0					320.4	·
Initial	0	105	120	0					100	
Gain	12	0	P	Ð-			<u>.</u>	10 J	204	30,4
Impinger Col	or 🦉	111 C	ear.		Labeled?	$-V_{\ell}$			-3	
Silica Gel Co	ndition	he	94%	P	Sealed?	1	4., ji			
Burn No.	3		-+++		Semale Data	9/21	110	Bassy	Deta (9/26/26
Kun No.	_				Analyst	- the	11/	Eiltor	lumbor	II V
Sample I.D.				·		//////		Filler		to reo
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents		- <u>, </u>							Silica Gel	
Final	12	105	190	0					12.	2
Initial	0.	100	100	D					307	
Gain	15	2	0	0				70	133	
Impinger Col	or <u>Č</u>	11 0	en	~ ~	Labeled?	VI				
Silica Gel Co	ndition	Su.	_20	I,	Sealed?	V				
Check COC for	Sample IDs o	f Media Blanks						1	VVIER	
	·	-							MD.	
Bal	une.	Che	on	_				•		
<i>\\\</i>		-	12	rter	lule_		A	رمين	1	
~	2		y - 0					-		
\mathbf{P}	au			_			. 1	~~ /	ົ	Vac
0	125/10	5	5	Ã0,0	>		Ч	44,5	б	アノ
91	r 487	,		• -			-			
~	1).			,			. 4	o. o. 4		
91	126/1	9	5	0 <i>0,0</i>			4	99,k	>	Mo

POLYMERS BLAWK TRAIN SAMPLE RECOVERY FIELD DATA

Client	,	Chen	nour		W.O. #					-
Location/Pla	int 🖌	MAL	₩ ~	Sourc	e & Location	<u>Po</u>	1yn	les_		
Run No.	2	Blan	h tro	435	Sample Date	926	114	Recove	ery Date	<u>[bb])9</u>
Sample I.D.					Analyst	<u>m</u>	•	Filter N	lumber	NA
					Imping	эг				
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents		102	192	0	+				Silica Gel	
Final	0	100	192	0	+				300	
Gain	0	100	0	12				+	0	0
Impinger Cold		allali	061		L abeled?	./	L			<u></u>
Silica Gel Co	ndition	Gle	100%	r 5	Sealed?	1				-
Run No			<u>, </u>		Sample Date			Becove	n Data	
Run No.					Sample Date		-	C90046	ary Date	
Sample I.D.					Analyst		<u> </u>	Filter N	lumber	
	<u> </u>					9 r	7	I Imp Total		Tatal
Contents	 - ' -					<u> </u>		Timp. Total	o Silica Gel	TOLAT
Final										
Initial										
Gain										
Impinger Colo	or _				Labeled?	<u></u>				-
Silica Gel Co	ndition		<u> </u>		Sealed?					•
Run No.					Sample Date	-		Recove	ery Date	
Sample I.D.	_				Analyst		-	Filter N	lumber	
					Impina	 9 r				<u> </u>
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents					+				Silica Gel	
Final										
Initial	L				<u> </u>					
Gain				: 						
Impinger Colo	or _				Labeled?	<u></u>				-
Silica Gel Co	ndition	······			Sealed?	7				
Check COC for	Sample IDs	of Media Blanks						7	XXIES	JEN

Source Gas Analysis I	Data Sheet - Modified Method 3/3A
client Chemours	Analyst_SL/KS
Location/Plant Fay cheville, NC	Date 9/25/19 - 9/26/19
Source Polymers	Analyzer Make & Model Seatromer 1400
W.O. Number 15418,002.017,	<u>060</u>]

Calibration <u>1530</u>

Analysis Number	Span	Calibration Gas Value O ₂ (%)	Calibration Gas Value CO ₂ (%)	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1	Zero	0.0	0.0	00	0.0
2	Mid	12.1	9.0	12.0	9.1
3	High	Z1.3	17.1	21.3	17.1
	Average				

Run Number	Analysis Time	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1	1705-1711	20.8	00.0
2	1100-1106	20.8	00,0
3	1308-1314	20.8	00.0
	Average		

Run Number	Analysis Time	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1			
2			
3			
	Average		

Span	Cylinder ID	
Mid	CC 157024	
High	AIM047628	*

WISION

**Report all values to the nearest 0.1 percent

APPENDIX C LABORATORY ANALYTICAL REPORT

Environment Testing TestAmerica

ANALYTICAL REPORT

Job Number: 140-16785-1 Job Description: Polymer Stack - M0010 Contract Number: LBIO-67048 For: Chemours Company FC, LLC The c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, DE 19713

Attention: Michael Aucoin

Sourmerf Ackins

Approved for release Courtney M Adkins Project Manager I 10/9/2019 8:27 AM

Courtney M Adkins, Project Manager I 5815 Middlebrook Pike, Knoxville, TN, 37921 (865)291-3000 courtney.adkins@testamericainc.com 10/09/2019

