FLUOROMONOMERS MANUFACTURING PROCESS VINYL ETHERS NORTH CARBON BED REMOVAL EFFICIENCY AND DIVISION STACK TEST REPORT TEST DATES: 25 AND 26 MARCH 2019

THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA

Prepared for:

THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306

Prepared by:

WESTON SOLUTIONS, INC.

1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380

April 2019

W.O. No. 15418.002.011

TABLE OF CONTENTS

Section

1.	I. INTRODUCTION		
	1.1	FACILITY AND BACKGROUND INFORMATION1	
	1.2	TEST OBJECTIVES1	
	1.3	TEST PROGRAM OVERVIEW1	
2.	SUM	MARY OF TEST RESULTS4	
3.	PROC	CESS DESCRIPTIONS	
	3.1	FLUOROMONOMERS	
	3.2	PROCESS OPERATIONS AND PARAMETERS	
4.	DESC	CRIPTION OF TEST LOCATIONS	
	4.1	DIVISION STACK	
	4.2	VINYL ETHERS NORTH CARBON BED INLET AND OUTLET7	
5.	SAMI	PLING AND ANALYTICAL METHODS10	
	5.1	STACK GAS SAMPLING PROCEDURES10	
		5.1.1 Pre-Test Determinations	
	5.2	STACK PARAMETERS	
		5.2.1 EPA Method 0010	
		5.2.2 EPA Method 0010 Sample Recovery	
	5.3	GAS COMPOSITION	
6.	DETA	AILED TEST RESULTS AND DISCUSSION	
APPE	NDIX .	A PROCESS OPERATIONS DATA	
APPE	NDIX	B RAW AND REDUCED TEST DATA	
APPE	NDIX	C LABORATORY ANALYTICAL REPORT	

- APPENDIX D SAMPLE CALCULATIONS
- APPENDIX E EQUIPMENT CALIBRATION RECORDS
- APPENDIX F LIST OF PROJECT PARTICIPANTS

LIST OF FIGURES

Title	Page
Figure 4-1 Division Stack Test Port and Traverse Point Location	
Figure 4-2 VE North Process Carbon Bed Inlet and Outlet Schematic	9
Figure 5-1 EPA Method 0010 Sampling Train	11
Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010	
Figure 5-3 WESTON Sampling System	

LIST OF TABLES

Fitle Page
Fable 1-1 Sampling Plan for VEN Carbon Bed Testing
Fable 1-2 Sampling Plan for Division Stack 4
Fable 2-1 Summary of HFPO Dimer Acid VEN Carbon Bed and Division Stack Test Results 5
Fable 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Inlet – Runs 1, 2, and 3
Cable 6-2 Summary of HFPO Dimer Acid Test Data and Test Results Carbon Bed Outlet – Runs 1, 2, and 3
Fable 6-3 Summary of HFPO Dimer Acid Test Data and Test Results Division Stack – Runs 1,
2 and 3

iii

1. INTRODUCTION

1.1 FACILITY AND BACKGROUND INFORMATION

The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse.

Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride, captured as HFPO Dimer Acid, emission testing on the Vinyl Ethers North (VEN) Carbon Bed and Division stack at the facility. Testing was performed on 25 and 26 March 2019 and generally followed the "Emission Test Protocol" reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program.

1.2 TEST OBJECTIVES

The specific objectives for this test program were as follows:

- Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid Fluoride from the Carbon Bed inlet and outlet and Division stack which are located in the Fluoromonomers process area.
- Calculate the Carbon Bed removal efficiency for HFPO Dimer Acid.
- Monitor and record process and emissions control data in conjunction with the test program.
- Provide representative emissions data.

1.3 TEST PROGRAM OVERVIEW

During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured at three locations.

Tables 1-1 and 1-2 provide a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed.

Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test locations. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6.

Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data packages are provided in electronic format and on CD with each hard copy.

Table 1-1Sampling Plan for VEN Carbon Bed Testing

Sampling Point & Location	VEN Carbon Bed				
Number of Tests:	6 (3 Carbon Bed inlet, 3 Carbon Bed outlet)				t)
Parameters To Be Tested:	HFPO Dimer Acid (HFPO-DA)	Volumetric Flow Rate and Gas Velocity	Carbon Dioxide	Oxygen	Water Content
Sampling or Monitoring Method	EPA M-0010	EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests	EPA M	I3/3A	EPA M4 in conjunction with M-0010 tests
Sample Extraction/ Analysis Method(s):	LC/MS/MS	NA^{6}	NA		NA
Sample Size	$\geq 1.5m^3$	NA	NA	NA	NA
Total Number of Samples Collected ¹	6	6	3	3	6
Reagent Blanks (Solvents, Resins) ¹	1 set	0	0	0	0
Field Blank Trains ¹	1 per source	0	0	0	0
Proof Blanks ¹	1 per train	0	0	0	0
Trip Blanks ^{1,2}	1 set	0	0	0	
Lab Blanks	1 per fraction ³	0	0	0	0
Laboratory or Batch Control Spike Samples (LCS)	1 per fraction ³	0	0	0	0
Laboratory or Batch Control Spike Sample Duplicate (LCSD)	1 per fraction ³	0	0	0	0
Media Blanks	1 set ⁴	0	0	0	0
Isotope Dilution Internal Standard Spikes	Each sample	0	0	0	0
Total No. of Samples	105	6	3	3	6

Key:

¹ Sample collected in field.

² Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.

³ Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).

⁴ One set of media blank archived at laboratory at media preparation.

⁵ Actual number of samples collected in field.

⁶ Not applicable.

	Table	1-2	
Sampling	J Plan for	Division	Stack

Sampling Point & Location	Division Stack				
Number of Tests:		3 (3 Division Stack)			
Parameters To Be Tested:	HFPO Dimer Acid (HFPO-DA)	Volumetric Flow Rate and Gas Velocity	Carbon Dioxide	Oxygen	Water Content
Sampling or Monitoring Method	EPA M-0010	EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests	EPA M	13/3A	EPA M4 in conjunction with M-0010 tests
Sample Extraction/ Analysis Method(s):	LC/MS/MS	NA^{6}	NA		NA
Sample Size	$\geq 1.5 m^3$	NA	NA	NA	NA
Total Number of Samples Collected ¹	3	3	3	3	3
Reagent Blanks (Solvents, Resins) ¹	1 set	0	0	0	0
Field Blank Trains ¹	1 per source	0	0	0	0
Proof Blanks ¹	1 per train	0	0	0	0
Trip Blanks ^{1,2}	1 set	0	0	0	
Lab Blanks	1 per fraction ³	0	0	0	0
Laboratory or Batch Control Spike Samples (LCS)	1 per fraction ³	0	0	0	0
Laboratory or Batch Control Spike Sample Duplicate (LCSD)	1 per fraction ³	0	0	0	0
Media Blanks	1 set ⁴	0	0	0	0
Isotope Dilution Internal Standard Spikes	Each sample	0	0	0	0
Total No. of Samples	4 ⁵	3	3	3	3

Key:

¹ Sample collected in field.

² Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.

³ Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).

⁴ One set of media blank archived at laboratory at media preparation.

⁵ Actual number of samples collected in field.

⁶ Not applicable.

2. SUMMARY OF TEST RESULTS

A total of three test runs each were performed on the VEN Carbon Bed inlet and outlet and Division stack. Table 2-1 provides a summary of the HFPO Dimer Acid emissions test results and Carbon Bed removal efficiencies. Detailed test results summaries are provided in Section 6.

It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided in Table 2-1 and in this report include a percentage of each of the three compounds.

 Table 2-1

 Summary of HFPO Dimer Acid VEN Carbon Bed and Division Stack Test Results

	Inlet		Outlet		Removal Efficiency Divisio		n Stack
	g/sec	lb/hr	g/sec	lb/hr	%	g/sec	lb/hr
R1	7.75E-02	6.16E-01	7.84E-04	6.23E-03	99.0	1.03E-03	8.20E-03
R2	6.23E-03	4.95E-02	3.74E-04	2.97E-03	94.0	6.50E-04	5.16E-03
R3	1.13E-02	8.98E-02	8.67E-04	6.89E-03	92.3	1.36E-03	1.08E-02
Average	3.17E-02	2.52E-01	6.75E-04	5.36E-03	95.1	1.01E-03	8.05E-03

3. PROCESS DESCRIPTIONS

The Fluoromonomers area is included in the scope of this test program.

3.1 FLUOROMONOMERS

These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers.

Process emissions are vented to the Division waste gas scrubber system (which includes the secondary scrubber) and vents to the Carbon Bed and then onto the Division Stack. The VE North building air systems are vented to the carbon bed and then onto the Division Stack.

3.2 PROCESS OPERATIONS AND PARAMETERS

The following table is a summary of the operation and products from the specific areas tested.

Source	Operation/Product	Batch or Continuous			
VE North	PPVE	Condensation is continuous. Agitated Bed Reactor and Refining are batch.			

During the test program, the following parameters were monitored by Chemours and are included in Appendix A.

- Fluoromonomers Process
 - VEN Precurser Rate
 - VEN Condensation Rate
 - o VEN ABR Rate

4. DESCRIPTION OF TEST LOCATIONS

4.1 DIVISION STACK

Two 6-inch ID test ports were installed on the 36-inch ID fiberglass stack as shown below. The four vents that enter the top of the stack and the one vent ~11 feet below are catch pots which, under normal process operations, do not discharge to the stack. They are used to vent process gas to the stack in the event of a process upset and are not considered a flow contributor or a disturbance.

Per EPA Method 1, a total of 12 traverse points (six per axis) were used for M-0010 isokinetic sampling. Figure 4-1 provides a schematic of the test ports and traverse point locations.

4.2 VINYL ETHERS NORTH CARBON BED INLET AND OUTLET

Each fiberglass reinforced plastic (FRP) duct at the inlet and outlet of the carbon bed is 34-inch ID. The test ports are located as shown below. Based on EPA Method 1, a total of 24 traverse points (12 per port) were required for HFPO Dimer Acid sampling at both locations. Figure 4-2 provides a schematic of the test port and traverse port locations.

Location	Distance from Flow Disturbance			
Location	Downstream (B)	Upstream (A)		
Carbon Bed Inlet	67 inches	61 inches		
	> 1.9 duct diameters	> 1.8 duct diameters		
Carbon Bed Outlet	58 inches	57 inches		
	> 1.7 duct diameters	> 1.5 duct diameters		
Division Stack	30 feet	9 feet		
	> 10 duct diameters	> 3 diameters		

FIGURE 4-1 DIVISION STACK TEST PORT AND TRAVERSE POINT LOCATIONS

FIGURE 4-2 VE NORTH PROCESS CARBON BED INLET AND OUTLET SCHEMATIC

5. SAMPLING AND ANALYTICAL METHODS

5.1 STACK GAS SAMPLING PROCEDURES

The purpose of this section is to describe the stack gas emissions sampling trains and to provide details of the stack sampling and analytical procedures utilized during the emissions test program.

5.1.1 Pre-Test Determinations

Preliminary test data were obtained at each test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements.

A check for the presence or absence of cyclonic flow was previously conducted at each test location. The cyclonic flow checks were negative ($< 20^{\circ}$) verifying that the test locations were acceptable for testing.

Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures.

Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures.

5.2 STACK PARAMETERS

5.2.1 EPA Method 0010

The sampling train utilized to perform the HFPO Dimer Acid sampling at all three locations was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter.

FIGURE 5-1 EPA METHOD 0010 SAMPLING TRAIN

A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 mL of high-purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and both XAD-2 modules to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train.

HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid.

During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at $100\% \pm 10$. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required) or during midpoint port changes.

5.2.2 EPA Method 0010 Sample Recovery

At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery.

A consistent procedure was employed for sample recovery:

- 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled.
- 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments.
- 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed.
- 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.
- 5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed.
- 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.
- 7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed.
- 8. The silica gel in the final impinger was weighed and the weight gain value recorded.
- 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool.

During the Carbon Bed inlet and outlet test campaign, a Method 0010 blank train was set up near the test location, leak-checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis.

See Figure 5-2 for a schematic of the Method 0010 sample recovery process.

5.2.3 EPA Method 0010 Sample Analysis

Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:

- Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;
- Back-half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;
- Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;
- Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers.

The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough.

The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS.

FIGURE 5-2 HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010 Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries.

TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol.

5.3 GAS COMPOSITION

The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO_2) and oxygen (O_2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3.

For the Division stack test campaign, the sample was collected at the exhaust of the Method 0010 sampling system. At the end of the line, a tee permitted the introduction of calibration gas. The sample was drawn through a heated Teflon[®] sample line to the sample conditioner. The output from the sampling system was recorded electronically, and one minute averages were recorded and displayed on a data logger.

Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintained the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment.

The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to insure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier.

The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run.

FIGURE 5-3 WESTON SAMPLING SYSTEM

6. DETAILED TEST RESULTS AND DISCUSSION

Each test was a minimum of 96 minutes in duration. A total of three test runs were performed at each location.

Tables 6-1 through 6-3 provide detailed test data and test results for the Carbon Bed inlet, the Carbon Bed outlet and the Division stack, respectively.

The Method 3A sampling on all sources indicated that the O_2 and CO_2 concentrations were at ambient air levels (20.9% O_2 , 0% CO_2), therefore, 20.9% O_2 and 0% CO_2 values were used in all calculations.

The carbon bed removal efficiency was calculated based upon the HFPO Dimer Acid inlet and outlet mass emission rates in lb/hr.

TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED INLET

Test Data			
Run number	1	2	3
Location	CBed Inlet	CBed Inlet	CBed Inlet
Date	3/25/2019	3/26/2019	3/26/2019
Time period	1315-1528	0852-1052	1510-1709
SAMPLING DATA:			
Sampling duration, min.	96.0	96.0	96.0
Nozzle diameter, in.	0.215	0.215	0.215
Cross sectional nozzle area, sq.ft.	0.000252	0.000252	0.000252
Barometric pressure, in. Hg	30.02	30.06	30.06
Avg. orifice press. diff., in H_2O	1.01	0.92	1.11
Avg. dry gas meter temp., deg F	78.0	53.5	64.5
Avg. abs. dry gas meter temp., deg. R	538	513	525
Total liquid collected by train, ml	30.1	24.6	31.7
Std. vol. of H ₂ O vapor coll., cu.ft.	1.4	1.2	1.5
Dry gas meter calibration factor	1.0001	0.9920	0.9920
Sample vol. at meter cond., dcf	57.651	49.926	55.610
Sample vol. at std. cond., dscf ⁽¹⁾	56.888	51.262	55.917
Percent of isokinetic sampling	109.4	100.4	99.6
GAS STREAM COMPOSITION DATA:			
CO_2 , % by volume, dry basis	0.0	0.0	0.0
O_2 , % by volume, dry basis	20.9	20.9	20.9
N_2 , % by volume, dry basis	79.1	79.1	79.1
Molecular wt. of dry gas, lb/lb mole	28.84	28.84	28.84
H_20 vapor in gas stream, prop. by vol.	0.024	0.022	0.026
Mole fraction of dry gas	0.976	0.978	0.974
Molecular wt. of wet gas, lb/lb mole	28.57	28.60	28.55
GAS STREAM VELOCITY AND VOLUMETRIC FLC	OW DATA:		
Static pressure, in. H ₂ O	-6.50	-6.50	-6.50
Absolute pressure, in. Hg	29.54	29.58	29.58
Avg. temperature, deg. F	83	62	69
Avg. absolute temperature, deg.R	543	522	529
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	24	24	24
Avg. gas stream velocity, ft./sec.	38.3	36.0	40.2
Stack/duct cross sectional area, sq.ft.	6.31	6.31	6.31
Avg. gas stream volumetric flow, wacf/min.	14478	13610	15217
Avg. gas stream volumetric flow, dscf/min.	13551	13300	14624

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED INLET

l CBed Inlet	2	3
CBed Inlet		
	CBed Inlet	CBed Inlet
3/25/2019	3/26/2019	3/26/2019
1315-1528	0852-1052	1510-1709
19542.00	1442.31	2596.11
12128.59	993.39	1639.22
7.57E-07	6.20E-08	1.02E-07
6.16E-01	4.95E-02	8.98E-02
7.75E-02	6.23E-03	1.13E-02
	CBed Inlet 3/25/2019 1315-1528 19542.00 12128.59 7.57E-07 6.16E-01 7.75E-02	CBed Inlet CBed Inlet 3/25/2019 3/26/2019 1315-1528 0852-1052 19542.00 1442.31 12128.59 993.39 7.57E-07 6.20E-08 6.16E-01 4.95E-02 7.75E-02 6.23E-03

TABLE 6-2 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED OUTLET

Test Data			
Run number	1	2	3
Location	CBed Outlet	CBed Outlet	CBed Outlet
Date	3/25/2019	3/26/2019	3/26/2019
Time period	1315-1529	0852-1052	1510-1709
SAMPLING DATA:			
Sampling duration, min.	96.0	96.0	96.0
Nozzle diameter, in.	0.215	0.215	0.215
Cross sectional nozzle area, sq.ft.	0.000252	0.000252	0.000252
Barometric pressure, in. Hg	30.02	30.06	30.06
Avg. orifice press. diff., in H_2O	1.43	1.38	1.46
Avg. dry gas meter temp., deg F	80.5	51.8	66.4
Avg. abs. dry gas meter temp., deg. R	541	512	526
Total liquid collected by train, ml	38.0	29.8	40.1
Std. vol. of H ₂ O vapor coll., cu.ft.	1.8	1.4	1.9
Dry gas meter calibration factor	1.0027	1.0027	1.0027
Sample vol. at meter cond., dcf	60.365	57.418	59.954
Sample vol. at std. cond., dscf ⁽¹⁾	59.509	59.852	60.776
Percent of isokinetic sampling	104.4	103.3	102.2
GAS STREAM COMPOSITION DATA:			
CO_2 , % by volume, dry basis	0.0	0.0	0.0
O_2 , % by volume, dry basis	20.9	20.9	20.9
N_2 , % by volume, dry basis	79.1	79.1	79.1
Molecular wt. of dry gas, lb/lb mole	28.84	28.84	28.84
H_20 vapor in gas stream, prop. by vol.	0.029	0.023	0.030
Mole fraction of dry gas	0.971	0.977	0.970
Molecular wt. of wet gas, lb/lb mole	28.52	28.59	28.51
GAS STREAM VELOCITY AND VOLUMETRIC FLO	DW DATA:		
Static pressure, in. H ₂ O	3.50	3.50	3.50
Absolute pressure, in. Hg	30.28	30.32	30.32
Avg. temperature, deg. F	86	68	72
Avg. absolute temperature, deg.R	546	528	532
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	24	24	24
Avg. gas stream velocity, ft./sec.	41.3	40.3	42.0
Stack/duct cross sectional area, sq.ft.	6.31	6.31	6.31
Avg. gas stream volumetric flow, wacf/min.	15630	15245	15895
Avg. gas stream volumetric flow, dscf/min.	14856	15097	15491

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

TABLE 6-2 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS CARBON BED OUTLET

TEST DATA			
Run number	1	2	3
Location	CBed Outlet	CBed Outlet	CBed Outlet
Date	3/25/2019	3/26/2019	3/26/2019
Time period	1315-1529	0852-1052	1510-1709
LABORATORY REPORT DATA, ug.			
HFPO Dimer Acid	188.630	89.00	204.25
EMISSION RESULTS, ug/dscm.			
HFPO Dimer Acid	111.91	52.50	118.66
EMISSION RESULTS, lb/dscf.			
HFPO Dimer Acid	6.99E-09	3.28E-09	7.41E-09
EMISSION RESULTS, lb/hr.			
HFPO Dimer Acid	6.23E-03	2.97E-03	6.89E-03
HFPO Dimer Acid (From Inlet Data)	6.16E-01	4.95E-02	8.98E-02
EMISSION RESULTS, g/sec.			
HFPO Dimer Acid	7.84E-04	3.74E-04	8.67E-04
Carbon Bed Removal Efficiency, %	99.0	94.0	92.3

TABLE 6-3 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK

Test Data			
Run number	1	2	3
Location	Divison Stack	Divison Stack	Divison Stack
Date	3/25/2019	3/26/2019	3/26/2019
Time period	1315-1528	0852-1052	1510-1709
SAMPLING DATA:			
Sampling duration, min.	96.0	96.0	96.0
Nozzle diameter, in.	0.160	0.160	0.160
Cross sectional nozzle area, sq.ft.	0.000140	0.000140	0.000140
Barometric pressure, in. Hg	29.92	29.96	29.96
Avg. orifice press. diff., in H_2O	1.34	1.39	1.42
Avg. dry gas meter temp., deg F	80.6	46.5	58.5
Avg. abs. dry gas meter temp., deg. R	541	507	519
Total liquid collected by train, ml	30.7	26.7	20.6
Std. vol. of H_2O vapor coll., cu.ft.	1.4	1.3	0.97
Dry gas meter calibration factor	1.0010	1.0010	1.0010
Sample vol. at meter cond., dcf	51.535	51.014	51.633
Sample vol. at std. cond., dscf ⁽¹⁾	50.532	53.465	52.864
Percent of isokinetic sampling	97.5	98.9	97.3
GAS STREAM COMPOSITION DATA:			
CO ₂ , % by volume, dry basis	0.1	0.0	0.0
O_2 , % by volume, dry basis	21.0	21.0	21.2
N_2 , % by volume, dry basis	79.1	79.1	79.1
Molecular wt. of dry gas, lb/lb mole	28.84	28.84	28.84
H_20 vapor in gas stream, prop. by vol.	0.028	0.023	0.018
Mole fraction of dry gas	0.972	0.977	0.982
Molecular wt. of wet gas, lb/lb mole	28.53	28.59	28.64
GAS STREAM VELOCITY AND VOLUMETRIC FLOW I	DATA:		
Static pressure, in. H ₂ O	-0.70	-0.70	-0.70
Absolute pressure, in. Hg	29.87	29.91	29.91
Avg. temperature, deg. F	83	63	69
Avg. absolute temperature, deg.R	543	523	529
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	12	12	12
Avg. gas stream velocity, ft./sec.	68.3	68.2	69.0
Stack/duct cross sectional area, sq.ft.	7.07	7.07	7.07
Avg. gas stream volumetric flow, wacf/min.	28976	28913	29265
Avg. gas stream volumetric flow, dscf/min.	27357	28516	28665

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

TABLE 6-3 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK

TEST DATA			
Run number	1	2	3
Location	Divison Stack	Divison Stack	Divison Stack
Date	3/25/2019	3/26/2019	3/26/2019
Time period	1315-1528	0852-1052	1510-1709
LABORATORY REPORT DATA, ug.			
HFPO Dimer Acid	114.45	73.19	150.62
EMISSION RESULTS, ug/dscm.			
HFPO Dimer Acid	79.97	48.33	100.60
EMISSION RESULTS, lb/dscf.			
HFPO Dimer Acid	4.99E-09	3.02E-09	6.28E-09
EMISSION RESULTS, lb/hr.			
HFPO Dimer Acid	8.20E-03	5.16E-03	1.08E-02
EMISSION RESULTS, g/sec.			
HFPO Dimer Acid	1.03E-03	6.50E-04	1.36E-03

APPENDIX A PROCESS OPERATIONS DATA

Outer	3/25/2019					-									-																			
Titte		80	i			9	900			10	00	1			00				200	1	13	00	4	14	00		1	. 15	00	57		1	600	
Stack Testing																							Rut	1 (1315-152	28)				-					
IN FPO		778	545 - C	e	а 	rat.	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19		S	9 <u>1</u>	64 - C		ал — 1 Г	S	30 - 64		й A	N	- 66	300 (A)	(1000	60 	<i>an -</i> 1		с	
VEN Product		PHE .																																
VEN Precursor																																		
VEN Contensation (HFPO)																																		
VEN ADR		27. N		s	. s	(r	3 1	8	90		an 2			-	8 - 72		1		-	- 8		8	 6 V2			<i></i>	19. – – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 2			1.5	÷		a	1
VEN Refining																																		
Stripper Column Vent		112 - D						·	~				· · · · ·							9.0 DA	· · · ·													
Division W/S Reciculation Flow																		15000	ikg/h				 in 18		÷	271	46 - 3	с – ж	i	9 1	39 S	766	a	
Division WGS Inter Flaw	28 kgh																																	