This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cover Title Page	1
Data Summaries	4
Definitions	4
Method Summary	5
Sample Summary	6
Case Narrative	7
QC Association	8
Client Sample Results	10
Default Detection Limits	13
Surrogate Summary	14
QC Sample Results	15
Chronicle	17
Certification Summary	22
Manual Integration Summary	24
Organic Sample Data	26
LCMS	26
8321A_HFPO_Du	26
8321A_HFPO_Du QC Summary	27
8321A_HFPO_Du Sample Data	32
Standards Data	44
8321A_HFPO_Du ICAL Data	44
8321A_HFPO_Du CCAL Data	67
Raw QC Data	79
8321A_HFPO_Du Blank Data	79
8321A_HFPO_Du LCS/LCSD Data	91
8321A_HFPO_Du Run Logs	100

Table of Contents

8321A_HFPO_Du Prep Data	102
Method DV-LC-0012	107
Method DV-LC-0012 QC Summary	108
Method DV-LC-0012 Sample Data	114
Standards Data	151
Method DV-LC-0012 CCAL Data	151
Raw QC Data	169
Method DV-LC-0012 Tune Data	169
Method DV-LC-0012 Blank Data	174
Method DV-LC-0012 LCS/LCSD Data	186
Method DV-LC-0012 Run Logs	194
Method DV-LC-0012 Prep Data	196
Shipping and Receiving Documents	202
Client Chain of Custody	203

Client: Chemours Company FC, LLC The Project/Site: Polymer Stack - M0010

Qualifiers

LCMS

J

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TEQ	Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Method Summary

Client: Chemours Company FC, LLC The Project/Site: Polymer Stack - M0010

Method	Method Description	Protocol	Laboratory
8321A	HFPO-DA	SW846	TAL DEN
8321A	PFOA and PFOS	SW846	TAL DEN
None	Leaching Procedure	TAL SOP	TAL DEN
None	Leaching Procedure for Condensate	TAL SOP	TAL DEN
None	Leaching Procedure for XAD	TAL SOP	TAL DEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Sample Summary

Client: Chemours Company FC, LLC The Project/Site: Polymer Stack - M0010

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
140-16785-1	D-2301,2302 R1 M0010 FH	Air	09/25/19 00:00	09/27/19 10:35
140-16785-2	D-2303,2304,2306 R1 M0010 BH	Air	09/25/19 00:00	09/27/19 10:35
140-16785-3	D-2305 R1 M0010 IMP 1,2&3 CONDENSATE	Air	09/25/19 00:00	09/27/19 10:35
140-16785-4	D-2307 R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	09/25/19 00:00	09/27/19 10:35
140-16785-5	D-2308,2309 R2 M0010 FH	Air	09/26/19 00:00	09/27/19 10:35
140-16785-6	D-2310,2311,2313 R2 M0010 BH	Air	09/26/19 00:00	09/27/19 10:35
140-16785-7	D-2312 R2 M0010 IMP 1,2&3 CONDENSATE	Air	09/26/19 00:00	09/27/19 10:35
140-16785-8	D-2314 R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	09/26/19 00:00	09/27/19 10:35
140-16785-9	D-2315,2316 R3 M0010 FH	Air	09/26/19 00:00	09/27/19 10:35
140-16785-10	D-2317,2318,2320 R3 M0010 BH	Air	09/26/19 00:00	09/27/19 10:35
140-16785-11	D-2319 R3 M0010 IMP 1,2&3 CONDENSATE	Air	09/26/19 00:00	09/27/19 10:35
140-16785-12	D-2321 R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	09/26/19 00:00	09/27/19 10:35

Job Narrative 140-16785-1

Sample Receipt

The samples were received on September 27, 2019 at 10:35 AM in good condition and properly preserved. The temperature of the cooler at receipt was 0.6° C.

Quality Control and Data Interpretation

Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

Method 0010/Method 3542 Sampling Train Preparation

Train fractions were extracted and prepared for analysis in TestAmerica's Knoxville laboratory. Extracts and condensate samples were forwarded to the Denver laboratory for HFPO-DA analysis. All results are reported in "Total ug" per sample.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Comments

Reporting Limits (RLs) and Method Detection Limits (MDLs) for the HFPO-DA used in this report were derived in Denver for reporting soils and water samples. Method 0010 sampling train matrix specific RLs and MDLs have not been established for HFPO-DA. The soil and water limits are expected to be reasonable approximations of the actual matrix specific limits, under these conditions.