Date	3/26/2019	1		-																								1								
Time	G	800	6			90	90			1000	l		1100	2.1			1	200	0.0			1300		 14	ŝ)			1526			10	200	-	1	700	22
Stack Testing							1	lun 2 (8 52 - 10	21																					Run 3 (15	10-1709					
HEPO												 					-									 _										
VEN Product	18																			PPVE .																
VEN Precursor				83																														1		1
VEN Condeniation (HEPO)																																				
VEN ABR																															Bet	tuor				
VEN Rafining	1																1																			1 m
Scripper Column Vent																															7 - 7					
Division WGS Recirculation Flow	Aba A											- 12	15000 kg/h																							
Division WGS Intel Flow	120 ig/t									140 kg/m						筋線b			63	kg/h																

APPENDIX B RAW AND REDUCED TEST DATA

CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED INLET

Test Data

Run number	1	2	3
Location	CBed Inlet	CBed Inlet	CBed Inlet
Date	3/25/2019	3/26/2019	3/26/2019
Time period	1315-1528	0852-1052	1510-1709
Operator	RS/JL	RS/JL	RS/JL
Inputs For Calcs.			
Sq. rt. delta P	0.66432	0.63766	0.70790
Delta H	1.0125	0.9221	1.1071
Stack temp. (deg.F)	83.2	62.2	68.8
Meter temp. (deg.F)	78.0	53.5	64.5
Sample volume (act.)	57.651	49.926	55.610
Barometric press. (in.Hg)	30.02	30.06	30.06
Volume H ₂ O imp. (ml)	14.4	7.9	16.2
Weight change sil. gel (g)	15.7	16.7	15.5
% CO ₂	0.0	0.0	0.0
% O ₂	20.9	20.9	20.9
% N ₂	79.1	79.1	79.1
Area of stack (sq.ft.)	6.305	6.305	6.305
Sample time (min.)	96.0	96.0	96.0
Static pressure (in.H ₂ O)	-6.50	-6.50	-6.50
Nozzle dia. (in.)	0.215	0.215	0.215
Meter box cal.	1.0001	0.9920	0.9920
Cp of pitot tube	0.84	0.84	0.84
Traverse points	24	24	24

er wee				<u>۵</u> ۲,	AL	- Starl	ting points	for each	port				ं ₆ जै आ	
ISOKIN	ртіс і	гігі п г	ATA CHE	ידיקני	C P	TDA N	T - 4b - J 00'		IN	• 1				
Gloot			JAIA SHE	LL I Staal: Coudi	Hama -			IU - HFPC	J Dimei	·Acid			Page of	
W.O.#		15418.002.011			ned Actual	Meter Box ID	02		1	_		K Factor	2.32	
Project ID	<u>kan ing p</u>	Chemours	% Moisture	2		Meter Box De	ын 🛃	1.9271	1.9213			Initial	Mid-Poir	 it Final
Mode/Source ID)	Carbon Bed	Impinger Vol	(ml)		Probe ID / Le	ength	\$706 / PTO	707	Sample Tra	in (ft³)	0.005	0.007	0.012
Samp. Loc. ID		IN	Silica gel (g)			Probe Materi	al	Boro	0	Leak Check	@ (in Hg)	5"	15"	5"
Run No.ID		1	CO2, % by V	ol O	~/	Pitot / Therm	ocouple ID	itot = 699	<u> </u>	Pitot leak ch	eck good	(yes)/ no	1 no	ves/no
Date ID		25MAR2019	Temperature	(°F) 20.		Nozzle ID	ent -	215	<u> </u>	Pitot Inspec	tion good	(yes)/ no	(ves) / no	
Source/Location		VE North Inlet	Meter Temp	(°F) 5		Nozzle Meas	urements . 2	15 . 215	. 215	Temp Che	ick	Pre-T	est Set	Post-Test Set
Sample Date	3-	- 25 - 2019	J Static Press ((in H₂O)	-6.5 J	Avg Nozzle D	Dia (in)	,215	V	Meter Box 1	emp		•	H restant
Baro. Press (in H	lg)	30.02	L Amblant Tam	- 00	709	Area of Stack	(ft²)	6.305	J	Reference 1	emp			
Operator	<u></u> K-	<u>s / Jr _</u>		р(18	Sample Time		<u> </u>	<u>V. </u>	Pass/Fail (+	/- 2")	Pass	/ Fail	Pass / Fail
						Total Havers			V	_ Temp Chan	ge Response	i <u>y</u> es	/ no	yes / no
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	CT & DIA	DGM OUTLET T	EMP	FILTER	IMPINGER	SAMPLE			
POINT NO.	TIME (min)	(plant time)	PRESSURE Delta	PRESSURE	READING (ft ³)	TEMP (°E)	(°F)	PROBE TEMP /*E	BOX TEMP	EXIT TEMP	TRAIN VAC	XAD EXIT		COMMENTS
	0	13:15]	P (in H20)	Delta H (in H2O)	340 244			1 - Mi (1	′ (F)	(oF)	(in Hg)	1.500 (07		
AI	4		.40	,92	342.6	84	76	na	120	4.5	7.5	29		
Z	8		. 38	.88	344.9	RS	76	171	(2)	65	2.	29		
3	12		. 39	,90	347.1	84	11	122	121	65	2.5	40		
4	16		. 39	, 90	349.4	84	78	120	120	65	2.5	40		
5	20		.38	. 88	351.6	84	78	121	122	64	2	38		
6	24		,36	,83	353-8	84	78	120	119	61	2	38		1 (2)
7	28		.36	.83	356.0	84	- 78	(19	120	59	2	37		2,00
8	32		to	.92	358.3	84	78	120	121	57	2.5	37		
9	36		.44	1,0	360.7	84	80	122	120	58	2.5	38		
10	40		.48	1.1	363.2	83	79	121	120	57	3	38		
		White C	-49	1.1	365.6	84	80	119	120	57	3	38		
16	-10	<u>M.03</u>	- 44		364.997	84	80	121	120	58	3	38		DGM= 367.997
8 1	4	14:40	. 48	1.1	3705	07			120	50	16			
2	8		.45	10	273.4	<u>62</u>	78	121	120	57	3.5	39		
3	12		.45	1.0	375.7	03	72	121	120	53	3	27		
4	16		.42	.47	377.9	82	78	121	122	54	3	37		
5	20		.42	.97	380.4	82	77	122	121	55	3	37		
6	24		44	1.0	382.7	83	78	122	121	55	3	37		30.000
7	28		- 56	1.3	385.4	83	78	121	120	57	4	37		15,770
8	32		. 53	1.2	388.1	83	76	121	121	53	3.5	37		
4	36		51	1.2	390.8	83	78	120	120	54	3.5	37		
10	<u> </u>			<u>[.1</u>	393.3	82	78	120	120	53	3,5	36		109.4
	<u> </u>	15.20	47	<u> </u>	393.9	82	78	121	121	54	3,5	37		
	שי	15 28 N	Avg Delta P	L.O Avg Delta H	Total Volume 1	BL AVE TO	- 18 Ave Trail	- <u>120</u>	LI9 Min/Max	54	3.5	37		7.4
			_ นุนุ่2ๆ √	1.012.5 V	57.651	83 ZOB	78.0411	11 110 127		65		MIN/Max		· · · · ·
			Avg Sqrt Delta P	Avg Sqrt Del H	Comments:			W 1031125			EPA Method	0010 fmm FP	A SW-846	13520
			16643 23 V	1.00448	I II mic	point	leak chec	¥			- UW-040	1, G		
				11	DGM	06M = 368. probe change					change	nge at midpoint 56.1		
	VIU		VV	VV	03	367 9	97 -> 3/2	9 259		•	•		•	
			-		٣	،	71.7 4							ann
						1	· LUL T							M

ilent V.O.# Iroject ID Mode/Source ID amp. Loc. ID tun No.ID est Method ID ate ID ource/Location ample Date aro. Press (in Hg)		Chemours 15418.002.011 Chemours Carbon Bed	% Moisture	Stack Condit Assur	tions	Meter Box ID	Δ							
iroject ID Mode/Source ID amp. Loc. ID Run No.ID est Method ID late ID ource/Location ample Date aro. Press (in Hg)		Chemours Carbon Bed	% Moisture	Assul		Mater Dev. V		0 24		-		K Factor	2 74	
Mode/Source ID amp. Loc. ID tun No.ID est Method ID ate ID ource/Location ample Date aro. Press (in Hg)		Carbon Bed	/* !!!!!!!!	0.000	neu Aciuai	Meter Box Tr		<u>. 992</u>	v	-		L		
amp. Loc. ID tun No.ID est Method ID late ID ource/Location ample Date aro. Press (in Hg)			Impinger Vol	(mi)		Probe ID / Le	nath	<u>1.268</u>	· · · · · ·	Sample Tra	in (ft ³)			
tun No.ID est Method ID ate ID ource/Location ample Date aro. Press (in Hg)		IN	Silica gel (g)			Probe Materia	al i	Born	1	Leak Check	@ (in Ha)	15."	<u> </u>	0.000
est Method ID ate ID ource/Location ample Date aro. Press (in Hg)		2	CO2, % by Vo	ol O	N.	Pitot / Thermo	ocouple ID			Pitot leak ch	eck good	0 1 no	Nes / no	res D no
ate ID ource/Location ample Date aro. Press (in Hg)		M0010	O2, % by Vol	20.	q J	Pitot Coefficie	ent	(0.84)		Pitot Inspec	tion good	(PBB) / no	Jes / no	es n
ample Date aro. Press (in Hg)		P26MAR2019	Temperature Meter Temp /	(°F) <u>60</u>		Nozzle ID	and the second	, 215		Method 3 S	stem good N	Aves + 110	yes 7 no	yes T no
aro. Press (in Hg)			Static Press (in H ₂ O) 60		NOZZIE Measu	$\frac{215}{10}$	-215	215	Temp Che	ck	Pre-Te	est Set	Post-Test S
		30.06			<u>-6.5 v</u>	- Area of Stack	(ff ²)	- 315	<u>×</u>	- Meter Box I	emp			
perator	R	SIJL	Ambient Tem	p (°F)	50	Sample Time		96 1	v	- Pass/Fail (+	emp /- 2 ⁰)	Paer	/ Fall	Does / Eal
				alcharthaddoor	<u></u>	Total Travers	e Pts	24	`	Temp Chan	e Response	i ves	/ no	Ves / no
														1
TRAVERSE .	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM OUTLET TEMP	PROBE	FILTER	IMPINGER	SAMPLE	YAD SYLT		and the second
OINT NO.	me (nin)	(plant time)	PRESSURE Delta	PRESSURE	READING (ff")	TEMP (°F)	(oF)	TEMP (oF)	BOX TEMP	EXIT TEMP	TRAIN VAC	TEMP (F)		COMMENTS
ere besse as si	0	8:52	a\$		536.858				(7)	(0F)	(in Hg)			
A I	4		4.36	4.76.80	538.8	58	51	120	119	46	3	44		
2	8		- 42	. 94	540.9	60	52	119	119	46	3.5	46		
3	12		•41	. 91	543.0	60	52	120	121	47	3.5	46		
ч	16		. 43	.96	545.1	61	53	119	119	51	3.5	46		
5	20		. 43	.96	547.2	62	53	119	119	53	3.5	46		
6	24		્ષુબ	.98	5પલ.મ	62	54	120	120	53	3.5	46		
7	28		,મધ	.98	551.6	62	54	120	121	54	3.5	46		25 47
8	32		.40	.98	553.8	62	54	120	120	55	3.5	46	······,	p > 0 - 1 - 1
1	36		45	1.6	555.9	62	54	120	120	55	3.5	46		
16	40		,42	्वम	558.0	62	54	120	120	56	3.5	46		
<u> </u>	<u> </u>		<u>,</u> 4\$	1.0	560.2	62	54	120	120	56	3.5	41		
12	48	9:40	.43	.96	562.336	62	54	120	120	56	3.5	47		
<u>B</u> <u> </u>	<u> </u>	10:04	. 32		564.3	62	51	119	120	48	3	44		
2	8		34	.76	566.3	63	52	120	120	48	3	39		
3	12		.30	.67	568.0	63	53	119	120	47	3	37		
	16		, 30	. 67	569.8	63	53	120	121	48	3	37		
	20		.71	<u>, 60</u>	511.4	63	53	120	121	48	3	37		
			, 25		573.2	63	53	121	119	47	2.5	37		2494
	28		, 14	.65	514.8	63	54	121	120	41	3	37		0.00
8	26			1.2	5/1.2	64	55	120	120	47				
	<u> </u>		53¥	<u></u>	517.1	64	55	120	120		- "	38		
l¢	 		52	1.2	504 5	1.1	33	140	120	18	4	38		j
	49	10:52	50	2.1	501.4-0	62	<u> </u>	120		49	4	38		
			Avg Delta P.	Avg Delta H/	Total Volume	Ava Ts /	Ava Tm	Min/May	170 Min/May	<u>49</u> May	T May Van	1 J9		
no			. 4116 J	, 9220	V 49.926	62.16	53.45.	119/121	119/121	56	4	37/44		
<u> </u>			Avg Sqrt Delta P	Avg Sqrt Del H	Comments:	1 paint	In Y VILY	<u></u>		<u> </u>	EPA Method	0010 from EP/	\ SW-846	., T.
			(63 167 3	1740			inch Cuch						100,	4 40

ISOKINETIC FIELD	DATA	SHEET
-------------------------	------	-------

EPA Method 0010 - HFPO Dimer Acid

Client			Chemours		Stack Condi	itions	Meter Box II			5 Dimer	Aciu			Page <u></u> of	1
W.O.#			15418.002.011		Assu	med Actual	Meter Box		<u>Ac 29</u>				K Factor	7 71	
Project	ID		Chemours	% Moisture	3	, iotadi	Meter Box D			<u>v</u>	-		L	2.21	
Mode/	Source II	D	Carbon Bed	Impinger Vo	l (ml)		Prohe ID / L	enath 2 M	<u>(• 8</u> 63) Sent Secondale en La realitation		4 (1 3)	Initial	Mid-Point	Final
Samp.	Loc. ID		IN	Silica gel (g)			Probe Mater	fal	Para			un (π.)	0.010	0.003	0.008
Run No	o.ID		3	CO2, % by \	/ol	7	Pitot / Therm				Leak Check	(@ (in Hg)	151	6"	6"
Test M	ethod ID		M0010	O2, % by Vo	20	a /	Pitot Coeffici	ient	101		Pitot leak c	песк дооа		jes / no	/ no
Date ID)	-2	25MAR2019	Temperature	∍(°F) 1 0	· · · ·			0.04		Pitot Inspec	tion good	ves / no	0763 / no	no
Source	/Location	n 🔤	VE North Inle	Meter Temp	(°F) 65		Nozzle Meas			1 212		lystem good	yes 7 no	100 / NO	yes T no
Sample	Date		3-26-20	DIA J Static Press	(in H ₂ O)	5 - 1	Ava Nozzle (Dia (in)	1 215	1. 215		BCK	Pre-I	est Set	Post-Test Set
Baro. F	ress (in l	Hg)	30.00	<u> </u>	transformer and the		Area of Stac		215	<u> </u>		iemp -			
Operat	ог		RS 1 52	Ambient Ten	np (°F)	58	Sample Time	<u> </u>	6.305			lemp	- Andrew States		
					interprete de la la		Total Traver	se Pts	96	<u>v</u>	-Pass/Fail (1	-7-2)	Pass	/ Fail	Pass / Fail
											_ Temp Char	ge Response	' yes	/ no	yes / no
	# DOF	SAMPLE	CLOCK TIM	VELOCITY	ORIFICE	DRY GAS METER	2	DOM OUTLET TEN		din states					
ECONT ECONT	VERSE	TIME (min) (plant time)	PRESSURE Delta	PRESSURE	READING (ff ³)	STACK	(oF)	PROBE	PILTER		SAMPLE	XAD EXIT		
an each	a nc .			P (in H2O)	Delta H (in H2O)	TEMP (°F)	100.1	TEMP (oF		EAU IEMI		TEMP (F)		COMMENTS
		<u> </u>	15:10			587.615					(eer)	factor and the		•	
A	1	4		. 43	.95	589.7	61	59	119	121	55	<u>u</u>	40		
	2	8		. 41	190	591.8	68	59	120	1.0	57	3.5	27		
	3	12		. 47	1.0	594.0	60		120		54	5.5	31	<u>`</u>	
	ч	16		53	1.2	501 1	1 60	60	119	120	21	4 4	38		
	5	20		55	12	500.0	68	61	120	120	52	4	38		
		24			1.0	348.8	68	62	120	121		4	38		
<u> </u>	-+		- <u> </u>	76.	1.2	601.3	68	62	120	121	54	4	38		
<u> </u>	<u> </u>	20		54	1.2	603.7	68	63	120	120	54	4	38		
	8	32		. 60	1.3	606.1	68	64	126	120	54	4	149		
	9	36		.57	1.3	608.7	68	64	120	121	54	μc	29		
	10	40		.65	1.4	611.3	68	65	120	120	53		20		
	11	્રામ		.67	1.5	614.0	68	id.	120	100	62	7.5	- 3-1		· · · · ·
	12	48	15:58	.68	1.5	10110 741	10	()	120		23		- 34		
							50	- 66	1.00	119	54	5	40		
a	1	U U	14.1.1.1	112				<u> </u>							
	2	0	10.21	(12	195	619.0	10	64	120	120	57	3.5	41		
<u> </u>		6		+ 43	.97	621.2	70	65	120	120	54	3,5	39		
<u> </u>	<u> </u>	12		.43	.45	623.3	70	66	119	121	53	3.5	37		
	- 4	16		. 40	.88	625.4	70	67	120	120	55	3	37		
	5	26		.38	.83	627.4	70	67	120	121	56	2	26		
	6	24		- 39	.86	629.5	70	67	120	119	51.	36	34		
	7	28		.50	1.1	631.8	70	67	171	110	57		20		
	8	32		.51	til	634.1	70	67	170	120	57		31		
	9	36		.51	1.1	1215	70	47	120	120	57	<u> </u>	31		
	16	40		57		(20.0		61	120	120	57	<u> </u>	_ 37		
	11	้นนี่		60		6.78.9	67	61	120	120	56	4	38		
	12	118	1 2.00			641.1	69	67	120	120	_ 56_	4.5	37		
		70	11:04 -			643.335	64	67	120	118	56	4	37		
	·····				Avg Deita H		Avg Ts	Avg Tm	Min/Max	Min/Max	Max	Max Vac	Min/Max		
	<u>\``\</u> }	NEW		Ave Set Detter	1.1070	22.616 N	68.83	<u>64,54 V</u>	119/121	118/121	57	5	36/41		
		exillentitions,		Avy Synt Dena P	Avg Sqrt Del H	Comments:	donint					EPA Method	0010 from EPA	SW-846	Ν
				, 1079 V	1.0484		- r**** (ingi checp							

NGM = 616.746 → 616.856

own

.

SAMPLE RECOVERY FIELD DATA

EPA Method 0010 - HFPO Dimer Acid

Client	_	Cherr	iours		W.O. #		15418.002.011			
Location/Pla	int	Fayettev	ville, NC	Source	e & Location	n	VE Nort	h inlet		-
Run No.	<u> 1 </u>				Sample Date	3/25	18	Recover	y Date	3/25/6
Sample I.D.	Chemours - C	arbon Bed - IN	- 1 - M0010 -	_	Analyst	500/1	45	Filter Nu	umber	NA
	[Impino					
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20						Silica Gel	
Final	P	105	103	0		312,8	297.5		315.	7
Initial	0	100	100	D		306.9	297,0		300	
Gain	Ø	5	3	0		5.9	.5	R4.4	15,7	30.1
Impinger Cold	or G	11 cle	128		Labeled?	<u> </u>		14.41	· V	_
Silica Gel Cor	ndition	ster 9	35%		Sealed?	<u> </u>				_
Run No.	2				Sample Date	3/26/	19	Recover	v Date	3/26/19
Sample I.D.	Chemours - C	arbon Bed - IN	- 2 - M0010 -		Analyst	That	MS	Filter Ni	imber	1) ia
			,		Impine		<u> </u>			
	1	2	3	4	5	6	7	Imp Total	8	Total
Contents	Empty	HPLC H20	HPLC H20	•		<u> </u>		imp.rotar	Silica Gel	TOLLI
Final	ュ	103	190	0		307.7	303,5		3/6.	7
Initial	U	100	100	0		304.8	3036		300	
Gain	2	3	0	δ		2.9	0	79	16.7	27.6
Impinger Cold	or <u>C</u>	110	en		Labeled?			V	\checkmark	
Silica Gel Cor	ndition <u>I</u>	Je.	D%		Sealed?					_
			_/	·····		7.171	110			1.1.1.
Run No.	3				Sample Date	9120	19	Recover	Date	5/26/4
Sample I.D.	Chemours - C	arbon Bed - IN	- 3 - M0010 -		Analyst	Tho	145	Filter Nu	mber	NA
				-	Imping	jer /		. . I		
Contonto	Empty		3	4	5	6	1	Imp. l'otal	8	Total
Final	سم سم	LAC	1.90	6		300.7	299 1		Silica Gel	•
Final	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	/00	0		2945	2991		712,2	
Gain		100 S		<u>م</u>		(07-	0	1102	$\frac{300}{1 \int 5}$	
Impinger Colo		1 010	2w		I abeled?				120	L]
Silion Col Cor	$\frac{1}{1}$	$\frac{1}{1}$	0/		Seele-10	7				-
Silica Gel Cor		<u>u 9</u>	\$ /\$		Sealed?					<u> </u>

Check COC for Sample IDs of Media Blanks

SAMPLE RECOVERY FIELD DATA

EPA Method 0010 - HFPO Dimer Acid

Client	_	Cher	nours	-	W.O. #		15418.	.002.011				
Location/Pla	ant	Fayette	ville, NC	Source	e & Location		VE Nor	th Inlet		-		
Run No.	BT				Sample Date	3/26/2	<u>-</u> 019	Recove	ery Date	3/26/19		
Sample I.D.	Chemours - (Carbon Bed - IN	I - BT - M0010 -	•	Analyst			Filter N	lumber			
		<u> </u>			Imping	er	T					
			3	4	5	6		Imp.Total	8	Total		
Contents	Empty	HPLC H20	HPLC H20		_				Silica Gel			
Final	0.8	98	94-96	2					300.2			
Initial	0	100	100	0					300			
Gain	8	-2	-4	2				પ	0.2	4.2		
Impinger Colo	or <u>C</u>	lear	_		Labeled?	YES						
Silica Gel Cor	ndition <u></u>	0000			Sealed?	YES				_		
Run No	BT Sample Date Recovery Date											
Comple I D	<u> </u>				Sample Date Recovery Date							
Sample I.D.	Chemours - C	arbon Bed - IN	- BT - M0010 -		Analyst Filter Number							
	1	2	3	4		er 6	7	Imp Total	0	Tatal		
Contents	Empty	HPLC H20	HPLC H20	•			· · · ·	imp.rotai	o Silica Gel	Total		
Final												
Initial		100	100						300			
Gain												
Impinger Colo	r				Labeled?							
Silica Gel Con	dition				Sealed?							
Run No.	BT			:	Sample Date			Recover	y Date			
Sample I.D.	Chemours - C	arbon Bed - IN	- BT - M0010 -		Analyst		<u> </u>	Filter N	umber			
	1	2	3 1	A		ər e	7		0			
Contents	Empty	HPLC H20	HPLC H20		0	/	imp. i otai	8 Silica Gel	lotal			
Final												
Initial		100	100						300			
Gain												
Impinger Color	r				Labeled?							
Silica Gel Con	dition				Sealed?							