Breakthrough from the Modified Method 0010 Sampling Train for PFAS compounds will be measured by the percentage (%) concentration of a specific PFAS target analyte determined to be present in the Breakthrough XAD-2 resin module of a test run. If the concentration of a specific PFAS compound is \leq 30% of the sum of the concentrations determined for the other three (3) fractions of the sampling train, then sampling breakthrough is determined not to have occurred. Also, no breakthrough will be determined to have occurred if < 250 µg of a target analyte is collected on all fractions of a sampling train. Breakthrough the sampling train implies that sample loss through the train has occurred and results in a negative bias to the sample results.

Client: Chemours Company FC, LLC The Project/Site: Polymer Stack - M0010

LCMS

Analysis Batch: 464589

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
DLCK 280-464589/13	Lab Control Sample	Total/NA	Air	8321A	
Prep Batch: 472296					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-16785-2	D-2303,2304,2306 R1 M0010 BH	Total/NA	Air	None	
140-16785-4	D-2307 R1 M0010 BREAKTHROUGH XAD-2 RE	Total/NA	Air	None	
140-16785-6	D-2310,2311,2313 R2 M0010 BH	Total/NA	Air	None	
140-16785-8	D-2314 R2 M0010 BREAKTHROUGH XAD-2 RE	Total/NA	Air	None	
140-16785-10	D-2317,2318,2320 R3 M0010 BH	Total/NA	Air	None	
140-16785-12	D-2321 R3 M0010 BREAKTHROUGH XAD-2 RE	Total/NA	Air	None	
MB 280-472296/1-A	Method Blank	Total/NA	Air	None	
LCS 280-472296/2-A	Lab Control Sample	Total/NA	Air	None	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-16785-1	D-2301,2302 R1 M0010 FH	Total/NA	Air	None	
140-16785-5	D-2308,2309 R2 M0010 FH	Total/NA	Air	None	
140-16785-9	D-2315,2316 R3 M0010 FH	Total/NA	Air	None	
MB 280-472321/13-A	Method Blank	Total/NA	Air	None	
MB 280-472321/1-A	Method Blank	Total/NA	Air	None	

Prep Batch: 472332

LCS 280-472321/2-A

Lab Control Sample

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
140-16785-3	D-2305 R1 M0010 IMP 1,2&3 CONDENSATE	Total/NA	Air	None	
140-16785-7	D-2312 R2 M0010 IMP 1,2&3 CONDENSATE	Total/NA	Air	None	
140-16785-11	D-2319 R3 M0010 IMP 1,2&3 CONDENSATE	Total/NA	Air	None	
MB 280-472332/13-A	Method Blank	Total/NA	Air	None	
MB 280-472332/1-A	Method Blank	Total/NA	Air	None	
LCS 280-472332/2-A	Lab Control Sample	Total/NA	Air	None	

Total/NA

Air

None

Analysis Batch: 472874

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-16785-2	D-2303,2304,2306 R1 M0010 BH	Total/NA	Air	8321A	472296
140-16785-4	D-2307 R1 M0010 BREAKTHROUGH XAD-2 RE	Total/NA	Air	8321A	472296
140-16785-6	D-2310,2311,2313 R2 M0010 BH	Total/NA	Air	8321A	472296
140-16785-8	D-2314 R2 M0010 BREAKTHROUGH XAD-2 RE	Total/NA	Air	8321A	472296
140-16785-10	D-2317,2318,2320 R3 M0010 BH	Total/NA	Air	8321A	472296
140-16785-12	D-2321 R3 M0010 BREAKTHROUGH XAD-2 RE	Total/NA	Air	8321A	472296
MB 280-472296/1-A	Method Blank	Total/NA	Air	8321A	472296
LCS 280-472296/2-A	Lab Control Sample	Total/NA	Air	8321A	472296

Analysis Batch: 472875

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-16785-1	D-2301,2302 R1 M0010 FH	Total/NA	Air	8321A	472321
140-16785-5	D-2308,2309 R2 M0010 FH	Total/NA	Air	8321A	472321
140-16785-9	D-2315,2316 R3 M0010 FH	Total/NA	Air	8321A	472321
MB 280-472321/13-A	Method Blank	Total/NA	Air	8321A	472321
MB 280-472321/1-A	Method Blank	Total/NA	Air	8321A	472321
LCS 280-472321/2-A	Lab Control Sample	Total/NA	Air	8321A	472321

QC Association Summary

Client: Chemours Company FC, LLC The Project/Site: Polymer Stack - M0010

LCMS

Analysis Batch: 472876

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-16785-3	D-2305 R1 M0010 IMP 1,2&3 CONDENSATE	Total/NA	Air	8321A	472332
140-16785-7	D-2312 R2 M0010 IMP 1,2&3 CONDENSATE	Total/NA	Air	8321A	472332
140-16785-11	D-2319 R3 M0010 IMP 1,2&3 CONDENSATE	Total/NA	Air	8321A	472332
MB 280-472332/13-A	Method Blank	Total/NA	Air	8321A	472332
MB 280-472332/1-A	Method Blank	Total/NA	Air	8321A	472332
LCS 280-472332/2-A	Lab Control Sample	Total/NA	Air	8321A	472332