Check COC for Sample IDs of Media Blanks

CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS CARBON BED OUTLET

Test Data

Run number	1	2	3
Location	CBed Outlet	CBed Outlet	CBed Outlet
Date	3/25/2019	3/26/2019	3/26/2019
Time period	1315-1529	0852-1052	1510-1709
Operator	KA/AS	KA/AS	KA/AS
Inputs For Calcs.			
Sq. rt. delta P	0.72388	0.71922	0.74565
Delta H	1.4258	1.3846	1.4621
Stack temp. (deg.F)	85.5	67.7	72.2
Meter temp. (deg.F)	80.5	51.8	66.4
Sample volume (act.)	60.365	57.418	59.954
Barometric press. (in.Hg)	30.02	30.06	30.06
Volume H ₂ O imp. (ml)	18.7	14.8	20.3
Weight change sil. gel (g)	19.3	15.0	19.8
% CO ₂	0.0	0.0	0.0
% O ₂	20.9	20.9	20.9
% N ₂	79.1	79.1	79.1
Area of stack (sq.ft.)	6.305	6.305	6.305
Sample time (min.)	96.0	96.0	96.0
Static pressure (in.H ₂ O)	3.50	3.50	3.50
Nozzle dia. (in.)	0.215	0.215	0.215
Meter box cal.	1.0027	1.0027	1.0027
Cp of pitot tube	0.84	0.84	0.84
Traverse points	24	24	24

						CI	30	UT							
ISOKINE	TIC F	IELD D	ATA SHE	ET		EPA N	/ Iethod	0010 -	HFPO) Dimer	Acid			Page 1 o	of 1
Client		Chemours]	Stack Condit	ions	Meter Box ID)	28		Dimer	11014				
W.O.#	1	5418.002.011		Assun	ned Actual	Meter Box Y	, .	1.002	7 1		_		K Factor	2.5 2.6	6
Project ID		Chemours	% Moisture	4		Meter Box D	el H	2.08	:95		-		Initial	Mid-Poir	nt Final
Mode/Source ID		Carbon Bed	Impinger Vol	(ml)		_Probe ID / Le	ength	-phqu	- P710	<u>1.6 · · · </u>	Sample Trai	in (ft [*])	0.017	0.010	0,95
Samp. Loc. ID Run No.ID		1	CO2 % by V		7	Probe Materi Pitot / Therm	iai Iocounie 10	-0-6 all	D TIO		Leak Check	@ (In Hg)	15	<u> </u>	6
Test Method ID		M0010	O2, % by Vol	209	ý –	Pitot Coeffici	ent	1 2 1	0.84]	Pitot Inspec	tion good	/ves/ino	Ves / nc	0 /ves/no
Date ID		25MAR2019	Temperature	(°F) 80	85.5	Nozzle ID	a antiga d	.215			Method 3 S	ystem good	yes / no	yes / nx	yes / no
Source/Location	VE	North Outlet	Meter Temp	(°F) <u>67</u>	80.5	Nozzle Meas	urements	.215	1215	.215	Temp Che	ck	Pre-T	est Set	Post-Test Set
Sample Date	3/12	5/19 V	Static Press ((in H₂O)	<u> </u>	Avg Nozzle E	Dia (in)		<u>215 y</u>		_Meter Box T	emp	•		
Operator	RAT	AG V	Ambient Tem	np (°F) 76		Sample Time	κ(π ⁻) _	<u> </u>	<u>>></u> →		_Reference Pass/Fail (+	emp /- 2 ⁰)	Doce	7 Eall	Doer / Foll
00000				<i></i>	Total Travers	- se Pts	24			Temp Chan	de Response '		7 no	Ves / no	
						-				-					
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM OUTL	ET TEMP	PROBE	FILTER	IMPINGER	SAMPLE			COMMENTS
POINT NO.	IME (min)	(plant time)	PRESSURE Delta P (in H2O)	PRESSURE Delta H (in H2O)	READING (ff')	TEMP (°F)	(°F	9	TEMP (°F)	BOX TEMP	EXIT TEMP	TRAIN VAC	TEMP (F)		Comment to
	0	1315 1			110.033	-					(or)	(in ng)			
AI	4	•	47.52 KA	1-2 1.4194	112.5	86	78		120	120	66	3	66		
2	8		. 57	1,5	115.2	86	79		121	121	64	3	59		
3	12		.52	1.4	117.7	8/	80		121	120	62	3	55		
4	16		.47	42	20.	86	80		119	20	59	3	55		
5	20		1.52	1.4	1257	86	80		121	119	56	3	53	L	76-1~
6	19		- 5/	1.2	125:5	1486 86	80		120	121	58	3	55		17,022
	28		<u>· 5'L</u>		121.5	36	8		121	119	27	13	56		· · · · · · · · · · · · · · · · · · ·
a	32		.50	12	120 7	46	61		100	14	58	<u>−</u> ,2	50		
10	10 10		40	143	1250	96	82		10	<u>, (1-1</u>		<u>, </u>	26		
	4 4 –		44		1375	86	83		120	11.12	10	2	54		· · · ·
12.	48	1403	39	10	130,655	86	\$3		10.1	lia	20	1 2	57		717 021
	<u> </u>			<u> </u>					101				52		139 585 75
8	04	1440	.23	.60	141.5	84	81		121	121	65		55		0.0(3
2	48		.25	,65	+714143,2	85	8		121	121	65	1 1	54		MAIC
3	812		ら	07,	45.0	85	81		12-1	120	63		53		
4	H2 16		.30	.78	146.0	85	80		121	120	6		52		742
5	1620		, 33	. 89	149.0	125	80		119	20	60	2	53		20 0
INA 6	2024		.40	1.0	151.2	85	80		119	120	59	2	53		92,31
	2428		74	1,9	154.0	85	80		120	121	59	5_	52		
8	2001		,89	2.2	157.2	75	20		121	120	58	5	512		
10	9/36		.40		160.5	GKADE	<u> </u>		120	119	7/ [7]	12	32		
	44	.		1 42 6	163.0	10.85	90-			120	171	15 <u>-</u>	55		1/24.67
1-12-	- મંજ્ર	15281	, <u>15</u> KA	250,404	170508	86	80		12.1	120	63	12	55		200
		() - 0 .	Avg Delta P	Avg Delta H	Total Volume	Avg Ts /	Avg ⁻	Tm,	Min/Max	Min/Max	Max	Max Vac	J O Min/Max		
W/AS			,546 V	1,426 V	60.495	85.5	80.5	J	119/121	11/121	66	5	52/66	l	112010
	SOUTHONS,		Avg Sqrt Delta P	Avg Sqrt Del H	Comments:		.11			•	-	EPA Method	0010 from EP	A SW-846	17000
			_الملاز	L179,	60.36	ςv	V/							1	191
			272300	א א 🗌 🗌		ſ	•							I An	57.6
			- 10,00			1							ſ	VIAA AN	
			V/ ~	J									l	/™	

۳.,

CB OUT

ISOKINET	IC FIEL	D DATA	SHEET			EPA M	lethod	0010 -	HFPO	Dimer	Acid			Page \ of	4
Client	Chemo	XUITS	Stack	Conditio	ns	Meter Box ID		28							
W.O.#	15418.00	2.011		Assume	d Actual	Meter Box Y		1.00	7 1				K Factor	25	
Project ID	Chemo	ours % N	Aoisture	2		Meter Box De	al H	7-08	95		-		Initial	Mid-Poin	l t Final
Mode/Source ID	Carbon	Bed Imp	inger Vol (ml)			Probe ID / Le	nath	PTIN	1-		Samole Trai	n (ft ³)	In MOA	.00	001
Samp. Loc. ID	OUT	r Silio	a gel (g)			- Probe Materia	ai		Boton	4	Leak Check	@ (in Ha)	15"	<u>G</u>	71
Run No.ID	2	co	2, % by Vol	0.0 V		- Pitot / Thermo	ocouple ID	01C9	<u> </u>	1	Pitot leak ch	eck good	Veg / no	(ves≥/no	(ves/no
Test Method ID	M001	0 02,	% by Vol	20.9.	1	- Pitot Coefficie	ent .		(0.84)	1	Pitot Inspect	ion good	Keel/no	(Vels / no	Neg / no
Date ID	25MAR	2019 Tem	nperature (°F)	73	67.667	Nozzle ID		.215	<u> </u>		Method 3 Sy	stem good	ves / no	'ves / no	ves / no
Source/Location	VE North	Outlet Met	er Temp (°F)	65	51,792	Nozzie Measu	rements	.215	1,215	.215	Temp Che	ck	Pre-Te	est Set	Post-Test Set
Sample Date	3/26/10	√ Stat	tic Press (in H ₂ O)	3.5	3.5 √	Avg Nozzle Di	ia (in)		215 V		Meter Box T	emp			terre ter
Baro. Press (in Hg)	<u>KA 22.</u>	# C 30.06 √				- Area of Stack	(ft ²)	6.30	5		- Reference Tr	emp			
Operator	KA/AS_	🗸 🖌 Amt	blent Temp (°F)	49		Sample Time		96 V		Pass/Fail (+/	- 2 ⁰)	Pass	/ Fall	Pass / Fail	
						Total Traverse	e Pts	24	\checkmark		Temp Chang	e Response 1	yes	/ mo	yes / no
CA.					PY CAS NETER										
TRAVERSE TIM	E(min) (plant	time) PRESSU	REDatta PRE	IFILE P	PEADING (83)	STACK	DOW OUT	LEIIEMP El	PROBE	FILTER	IMPINGER	SAMPLE	XAD EXIT		or a manufacture of the second s
POINT NO.	- (m. 7) (1	P (in	H2O) Delta H	(in H20)	vezenine (ir)	TEMP (°F)	1.0	. J	TEMP (oF)	EUX IEMP	CALL LEWIP	(in Ma)	TEMP (F)		COMMENTS
	0 085	27			11.708				10 A.		(017)	(in rig)			
A 1 4		50	12	1	1541	67	5		121	110	48	3	46		
2 8	·	50			176.5	65	t šīt		100	12.1	116	2	46		
3 12		148	14.2		1789	18-	51		120	Hid-	45		12		
<u> </u>		50	12	·	50	28	5		15	113	100	<u> </u>			
5 10	<u>, </u>		12		1021	10	<u>⊢ ž</u>			10		2	1		
				12	185.0	22-	2		119	120	91	-3	90		7
	<u> </u>	,0		= 43	180.0	6	21		120	1W	41	3	40		15.297
	,		1 1.3		1.88.7	68	51		120	120	44	3	40		
8 32		57	$\frac{2}{1.3}$		190.8	68	52		121	20	45	3	40		
<u>a</u> 36	6	. 50	$\frac{1}{13}$	1	.43.2	68	52		119	121	145	3	41		
10 40)	. 49	112		195.5	68	52		120	119	15	3	4		
11 44		.52	- 43		192.9	68	52	-	121	121	43	3	4		
12 48	0940	1,50	1.3		200,252	68	52	-	122	119	43	3	41		MPLC
				_					100						2003-73
8 1 4	100	4 .22	.55		102.0	67.	5		121	119	45		472		0 10 1
2 8		.0.4	[Left	(AGO 1	103.6	69	52	-	1202	120	42-		24		
3 12		.24			053		- či	•	120	101	l dă -	<u> </u>			
4 1				\tilde{z}		00			100				-10		
		- , <i>W</i>		č – E	<u>200.8</u>	68	- 5/2		120	119	4-1	<u> </u>	40		
				5 · · · - · ·	208.2	60	52	· · · · · · · · · · · · · · · · · · ·	119	12	75		41		
<u> </u>			1 45		10.2	68	50		120	121	45		4		# Blen out A fors
<u> </u>		18	1.0		2131	68	52	•	120	w	47	4	40		
0 32	<u> </u>	<u> •§_/</u> _	2.2		4612	68	<u>5'</u>		121	120	42	5	41		
9 36		.94	124		219.4	_68	53		119	119	143	5	41		28,874
10 40		<u>,95</u>	2,2	1 2	22.6	68	53		19	120	44	5	41		
11 44		(1.0	2,5	1	25.7	68	53		120	120	पंप	5	41		
12 48	1052	-1 10	2	5 1	29:247	68 1	53		121	120	पंप	5	41-1		
		Avg De	elta P Avg I		Total Volume	AvgTs	51 78%		Min/Max	Min/Max	Max	Max Vac	Min/Max		
	₹. Z	1370	Dotto PI Aug S		57,9118	0 4 06 /	Jh 11		119/12	114/121	18	5	76		_
					ommente:	s.t		,				EPA Method	0010 from EP/	SW-846	· ~ Da
		• • • •	~~ ···	т́/—	TV I	V	vv					1		107	5,7 -
		V	/ N	/								ANNE		•	ってみ
		•										MANIN	. ~~		
													しつ	20 US	l ct

ISOKIN	ETIC]	FIELD I	DATA SHE	EET		EPA M	lethod	0010	- HFPO) Dimer	· Acid			Base 1 of	1
Client		Chemours		Stack Condi	tions	$\begin{array}{c c} \text{Meter Box ID} \\ \text{Meter Box Y} \\ \hline 10027 \\ \hline \end{array}$			Dimer	11010				<u>′</u>	
W.O.#		15418,002.011	1	Assur	ned Actual	Meter Box Y		10027			-		K Factor	25	
Project ID		Chemours	% Moisture			Meter Box De	(H	5 1289	5		_		Initial	Mid-Doin	l t
Mode/Source ID		Carbon Bed	Impinger Vol	(ml)		Probe ID / Lei	nath	DTIO		171	Sample Tra	in (ft ³)	0.011		
Samp. Loc. ID		OUT	Silica gel (g)			Probe Materia	al		Bom	10	Leak Check	(in Ha)		EII	0.008
Run No.ID		3	CO2, % by V	/ol 0.0	V.	Pitot / Thermo	couple ID	MITO			Pitot leak ch	ack good	12	5. 6.002 / 100	- V
Test Method ID		M0010	O2, % by Vol	1 <u>7</u> <u>n</u> ,d	. .	- Pitot Coefficie	ent		0.84	J	Pitot Ineped	tion good			
Date ID		25MAR2019	Temperature	(°F) \$7	70 9 05	Nozzle ID		115			Mothod 2 S	atom good		<u> </u>	<u> </u>
Source/Location	Ī	E North Outle	t Meter Temp	(°F) 60	66375	Nozzle Measu	irements	216	1.215	1.216	Temp Che	ystein good Ack	Dro-T	yes / no	Ves / no
Sample Date	3/2	6/19 V	Static Press	(in H ₂ O)	3.5	Ava Nozzie D	ia (in)	11	5 1	143	Meter Box 1	iemn			
Baro. Press (in H	g) <u>30</u>	196 V	·	in the state of th		Area of Stack	(ff ²)	-12	5 5		_ Reference 1	Temp			<u> </u>
Operator	- KA	AS	V Ambient Tem	np (°F) 56		Sample Time	()		<u> </u>	· · · · ·	- Pass/Fail /+	- 2 ⁰)	Deen		
	<u></u>		1.21.1.1.2.2.2.2.2			Total Traverse	e Pts	24			- Temp Chan	/~ 4) de Response	ress i ver	7 Fall	Pass / Fan
													, <u>, , , , , , , , , , , , , , , , , , </u>	<u>/ 10</u>	yes / 10
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	CT LOT	DGM OUT	ILET TEMP		FILTER	IMPINGER	SAMPLE			
POINT NO	TIME (min)	(plant time)	PRESSURE Delta	PRESSURE	READING (ft ³)	STACK	(oF)	PROBE	BOX TEMP	EXIT TEME	TRAIN VAC	XAD EXIT		COMMENTS
		1.0. 1	P (in H2O)	Delta H (in H2O)		TEMP ("F)			IEMP (OF)	(F)	(oF)	(in Hg)	TEMP (F)		CONTRACTO
<u> </u>	0	1510 V			229.64										
1 1	<u> </u>	L	. 50	113	232.1	171	62	-	119	119	62-	3	147		
2	8		.49	12	2344	12	62	-	12.1	121	58	3	45		
3	12		.52	1.3	236.9	11	63		100	100	122	1 3	20		
Ч	16		48.500	12412	1294	1 1	7.5		110	110	5	1-3			
5	10		50	1 1 2	10417		14				1 21	<u> </u>	-73		
	24		4.0		Killin	<u><u> </u></u>	6-1		112	120	512	13	45		
<u> </u>			. 90	<u> l.0</u>	197.0	<u>n</u>	64		12	120	52/	3	1.42		
	-18		.50	1.5	298.7	12	64		[[9	119	153	3	VK444		
8	52		.63	16	251.3	72	65		119	119	54	3	44		
9	36		.74	9	2542	71	64-		121	121	53	4	43		
10	40		.64 -	1.6	256.9	72	65		121	110	54		1 42		
	44		.68	7 KATER	1759 645	12	ΔĹ		12/2	121	52	1	1.6		
12	49	1558	(9	7 1030	59/45	70	77		1125				43		
		1.335		- h (1 2 2 4 10 15	- <i>•</i> -	00		1 m	121	-22-	19	45		MIPLC
12 1			0/1	(m	0716										259. 186
P (.29		161.5	15	68		120	121	66		58		.14
1	8		.25	,65	263.2	_72	_68_		119	119	62		48		
3	12		.27	.68	264.9	22	63		119	121	60		46		
4	16		1.29	.73	266.7	n	69		118	119	59	<u> </u>		· · · · · · ·	
5	20		.34	.85	2.68.7	72	69		120	12.1	50	t	4-1		
6	24		.41	10	1709	72	68			10.1	50	1 2			
- 7	2.8		74	1 a	177 7		- <u>7</u> -			121	-26				
2	20		<u>'</u>		17/0	<u> +</u> } −	<u><u> </u></u>		121	119	126	17	178		
<u> </u>	-24-		10		V 10.0		<u>_/9</u> _		LILL	120	158	15	50		
	<u></u>		· * * *	1-1-1-	1280.0	<u>1'5</u>	64		120	121	61	5	50		
	<u><u> </u></u>		.70	127	183.2	15	69		1119	120	62	5	151		
	44		.95	124	286.5	13	69		119	120	62	5	52		
12	48	17091	.95	2.4	289,709	73	69		121	21	63	5	53		
			Avg Delta P	Avg Delta H/	Total Volume	Avg Ts		.Τ <u>m</u>	Min/Max	Min/Max	Max	Max Vac	Min/Max		
MALE WAY			1.579 1	1.462 V	60.095	72.208	66.3	75	118/122	119/121	66	5	39/58		
W1-0			Avg Sqrt Delta 🖗	Avg Sqrt Del H	Comments:			0.11	11.11.2		<u> </u>	EPA Mothed		SW 946	
			1,746 1	1185 1	EA AGU	•	(QU	2.4					I TO ITOM EPA	N 3VV-840	1
			.,		ו קדתיט ו		~	•							1
					N									~~ N	N IA
														NN"	*

CB	OUT
----	-----

SAMPLE RECOVERY FIELD DATA

EPA Method 0010 - HFPO Dimer Acid

Client		Che	mours		W.O. #		15418	002 011		
Location/Pl	ant _	Fayett	eville, NC	Sour	ce & Locatio	on	VE Nor	th Outlet		
Run No.	_1_				Sample Da	te <u>3/25</u>	119	Recov	ery Date	= 3/25/kg
Sample I.D.	Chemours -	Carbon Bed - (<u> 2017 - 1 - M0010 -</u>		Analyst	Dos/	AS	Filter	Number	NR
					Impin	iger 7				1014
<u></u>	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20						Silica Gel	
Final	7	100	100	2		307.9	289,3	,	319	2
Initial	0	100	100	0		297 9	3289.	7	300	
Gain	2		D	ス		47	0	107	193	30.0
Impinger Col	or <u>c</u>	Il cle	lar		Labeled?	2		√ √		
Silica Gel Co	ndition	Se-	90%		Sealed?	ノ				-
D N		0	<i>/v</i>							
Run No.					Sample Date	e_ <u>7/26/</u>	15	Recove	ery Date 🏅	<u>3 [26] 14</u>
Sample I.D.	Chemours - (Carbon Bed - C	UT - 2 - M0010 -		Analyst	The /	In	Filter N	lumber	NK
					Imping	ger 👘				
Contents	Empty	HPLC H20	HPLC H20	4	5	6	7	Imp.Total	8	Total
Final	5	100	120	3	· - ·	2097	3002		Silica Gel	
Initial	0	100	100	<u> </u>		307 0	7990	<u></u>	315.0	
Gain	5	100 10	0	7	+	72	66	14 0	300	70 0
Impinger Cold	r G	$\frac{1}{1}$		<u></u>			0.7	17.5	12,0	17.3
Silica Gel Cor	dition 1	$\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$		Lapeled?			V		. [
		ju j	10//		Sealed?					
Run No.	3		•		Sample Date	3/26/	19	Recover	y Date 3	126/19
Sample I.D.	Chemours - C	arbon Bed - O	<u>UT - 3 - M0010 -</u>		Analyst	50011	45	Filter N	umher	NI
					Imping	er				
Contonto	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20						Silica Gel	
Final	_ 5	107	1-00	<u> </u>	<u> </u>	27.9.4	302.7		319,9	
Initial	0	100	100	0					300	
Gain	_5	7_1	D	0		291.1	302,7	20.3	19,9	
Impinger Colo	GI	/clee	L-		Labeled?	8.31	0	V	V	
Silica Gel Con	dition	ble "	10%		Sealed?	0				

Check COC for Sample IDs of Media Blanks

CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS DIVISION STACK

Test Data			
Run number	1	2	3
Location	Divison Stack	Divison Stack	Divison Stack
Date	3/25/2019	3/26/2019	3/26/2019
Time period	1315-1528	0852-1052	1510-1709
Operator	СН	СН	СН
Inputs For Calcs.			
Sq. rt. delta P	1.19221	1.21398	1.22257
Delta H	1.3433	1.3925	1.4192
Stack temp. (deg.F)	82.5	62.6	68.9
Meter temp. (deg.F)	80.6	46.5	58.5
Sample volume (act.)	51.535	51.014	51.633
Barometric press. (in.Hg)	29.92	29.96	29.96
Volume H ₂ O imp. (ml)	12.0	10.0	7.0
Weight change sil. gel (g)	18.7	16.7	13.6
% CO ₂	0.0	0.0	0.0
% O ₂	20.9	20.9	20.9
% N ₂	79.1	79.1	79.1
Area of stack (sq.ft.)	7.070	7.070	7.070
Sample time (min.)	96.0	96.0	96.0
Static pressure (in. H_2O)	-0.70	-0.70	-0.70
Nozzle dia. (in.)	0.160	0.160	0.160
Meter box cal.	1.0010	1.0010	1.0010
Cp of pitot tube	0.84	0.84	0.84
Traverse points	12	12	12