Job ID: 140-16785-1

Client Sample ID: D-2301,2	2302 R1 N	10010 FH				L	ab Sample	D: 140-16	6785-1
Date Collected: 09/25/19 00:00								Mat	trix: Air
Date Received: 09/27/19 10:35									
Sample Container: Air Train									
Method: 8321A - PFOA and PF	os								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	1.66		0.125	0.0135	ug/Sample		09/30/19 09:50	10/03/19 14:56	1
Surrogate	%Recoverv	Qualifier	l imits				Prenared	Analyzed	Dil Fac
13C3 HFPO-DA	104	Quanner	50 - 200				09/30/19 09:50	10/03/19 14:56	1
			0 DU						
Client Sample ID: D-2303,	2304,2306	R1 MUU1	0 BH			_ L	ab Sample	D: 140-16	0/85-2
Date Collected: 09/25/19 00:00								Mat	(rix: Air
Sample Container: Air Train									
Method: 8321A - PFOA and PF	OS					_			
	Result	Qualifier	RL	MDL	Unit		Prepared	Analyzed	Dil Fac
HFPO-DA	3.58		0.225	0.0450	ug/Sample		09/29/19 11.20	10/03/19 13.27	I
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	73		50 - 200				09/29/19 11:20	10/03/19 13:27	1
Client Sample ID: D-2305	D1 M0010	IMD 1 28				-	ah Sample	D· 140_16	785_3
Data Collected: 09/25/19 00:00		1,20			•			Mat	
Date Received: 09/25/19 00:00								IVIA	
Sample Container: Air Train									
Method: 8321A - HFPO-DA	Descrit	0			11	-	Durana	A	
	Result	Qualifier	RL	MDL	Unit		Prepared	Analyzed	
HFPO-DA	0.170	J	0.201	0.0102	uy/Sample		09/30/19 10.21	10/03/19 10.01	I
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	102		50 - 200				09/30/19 10:21	10/03/19 16:01	1
Client Sample ID: D-2307	R1 M0010	BREAKT	HROUGH)	-	ah Sample	D· 140-16	785-4
		DILLAILI						, ID. 140-10	// 00-4
RESIN TOBE								Mat	trix: Air
Date Collected: 09/25/19 00:00								Wid	unx. An
Sample Container: Air Train									
Method: 8321A - PFOA and Pf	OS Decuté	Qualifian		MDI	11	-	Dreamanad	Amahamad	
		Qualifier		0.0400			Prepared	Analyzed	
	ND		0.200	0.0400	ug/Sample		09/29/19 11:20	10/03/19 13:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	80		50 - 200				09/29/19 11:20	10/03/19 13:31	1
Client Sample ID: D-2308	2309 R2 N	10010 FH					ab Sample	D. 140-16	785-5
Date Collected: 09/26/19 00:00								Mat	trix [.] Air
Date Received: 09/27/19 10:35									
Sample Container: Air Train									
	-00								
Miethod: 8321A - PFOA and PF	-US Rocult	Qualifier	RI	мп	Unit	п	Prepared		Dil Fac
HFPO-DA	1.85	Quaniti	0,125	0.0135	ug/Sample		09/30/19 09:50	10/03/19 14:59	1
	1.00		0.120	0.0100	-9. compio				

Job ID: 140-16785-1

Client Sample ID: D-2308 Date Collected: 09/26/19 00:00	,2309 R2 N	10010 FH				L	ab Sample	e ID: 140-16 Mat	785-5 rix: Air
Date Received: 09/27/19 10:35									
Sample Container: Air Train									
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac
13C3 HFPO-DA	104		50 - 200				09/30/19 09:50	10/03/19 14:59	1
Client Comple ID: D 0240	0044 0040						ah Camada		705.0
Client Sample ID: D-2310	,2311,2313		νып					D: 140-16	
Date Received: 09/27/19 10:35								Wat	
Sample Container: Air Train									
	500								
Method: 8321A - PFOA and P Analyte	'FUS Result	Qualifier	RI	МОІ	Unit	р	Prenared	Analyzed	Dil Fac
HFPO-DA	4.20		0.250	0.0500	ug/Sample		09/29/19 11:20	10/03/19 13:37	1
					0				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	/3		50 - 200				09/29/19 11:20	10/03/19 13:37	1
Client Sample ID: D-2312	R2 M0010	IMP 1,28	3 CONDE	NSATE		L	_ab Sample	e ID: 140-16	785-7
Date Collected: 09/26/19 00:00							-	Mat	rix: Air
Date Received: 09/27/19 10:35									
Sample Container: Air Train									
Method: 8321A - HFPO-DA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.281		0.208	0.0106	ug/Sample		09/30/19 10:21	10/03/19 16:04	1
Surrogate	%Recovery	Qualifier	l imits				Propared	Analyzod	Dil Eac
13C3 HFPO-DA			50 - 200				09/30/19 10:21	10/03/19 16:04	1
Client Sample ID: D-2314	R2 M0010	BREAKT	HROUGH	XAD-2	2		₋ab Sample	e ID: 140-16	785-8
RESIN TUBE									
Date Collected: 09/26/19 00:00								Mat	rix: Air
Date Received: 09/27/19 10:35									
Method: 8321A - PFOA and P	FOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.200	0.0400	ug/Sample		09/29/19 11:20	10/03/19 13:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	77		50 - 200				09/29/19 11:20	10/03/19 13:40	1
Client Sample ID: D 2315	2216 D2 M					-	ah Sample		785 0
Date Collected: 09/26/19 00:00	,2310131							Mai	$riv \cdot \Delta ir$
Date Received: 09/27/19 10:35								Wat	
Sample Container: Air Train									
Method: 8321A - PFOA and P	'FUS Rocult	Qualifier	RI	וחא	Unit	п	Prepared		Dil Fac
HFPO-DA	2.15	auannei	0.100	0.0108	ug/Sample		09/30/19 09:50	10/03/19 15:02	1
	20								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	104		50 - 200				09/30/19 09:50	10/03/19 15:02	1

Job ID: 140-16785-1

Client Sample ID: D-2317 Date Collected: 09/26/19 00:00 Date Received: 09/27/19 10:35 Sample Container: Air Train	,2318,2320) R3 M00	10 BH			La	ab Sample	ID: 140-167 Mat	85-10 rix: Air:
Method: 8321A - PFOA and P	FOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	5.93		0.250	0.0500	ug/Sample		09/29/19 11:20	10/03/19 13:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	55		50 - 200				09/29/19 11:20	10/03/19 13:44	1
Client Sample ID: D-2319	R3 M0010	IMP 1,2	&3 CONDE	NSATE		La	b Sample	ID: 140-167	85-11
Date Collected: 09/26/19 00:00 Date Received: 09/27/19 10:35 Sample Container: Air Train								Mat	rix: Air
Method: 8321A - HFPO-DA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	1.44		0.220	0.0112	ug/Sample		09/30/19 10:21	10/03/19 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	111		50 - 200				09/30/19 10:21	10/03/19 16:07	1
Client Sample ID: D-2321 RESIN TUBE	R3 M0010	BREAK	THROUGH	XAD-2		La	ab Sample	ID: 140-167	85-12
Date Collected: 09/26/19 00:00 Date Received: 09/27/19 10:35 Sample Container: Air Train								Mat	rix: Air
Method: 8321A - PFOA and P	FOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.0484	J	0.200	0.0400	ug/Sample		09/29/19 11:20	10/03/19 13:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	80		50 - 200				09/29/19 11:20	10/03/19 13:47	1

Default Detection Limits

Client: Chemours Company FC, LLC The Project/Site: Polymer Stack - M0010

Method: 8321A - HFPO-DA

Analyte	RL	MDL	Units
HFPO-DA	0.00250	0.00128	ug/Sample

Method: 8321A - PFOA and PFOS Prep: None

Analyte	RL	MDL	Units
HFPO-DA	0.0250	0.00270	ug/Sample
HFPO-DA	0.100	0.0200	ug/Sample

APPENDIX D SAMPLE CALCULATIONS

SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010)

Client: Chemours Test Number: Run 3 Test Location: Polymers Stack Plant: Fayetteville, NC Test Date: 09/26/19 Test Period: 1100-1245

1. HFPO Dimer Acid concentration, lbs/dscf.

Conc1	_	W x 2.2046 x 10 ⁻⁹
	=	Vm(std)
Conc1	=	9.6 x 2.2046 x 10-9
		59.353
Conc1	=	3.55E-10
Where:		
W	=	Weight of HFPO Dimer Acid collected in sample in ug.
Conc1	=	Polymers Stack HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10 ⁻⁹	=	Conversion factor from ug to lbs.

2. HFPO Dimer Acid concentration, ug/dscm.

Conc2	=	W / (Vm(std) x 0.02832)
Conc2	=	9.6 / (59.353 x 0.02832)
Conc2	=	5.69
Where:		
Conc2	=	Polymers Stack HFPO Dimer Acid concentration, ug/dscm.
0.02832	=	Conversion factor from cubic feet to cubic meters.