ISOKIN	ETIC	FIELD I	DATA SHI	EET		EPA N	/Iethod 0010 -	- HFPC) Dimer	· Acid			Base	1
Client	<i>I</i>	Chemours		Stack Condi	tions	Meter Box IC)	2.7.		11014			Fage OI	$= \alpha$
W.O.#		15418.002.011		Assu	med Actual	Meter Box Y	,	10010	V	-		K Factor-	3.95	0,97 (41)
Project ID		Chemours	% Moisture	2.0	0	Meter Box D	el H 2	.4674		-			Mid-Point	10.94 Final
Mode/Source I	D	Division	Impinger Vol	l (ml)	12	Probe ID / Le	ength P70	21	51	Sample Tra	in (ft ³)	0.006	0.000	A.m.
Samp. Loc. ID		STK	Silica gel (g)		18.7	Probe Mater	al	Boro		_ Leak Check	@ (in Hg)	15	17"	10"
Run No.ID		1	CO2, % by V	/ol	0.1	_ Pitot / Therm	iocouple ID	070		Pitot leak ch	eck good	(769)/ no	ves / no	
lest Method ID		M0010	O2, % by Vo	201	8 21.0	Pitot Coeffici	ent	0.84	V	Pitot Inspec	tion good	VES no	Vest no	(yes)/ no
Date ID Source/Loootion		25MAR2019	l emperature	(°F) 70 80	>	Nozzle ID		5160		Method 3 S	ystern good	yes / no	yes / no	yes / no
Sample Date	· 7	-76-10	Static Press		, , , , , , , , , , , , , , , , , , ,	Nozzle Meas	urements			_Temp Che	ck	Pre-T	est Set	Post-Test Set
Barn Press (in I	Ha) <u>7</u>	1 92 1			70 1	AVG NOZZIE L	Dia (in)	1.160 V		_Meter Box T	emp	73		75
Operator	(ig) <u> </u>		Ambient Terr	nn (°F)	75	Area of Stack	k (ff [*])7	1 70.		_Reference 1	emp	72		74
				·P(1)	<u> </u>	_ Sample Time		<u>46 v</u>		-Pass/Fail (+	/- 2*)		/ Fail	Fall
						Total Travers	<u> </u>	<u> </u>		Temp Chan	ge Response		/ no	(res)/ no
TRAVEROF	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	2	DGM OUTLET TEMP		EU TER		-			
POINT NO	TIME (min)	(plant time)	PRESSURE Delta	PRESSURE	READING (ft ³)	STACK	(°F)	PROBE	BOX TEMP	EXIT TEME		XAD EXIT		COMMENTS
nomin no.			P (in H2O)	Delta H (in H2O)	TEMP (°F)		TEMP (°F)	(F)	(oF)	(in Ha)	TEMP (F)		
* •	0	1315 V		(4)	97.935									
AI	<u> </u>		1.2	1.161.13	100.0	83	80	100	100	64	4.0	64		
1	٩		1.2	1.13	102.0	83	81	100	100	62	4.0	63		
2	12		1.5	1.41	104.2	83	81	100	99	61	4.5	61		
2	16		1.5	1.41	106.4	83	81	101	105	63	4.5	63		25.660
3	20		1.6	1.50	108.6	83	81	102	105	62	4.5	62		
3	24		1.6	1.50	110.9	\$3	81	100	101	67	4.5	67		
4	28		1,7	1.60	113,3	83	82	100	100	62	60	62		
կ	32		1.7	1.60	115 6	83	82	160	100	1 1	2.0	61		
5	36		1.3	1.22	117.7	83	82	100	102	59	4	59		
5	40		1.3	1:22	119.7	83	\$1	ing	104	58	1.0	50		
6	44		1.1	1.00	121.6	83	\$2	100	(02	57	2 5	51		
6	48	1403	1.1	1.00	123.595	83	63	100	102	57	2.2	58		
		1440			123 78 6	<u> </u>		100	100		2.3	- 20-		0.000 Have V
B I	4		1.3	1.22	12.5 8	67	30	100	100		11.0			<u> </u>
1	٩		113	1.22	127.8			100	100	60	4.0	60		
2	12		1.6	1.50	(34)	81	<u> </u>	100		26	4.0	56		
2	16		1.6	1.50	120.2	87	80	100	100		3.0	55		
3	20		1.4	110	13213		00	100	101	55	15.0	56		
3	24		18	1.14	127 1	82			102	55	5.0	56		25.875
Ц	28		1.0	1 107	130 5	04	00	100	105	56	5.0	57		
	20		1.0	1.69	137.5	80	80	100	48	57	5.5	58		
- ·	36		1 2	1.69	141.9	82	08	100	100	58	5.5	_59_		
5	11/2		1.2	1.22	144.0	82	79	160	100	60	4.5	61		
			1:5	1.62	146.0	82	79	100	101	61	4.5	62		
6	47	LEDAT	1.0	0.44	147.8	82	79	160	103	62	4.0	63		
<u> </u>	111	112481		0.94	149,661	821	79	00	99	63	4.0	64		
			AVG Dena P	Avg Deita H		AvgTs	avg Tm	Min/Max	Min/Max	Max	Max Vac	Min/Max		
<u>vvv</u>	<u>NENK</u>		Avg Sart Dolla D	11.27.22	21222	01.9	00.6	100/162	10/105	64	5.5	6		
		•			Comments:						EPA Method	0010 from EPA	SW-846	
			1.1922	111240	J								1	

amd

ISO	KIN	ETIC	FIELD D	ATA SHE	EET		EPA M	lethod 0010	- HFPO) Dimer	Acid			Page (, l
Client			Chemours		Stack Condi	tions	Meter Box ID		22						
W.O.#			15418.002.011	·····	Assur	med Actual	Meter Box Y		0010	~	-		K Factor	394	
Project II	5		Chemours	% Moisture	2.0	2	Meter Box De	IH Z.	4674		-			Mid-Poir	l at Final
Mode/So	ource ID)	Division	Impinger Vol	(ml)		Probe ID / Lei	nath p70	1	1	- Samole Trai	n (ft ³)	0.015		10015
Samp. Lo	ж. ID		STK	Silica gel (g)			Probe Materia	al	Boro	1	Leak Check	@ (in Ha)	<u></u>	12	-0.0/3
Run No.I	D		2	CO2, % by V	/ol 0,	1	Pitot / Thermo	couple ID		· · · · · · · · · · · · · · · · · · ·	Pitot leak ch	eck acod	12	16-	
Test Met	hod ID		M0010	O2, % by Vol	1 201	8	Pitot Coefficie	nt	0.84	1	Pitot Inspect	tion good		yes / no	
Date ID		Read-	25MAR2019	Temperature	(°F) 60		Nozzle ID		6-160	•	Method 3 Sv	rstem nood		1/00 / 10	
Source/L	ocation		Division Stack	Meter Temp	(°F) 60		Nozzle Measu	irements		T	Temp Che	ck	Pre-T	est Set	Post-Test Set
Sample D	Date	্য	3/25/19	V Static Press	(in H2O) -0,70	2 √ [Avg Nozzle Di	a (in)	2.160	/	Meter Box T	emp	50	ງ	1 52
Baro. Pre	ess (in F	1g) 2	9.46	$\overline{\checkmark}$		• •	Area of Stack	(ft ²) -	1.07	/	- Reference T	emp		2 7	50
Operator			44	Ambient Terr	ιр (°F)	55	Sample Time		ah v		- Pass/Fail (+	(- 2 [°])	(Pase	/ Fall	FOR / Foil
							Total Traverse	e Pts	12 1		Temp Chan	e Response		/ no.	
	() ()										- · · · · · · · · · · · · · · · · · · ·	ge ricopeniou		1 110	
TRAVE	Dec	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER		DGM OUTLET TEMP	,	FII TER	IMPINGER	SAMPLE		a second	and the second second
POINT	NO	TIME (min) (plant time)	PRESSURE Delta	PRESSURE	READING (ft ³)	STACK	(oF)	PROBE	BOX TEMP	EXIT TEMP	TRAIN VAC	XAD EXIT	100	COMMENTS
In Chief P	140.			P (in H2O)	Delta H (in H2O)		TEMP (°F)		TEMP (oF)	(F)	(oF)	(in Hg)	TEMP (F)		Source and the second s
		0	0852 V			149.908							and the start of the		
A	1	4		1.5	1.41	152.1	6Z	45	100	94	40	4.0	38		
	1	3		1.5	1.41	154.2	62	45	100	103	40	4.0	36		
	2	12		1.6	1.50	156.5	61	45	100	100	40	4.5	36		
	2	14		1.6	1.50	150 7	6.7	45		100	-10	11.5	21		15/15
	2	26	-	1 1	1 50	160 0			100		1-10		20		22.615
		20		110	1.50	160.9	62		100	95	-10	4.5	36		
<u> </u>	<u> </u>	17		1.6	1,50	163.	62		100	108	41	4.5	37		
	<u> </u>	28		1.3	1,69	165.4	62	46	100	110	41	4.5	36		
	<u> </u>	32		1,8	1.69	167.7	62	46	100	105	411	4.5	36		
	5	36		1.3	1.22	169.8	63	46	100	110	42	3.5	37		
	5	40		1.3	1.22	171.8	63	46	100	43	43	3,5	28		
	6	44		1.1	1.03	173.6	67	46	1(m)	1161	412	3 6	20		
	6	44		1.1	1.02	175 523	63	41	101		413	<u>م دار</u>	38		0,0013
<u> </u>			1004			176 422				102	<u> </u>	1212	24		0,015 @ 12 m
12		ч	1001	1 41	121	1 13, 80 2	(7		1.0.0	100					
					1.56	171.4	60	41	100	102	46	4.0	42	····	
		7		<u> 1. </u>	1,54	180.0	63	47	100	102	48	4.0	43		
	2	12	- 	1.6	1.50	152.2	63	47	100	99	48	4.0	43		
	<u> </u>	16		1.6	1.50	184 3	63	47	160	102	49	4.0	44		
	3	20		<u> . 'š</u>	1.69	186.6	63	47	100	101	50	5.0	45		25.399
	3	24		1.5	1.69	189.1	63	47	100	102	50	5.0	Ш.6		
	ч	28		1.7	1.60	191,3	63	48	100	140	50	50	416		
	4	32		1.7	1,60	193.5	62	Liek	100		61		<u>17</u>		·
	5	36		1 3	1 77	105 1	67	110	1100	44	21	5.0	16		
	5	ЦЛ	┢────┤	1.3	1.20	19316	67	-18	100	100	51	1.0			······
	2	10	+ +	1.2	1.66	191.6	65	48	100	107	52	4.0	L18		
	0	<u> </u>	10001	<u> </u>	1.07	179.9	63	<u> </u>	100	103	52	3.5	H8		
	6	40	1105-04	1.1	1.03	101,102	63 /	48	100	103	53	315	49		
				Avg Delta P	Avg Delta H	Total Volume	Avg Ts	IAVSTY J	Min/Max	Min/Max	Max	Max Vac	Min/Max		
7	vvr			1,4372	1, 57627	51014 V	62,0	44.7	100100	95/114	53	5,0	49		
ý	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Avg Sqrt Delta P	Avg Sqrt Del H	Comments:						EPA Method	0010 from EP/	A SW-846	
			~~ t	1.2121	11.1762										
			(41)	0110		-				•					• • I

(I.2140)