3. HFPO Dimer Acid mass emission rate, lbs/hr.

MR1 _(Outlet)	=	Concl x Qs(std) x 60 min/hr
MR1 _(Outlet)	=	3.55E-10 x 10565 x 60
MR1 _(Outlet)	=	2.25E-04
Where:		
MR1 _(Outlet)	=	Polymers Stack HFPO Dimer Acid mass emission rate, lbs/hr.
4. HFPO Di	mer A	cid mass emission rate, g/sec.
MR2 _(Outlet)	=	PMR1 x 453.59 / 3600
MR2 _(Outlet)	=	2.25E-04 x 453.59 /3600
MR2 _(Outlet)	=	2.84E-05
Where:		
MR2 _(Outlet)	=	Polymers Stack HFPO Dimer Acid mass emission rate, g/sec.
453.6	=	Conversion factor from pounds to grams.
3600	=	Conversion factor from hours to seconds.

EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS

<u>Client: Chemours</u> <u>Test Number: Run 3</u> <u>Test Location: Polymers Stack</u> Facility: Fayetteville, NC Test Date: 09/26/19 Test Period: 1100-1245

1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.

	delta H
Vm(std) =	17.64 x Y x Vm x (Pb +)
	13.6
	(Tm + 460)
	1.454
	$17.64 \times 1.0069 \times 60.409 \times (29.81 +)$
	13.6
Vm(std) =	= 59.353
	80.83 + 460
Where:	
T () I	
vm(std) =	Volume of gas sample measured by the dry gas meter,
V	Corrected to standard conditions, dscr.
VIII =	at meter conditions, def
Ph -	Barometric Pressure in Hg
delt H =	Average pressure drop across the orifice meter in H_2O
Tm =	Average dry gas meter temperature , deg F.
Y =	Dry gas meter calibration factor.
17.64 =	Factor that includes ratio of standard temperature (528 deg R)
	to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =	Specific gravity of mercury.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

Vw(std) =	(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std) =	(0.04707 x 20.0) + (0.04715 x 13.3) = 1.57
Where:	
Vw(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vwc =	Volume of liquid condensed in impingers, ml.
Wwsg =	Weight of water vapor collected in silica gel, g.
0.04707 =	Factor which includes the density of water
	(0.002201 lb/ml), the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), ft ³ /ml.
0.04715 =	Factor which includes the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), and
	453.6 g/lb, ft ³ /g.

3. Moisture content

bws =	Vw(std)
	Vw(std) + Vm(std)
bws =	1.57 = 0.026 1.57 + 59.353
Where:	

bws = Proportion of water vapor, by volume, in the gas stream, dimensionless.

4. Mole fraction of dry gas.

Wheney	
Where:	
Md =	Mole fraction of dry gas, dimensionless

5. Dry molecular weight of gas stream, lb/lb-mole.

MWd =	(0.440 x % CO ₂) + (0.320 x % O ₂) + (0.280 x (% N ₂ + % CO))
MWd =	$(\ 0.440\ x\ 0.0\)+(\ 0.320\ x\ 20.9\)+(0.280\ x\ (\ 79.1+0.00\))$
MWd =	28.84
Where:	
MWd =	Dry molecular weight, lb/lb-mole.
% CO2 =	Percent carbon dioxide by volume, dry basis.
% O ₂ =	Percent oxygen by volume, dry basis.
% N ₂ =	Percent nitrogen by volume, dry basis.
% CO =	Percent carbon monoxide by volume, dry basis.
0.440 =	Molecular weight of carbon dioxide, divided by 100.
0.320 =	Molecular weight of oxygen, divided by 100.
0.280 =	Molecular weight of nitrogen or carbon monoxide,
	divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

MWs =	(MWd x Md) + (18 x (1 - Md))
MWs =	(28.84 x 0.974) +(18 (1 - 0.974)) = 28.56
Where:	
MWs = 18 =	Molecular weight of wet gas, lb/lb-mole. Molecular weight of water, lb/lb-mole.

7. Average velocity of gas stream at actual conditions, ft/sec.

Vs =	Ts (avg) 85.49 x Cp x ((delt p) ^{1/2})avg x () ^{1/2} Ps x MWs
	539
Vs =	85.49 x 0.84 x 0.66024 x ()^1/2 = 37.7
	29.80 x 28.56
Where:	
Vs =	Average gas stream velocity, ft/sec.
	(lb/lb-mole)(in. Hg) ^{1/2}
85.49 =	Pitot tube constant, ft/sec x
	(deg R)(in H ₂ O)
Cp =	Pitot tube coefficient, dimensionless.
Ts =	Absolute gas stream temperature, deg $R = Ts$, deg $F + 460$.
	P(static)
Ps =	Absolute gas stack pressure, in. Hg. = Pb +
	13.6
delt p =	Velocity head of stack, in. H ₂ O.

8. Average gas stream volumetric flow rate at actual conditions, wacf/min.

Qs(act) =	60 x Vs x As
Qs(act) =	60 x 37.7 x 4.91 = 11114
Where:	
Qs(act) =	Volumetric flow rate of wet stack gas at actual conditions, wacf/min.
As = 60 =	Cross-sectional area of stack, ft ² . Conversion factor from seconds to minutes.

9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.

Qs(std) =	Ps 17.64 x Md x x Qs(act) Ts
Qs(std) =	29.80 17.64 x 0.974 x x 11114 538.7
Qs(std) =	10565
Where:	
Qs(std) =	Volumetric flow rate of dry stack gas at standard conditions, dscf/min.

10. Isokinetic variation calculated from intermediate values, percent.

17.327 x Ts x Vm(std)
$\frac{1}{Vs \times O \times Ps \times Md \times (Dn)^2}$
17.327 x 539 x 59.353
= 95.4 37.7 x 96 x 29.80 x 0.974 x (0.235)^2
Percent of isokinetic sampling.
Total sampling time, minutes.
Diameter of nozzle, inches.
Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle $D^{2/4}$, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in ²)(min) (deg R)(ft ²)(sec)

APPENDIX E EQUIPMENT CALIBRATION RECORDS

Airgas Specialty Gases Airgas USA, LLC 6141 Easton Road Bldg 1 Plumsteadville, PA 18949 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:

E03NI79E15A00E4 CC157024 124 - Plumsteadville - PA A12019 CO2,O2,BALN

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

160-401424145-1 150.5 CF 2015 PSIG 590 Feb 26, 2019

Expiration Date: Feb 26, 2027

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS							
Component		Requested Concentration	Actual Protocol Concentration Method		Total Relative Uncertainty	Assay Dates	
CARBON DIOXIDE		9.000 %	9.018 % G1		+/- 0.6% NIST Traceable	02/26/2019	
OXYGEN		12.00 %	12.06 % G1		+/- 0.3% NIST Traceable	02/26/2019	
NITROGEN	N	Balance			-		
	CALIBRATION STANDARDS						
Туре	Lot ID	Cylinder No	Concentration Uncertainty		Concentration Uncertainty		Expiration Date
NTRM	061507	K014984	13.94 % CARBON DIOXIDE/NITROGEN 0.57% Ja		Jan 30, 2024		
NTRM	16060507	CC401541	23.204 % OXYGEN/NITROGEN		0.2%	Dec 24, 2021	
ANALYTICAL EQUIPMENT							
instrume							
HORIBA V	JRIBA VA5011 15V6VU9P NDIR CO2 NDIR Feb 12, 2019						
SIEMENS	ENS OXYMAT 61 S01062 O2 PARAMAGNETIC Feb 18, 2019						

Triad Data Available Upon Request

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI62E15A0224 ALM047628 124 - Riverton (SAP) - NJ B52018 CO2,O2,BALN

Reference Number: 82-401288925-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

157.2 CF 2015 PSIG 590 Sep 04, 2018

Expiration Date: Sep 04, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical analytical for the second standard for the s uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS						
Compone	onent Requested Actual Protocol Total Relative Concentration Concentration Method Uncertainty		Assay Dates			
CARBON DIOXIDE		17.00 %	17.05 % G1		+/- 0.7% NIST Traceable	09/04/2018
OXYGEN		21.00 %	21.25 % G1		+/- 0.5% NIST Traceable	09/04/2018
NITROGEN	N	Balance			-	
			CALIBRATION	I STANDARDS	5	
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060804	CC415400	24.04 % CARBON D	IOXIDE/NITROGEN	+/- 0.6%	May 16, 2019
NTRM	09061420	CC273671	22.53 % OXYGEN/NITROGEN		+/- 0.4%	Mar 08, 2019
ANALYTICAL EQUIPMENT						
Instrume	trument/Make/Model Analytical Principle Last Multipoint Calibration		ration			
Horiba VIA	a VIA 510-CO2-19GYCXEG		NDIR		Aug 09, 2018	
Horiba MP	Horiba MPA 510-O2-7TWMJ041		Paramagnetic		Aug 09, 2018	

Triad Data Available Upon Request

Type S Pitot Tube Inspection Data Form

Ambient Temp 72 Thermocouple Simulator Meter Box Number 12 Calibrator MDW Date 10-Sep-18 Temp Reference Source (Accuracy +/- 1°F) Wet Test Meter Number P-2952 Dry Gas Meter Number 14244707 Baro Press, in 29.96 Gas Volume Setting Temperatures Hq (Pb) Orifice Wet Test Wet Test Drv Gas **Dry gas Meter** Manometer Meter Meter Meter **Calibration Results** in H₂0 ft³ ft³ °F Outlet, °F Time, min Υ ΔH (Td_{o}) (0) (∆H) (Vw) (Vd) (Tw) 885.853 75.00 0.5 5.0 73.0 12.60 1.0097 1.7823 890.822 76.00 4.969 75.50 892.810 76.00 1.0 5.0 73.0 9.1 1.0071 1.8559 897.795 77.00 4.985 76.50 898.799 77.00 1.5 10.0 908.810 73.0 78.00 15.20 1.0036 1.9381 77.50 10.011 915.870 78.00 10.0 73.0 13.1 1.0094 2.0 925.830 79.00 1.9158 9.960 78.50 926.870 79.00 3.0 10.0 936.870 73.0 80.00 10.70 1.0048 1.9137 10.000 79.50 1.0069 1.8812 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run $Y = \frac{Vw * Pb * (td + 460)}{Vd * \left[Pb + \frac{(\Delta H)}{13.6}\right] * (tw + 460)}$ Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter ∆H - Pressure differential across Tdi - Temp of the inlet gas of the dry gas meter orifice Tdo - Temp of the outlet gas of the dry gas meter $\Delta H = \left[\frac{0.0317 * \Delta H}{Pb * (td + 460)}\right] * \left[\frac{(tw + 460) * O}{Vw}\right]^2$ Y - Ratio of accuracy of wet test Td - Average temp of the gas in the dry gas meter meter to dry gas meter Reference Temperature Reading from Individual Thermocouple Input¹ Temp Temperature Average Select Temperature Difference² Temperature **Channel Number** Reading (%) 0° O ●°F 1 2 3 5 6 4 32 32 32 32 32 32 32 32.0 0.0% 212 212 212 212 212 212 212 212.0 0.0% 932 932 932 932 932 932 932 932.0 0.0% 1834 1834 1834 1834 1834 1834 1832 1834.0 -0.1% 1 - Channel Temps must agree with +/- 5°F or 3°C $(\text{Reference Temp}(^{\circ}\text{F}) + 460) - (\text{Test Temp}(^{\circ}\text{F}) + 460)$ Temp Diff = 2 - Acceptable Temperature Difference less than 1.5 % Reference Temp(°F)+460

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console

Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN POLYMERS STACK METER BOX NO. 12 9/25/2019 + 9/26/2019

	Run 1	Run 2	Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.			
0.32 = Molecular weight of oxygen, divided by 100.			
0.44 = Molecular weight of carbon dioxide, divided by 100.			
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.			
% CO ₂ = Percent carbon dioxide by volume, dry basis.	0.0	0.0	0.0
$\% O_2$ = Percent oxygen by volume, dry basis.	20.9	20.9	20.9

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 20.9) + (0.44 * 0) + (0.28 * (100 - (0 + 20.9)))

MWd = (6.69) + (0.00) + (22.15)

MWd =	28.84	28.84	28.84
Tma = Source Temperature, absolute(^o R)			
Tm = Average dry gas meter temperature , deg F.	92.3	76.6	80.8
Tma = Ts + 460			

Tma = 92.25 + 460

Tma =

Ps = Absolute meter pressure, inches Hg.			
13.60 = Specific gravity of mercury.			
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	0.75	1.34	1.45
Pb = Barometric Pressure, in Hg.	29.72	29.81	29.81

552.25

29.77

536.58

29.91

540.83

29.92

Pm = Pb + (delta H / 13.6)

Pm = 29.72 + (0.74625 / 13.6)

Pm =

Yqa = dry gas meter calibration check value, dimensionless.			
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.			
29.00 = dry molecular weight of air, lb/lb-mole.			
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	45.585	57.848	60.409
Y = Dry gas meter calibration factor (based on full calibration)	1.0069	1.0069	1.0069
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.	1.8812	1.8812	1.8812
avg SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. $\rm H_2O$	0.8601	1.1563	1.1991
O = Total sampling time, minutes.	96	96	96

 $Yqa = (O \ / \ Vm \) * SQRT \ (\ 0.0319 * Tma * 29 \) \ / \ (\ Delta \ H@ * Pm * MWd \) \quad * avg \ SQRT \ Delta \ H$

Yqa = (96.00 / 45.59) * SQRT (0.0319 * 552.25 * 29) / (1.88 * 29.77 * 28.84) * 0.86

Yqa = 2.106 * SQRT 510.886 / 1,614.912 * 0.86

Yqa =	1.0187	1.0614	1.0580
Diff = Absolute difference between Yqa and Y	1.17	5.41	5.07

Diff = ((Y - Yqa) / Y) * 100

Diff = ((1.0069 - 1.019) / 1.0069) * 100

Average Diff = 3.88

Allowable = 5.0

APPENDIX F LIST OF PROJECT PARTICIPANTS

The following WESTON employees participated in this project.

Paul Meeter	Senior Project Manager	
Jeff O'Neill	Senior Project Manager	
Matt Winkeler	Team Member	
Steve Rathfon	Team Member	
Kyle Schweitzer	Team Member	