mi

ISOKIN	NETIC	FIELD I	DATA SHE	EET		EPA M	lethod 001) - HFPC) Dimer	·Acid			ا Page of	1
Client		Chemours		Stack Condi	tions	Meter Box ID		22		_		K Fastar	<u> </u>	Ξ
W.O.#		15418.002.011	<u></u>	Assu	med Actual	Meter Box Y		1,0010	\checkmark	_		r ractor (2.94	
Project ID		Chemours	% Moisture	Z		Meter Box De	H .	2.4674				Initial	Mid-Point	Final
Same Loc ID	D		Impinger Vol	(ml)		_Probe ID / Le	ngth P	201	5	_Sample Tra	in (ft³)	0.017	0.015	0,000,010
Run No ID		2				Probe Materia	al	Boro		Leak Check	: @ (in Hg)		10"	8"
Test Method ID	· · · · · · · · · · · · · · · · · · ·		CO2, % by V		er	_ Pitot / I nerme				Pitot leak cl	neck good	(Tes) no	yes/no	/ no
Date ID		25MAR2019	Temperature	(°F) <u>60</u>	0			0.84	<u>۲</u>	Pitot Inspec	tion good	yeg / no	(yeg / no	veg/no
Source/Locatio	n ———	Division Stack	Meter Temp	(°F) 60		Nozzle Measi	urements A. I. A	6160	0.10	Method 3 S	ystem good	yes / no	yes/no	yes / no
Sample Date	0	31 # 114	Static Press	(in H ₂ O) -O, >	ot	Ava Nozzie D		0.10	10,100	Meter Box 1				Fusi-Test Set
Baro. Press (in	Hg) 7	9.96	/			Area of Stack	: (ff ²)	707	<u> </u>		Temp		7	
Operator		41	Ambient Terr	ιp (°F)	55	Sample Time		96	<u></u>	- Pass/Fail (+	·/- 2 ⁰)		J / Fail	
						Total Travers	e Pts	12 1	<u>} </u>	Temp Chan	oe Response '	Cons.	7 no.	
											3		1	
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM OUTLET TE	MP DROPE	FILTER	IMPINGER	SAMPLE			
POINT NO	TIME (min)	(plant time)	PRESSURE Delta	PRESSURE	READING (ft ³)	TEMP (°F)	(oF)	TEMP (oF)	BOX TEMP	EXIT TEMP	P TRAIN VAC	TEMP (E)		COMMENTS
	0	1510	P (m H2O)	Delta H (in H2O	201 528	-		, (or)	(F)	(oF)	(in Hg)	(E)		
A I		1310 1	1.5	1.41	103.6	61	67	166	103	Eg	50	E-7		
1	8		1.5	141	205.4	69		100	102	20		110		
2	12		17	1.60	108 1	14		100	108		12:0-	48		
2	16		1.7	160	210 4	6-1	50	100	106	199 	12.0	76		7410
2	70		19	1.00	212 82		50	100		50	12,0	716		26,100
2	24			1.70	212.8	68	22	100	78	1-2/-	5.5	48		
	20				<u>L150 L</u>	69	28	103	106	51	5.5	50		
	20			1.60	47.5	68	58	100	100	52	5.0	50		
<u> </u>	32			1.66	214,8	69	58	160	106	52	5.0	5		
5	26		1.5	1.32	221.9	69	58	100	110	53	4.5	52		
	40		1.4	1.32	224,0	69	58	100	109	52	4.5	52		
6	44	1000	1.0	0,44	22.5. 8	69	59	160	96	51	3.5	51		0.015@10%
6	48	1558	1.0	0.94	227.638	64	59	100	102	5)	3.5	51		•
		1621			227,860									
15 1	4		1.4	1.32	230.0	68	59	100	110	56	9.0	54		
1	8		1,4	1.32	232.0	69	59	100	110	50	4.0	50		
Z	12		1.6	1.50	234.3	70	59	100	109	49	4.5	49		
2	16		1.6	1.50	236.4	69	59	100	112	49	4.5	40		
3	10		1.8	1.69	238.7	64	59	100	103	50	5.0	50		25.533
3	24		1,8	1,64	241,1	69	59	100	108	51	5.0	50		<u></u>
4	13		1,7	1.60	243,4	69	5 ल	100	49	51	50	51		
4	32		1.7	1.60	245,6	69	59	100	100	52	5.0	52		
5	36		1.4	1.32	247,7	70	54	100	100	52	4.5	57		
5	40		1.11	1.32	249,4	69	59	100	100	53	4.5	52		
6	44		1.0	0.94	251.6	64	54	100	102	55	3.5	53		
6	4%	171001	1.0 ,	0.44	253,242	69	50	100	100	1 <u><u></u> </u>	2 4	54		
¥		· · · · · · · · · · · · · · · · · · ·	Avg Delta P	Avg Delta H	Total Volume	Avg Ts /	Ava Tm	Min/Max	Min/Max	Max	Max Vac	Min/May		
	(GRAN		15683 ^v 1	1.419Z	151,633	68.91	58.6	100/103	96/112	57	55	48/541		
			Avg Sqrt Delta R	Avg Sqrt Del H/	Comments:		101		<u> </u>		EPA Method	0010 from EB	SW-846	
			1,2226	1.1859			50.2					2010 1011 207		

SAMPLE RECOVERY FIELD DATA

EPA Method 0010 - HFPO Dimer Acid

Client	_	Chen	nours		W.O. #		15418	.002.011		
Location/Pla	ant	Fayette	ville, NC	Sourc	e & Location		Divisio	n Stack		-
Run No.	_1_				Sample Date	3/28	119	Recove	ery Date	3/25 4
Sample I.D.	Chemours - [Division - STK -	1 - M0010 -	_	Analyst	_ Pill	И	Filter N	lumber	M
					Imping	ər				
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20						Silica Gel	
Final	7	4 7	135	3					JIBA	•
Initial	α	100	100	0					300	
Gain	7	-3	5	3				12	19.7	30:7
Impinger Cold	or	chem			Labeled?		5	. V		
Silica Gel Cor	ndition	Öcal			Sealed?		V			-
										<u> </u>
Run No.	_2				Sample Date	3/ 16	P	Recove	ry Date	3/14/19
Sample I.D.	Chemours - E	Division - STK -	2 - M0010 -	•	Analyst	Prv	۱	Filter N	umber	A.H.
					Impinge	ər 👘				
Contonto	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents		APLC H2U							Silica Gel	
Final	F	104	101	10					316.7	
Initial	5	100	100	<u> </u>					300	
Gain			1	2				10	16.7	26.7
Impinger Colo	or	rear	_		Labeled?			V	<u>v</u>	
Silica Gel Cor	ndition	Gogt			Sealed?		/			
Run No.	3				Sample Date	3/264	<u>ا</u> بو	Recover	v Date 2	130/18
Sample I.D.	Chemours - D	vision - STK -	3 - M0010 -		Analvst	1 Auto		Filter N	umber	NA
					Impinge	r				
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20						Silica Gel	
Final	2	99	103	3					313.6	
Initial	٢	100	100	Ð			÷		300	
Gain	N	~1	3	3				7	13.6	20,0
Impinger Colo	r	dear			Labeled?			//		
Silica Gel Cor	dition	5000	_		- Sealed?			/		

Check COC for Sample IDs of Media Blanks

() N

Balunce Dec # 1 500 5 =7 487.80

ų

METHODS AND ANALYZERS

Client: Chemours Location: Fayetteville, NC Source: Division Stack Project Number: **15418.002.011.0001** Operator: **Dryden** Date: **25 Mar 2019**

\Client Folders.A-F\Chemours Fayetteville\15418.002.011 Fayetteville March 2019 VEN Test\Data\15418 Chemours **Program Version:** 2.1, built 19 May 2017 **File Version:** 2.03 **Computer:** WSWCAIRSERVICES **Trailer:** 27 **Analog Input Device:** Keithley KUSB-3108

Channel 1

Analyte	O ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.0
Channel 2	
Analyte	CO ₂
Method	EPA 3A, Using Bias
Anglyman Maka, Madal & Canal Na	0

Analyzer Make, Model & Serial No. Full-Scale Output, mv Analyzer Range, % Span Concentration, % CO₂ EPA 3A, Using Bia Servomex 4900 10000 20.0 16.6

CALIBRATION DATA

Number 1

Client: Chemours Location: Fayetteville, NC Source: Division Stack Project Number: **15418.002.011.0001** Operator: **Dryden** Date: **25 Mar 2019**

Start Time: 09:26

0	2	

Method: EPA 3A Calibration Type: Linear Zero and High Span

Calibration	Standards	
%	Cylinder ID	
12.0	ČC18055	
21.0	SG9169108	
 Calibration	n Results	
Zero	4 mv	
Span, 21.0 %	7991 mv	
 Curve Co	efficients	
Slope	Intercept	
380.3	4	

C Method:	O₂ EPA 3A	
Calibration Type: Line	ar Zero and High Span	
Calibration	Standards	
%	Cylinder ID	
8.9	ČC18055	
16.6	SG9169108	
Calibratic	on Results	
Zero	1 mv	
Span, 16.6 %	8293 mv	
Curve Co	pefficients	
Slope	Intercept	
500.1	1	

CALIBRATION ERROR DATA

Client: ation: ource:	Chemours Fayetteville, NC Division Stack		Calibration	Proje 1	ct Number: 15418.002.011.00 Operator: Dryden Date: 25 Mar 2019
			Start Time: 0	9:26	
			O ₂		
			Method: EP	A 3A	
			Span Conc. 2	1.0 %	
_		Slope	380.3	Intercept 4.0	
	Standard	Result	Difference	Error	
	%	%	%	%	Status
	Zero	0.0	0.0	0.0	Pass
	12.0	12.0	0.0	0.0	Pass
_	21.0	21.0	0.0	0.0	Pass
_					
			CO₂ Method: EP/ Span Conc. 1/	4 3A 6 6 %	
		Slope	500.1	Intercept 1.0)
_	Standard	Result	Difference	Error	
	%	%	%	%	Status
	Zero	0.0	0.0	0.0	Pass
	8.9	8.9	0.0	0.0	Pass
	16.6	16.6	0.0	0.0	Pass

BIAS

Clien Locatior Source	t: Chemours n: Fayetteville, NC e: Division Stack	Calibration 1			Project Number: 15418.002.011.0001 Operator: Dryden Date: 25 Mar 2019			
			Start Ti	me: 12:14				
			Methoc Span Co	O₂ I: EPA 3A onc. 21.0 %				
-	Standard Gas Zero Span	Cal. % 0.0 12.0	Bias Bias % 0.0 12.0	Results Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass		
	CO₂ Method: EPA 3A Span Conc. 16.6 %							
	Standard	Bias Results			Freeze			
	Gas	val. %	Bias %	Dimerence %	Error %	Status		
	Zero	0.0	0.1	0.1	0.6	Pass		
	Span	8.9	8.9	0.0	0.0	Pass		
=								

Client: Location: Source:	Chemours Fayetteville, NC Division Stack	Ca	alibration	1	Project Number: Operator: Date:	 15418.002.011.0001 Dryden 25 Mar 2019 		
		Time	O 2 %	CO2 %				
		RL	IN 1 STAF	RT				
		40.45	PORI 1	0.4				
		13:15	21.0	0.1				
		13:10	21.0	0.1				
		13:17	21.0	0.1				
		13:18	21.0	0.1				
		13:19	21.0	0.1				
		13:20	21.0	0.1				
		13:21	21.0	0.1				
		13:22	21.0	0.1				
		13:23	21.0	0.1				
		13:24	21.0	0.1				
		13:25	21.0	0.1				
		13:26	21.0	0.1				
		13:27	21.0	0.1				
		13:28	21.0	0.1				
		13:29	21.0	0.1				
		13:30	21.0	0.1				
		13:31	21.0	0.1				
		13:32	21.0	0.1				
		13:33	21.0	0.1				
		13:34	21.0	0.1				
		13:35	21.0	0.1				
		13:36	21.0	0.1				
		13:37	21.0	0.1				
		13:38	21.0	0.1				
		13:39	21.0	0.1				
		13:40	21.0	0.1				
		13:41	21.0	0.1				
		13:42	21.0	0.1				
		13:43	21.0	0.1				
		13:44	21.0	0.1				
		13:45	21.0	0.1				
		13:46	21.0	0.1				
		13:47	21.0	0.1				
		13:48	21.0	0.1				
		13:49	21.0	0.1				
		13:50	21.0	0.1				
		13:51	21.0	0.1				
		13:52	21.0	0.1				

Client: Chemours Location: Fayetteville, NC Source: Division Stack	Ca	libration 1	I	Project Number: 15418.002.011.0001 Operator: Dryden Date: 25 Mar 2019
	Time	O 2 %	CO ₂ %	
	13:53	21.0	0.1	
	13:54	21.0	0.1	
	13:55	21.0	0.1	
	13:56	21.0	0.1	
	13:57	21.0	0.1	
	13:58	21.0	0.1	
	13:59	21.0	0.1	
	14:00	21.0	0.1	
	14:01	21.0	0.1	
	14:02	21.0	0.1	
	14:03	21.0	0.1	
	POF	RT CHANC	θE	
		PORT 2		
	14:40	21.0	0.1	
	14:41	21.0	0.1	
	14:42	21.0	0.1	
	14:43	21.0	0.1	
	14:44	21.0	0.1	
	14:45	21.0	0.1	
	14:46	21.0	0.1	
	14:47	21.0	0.1	
	14:48	21.0	0.1	
	14:49	21.0	0.1	
	14:50	21.0	0.1	
	14:51	21.0	0.1	
	14:52	21.0	0.1	
	14:53	21.0	0.1	
	14:54	21.0	0.1	
	14:55	21.0	0.1	
	14:56	21.0	0.1	
	14:57	21.0	0.1	
	14:58	21.0	0.1	
	14:59	21.0	0.1	
	15:00	21.1	0.1	
	15:01	21.1	0.1	
	15:02	21.1	0.1	
	15:03	21.1	0.1	
	15:04	21.1	0.1	
	15:05	21.1	0.1	
	15:06	21.1	0.1	

Client: Location: Source:	Chemours Fayetteville, NC Division Stack	Ca	alibration	1	Project Number: Operator: Date:	15418.002.011.0001 Dryden 25 Mar 2019		
		Time	O 2 %	CO 2 %				
		15:07	21.1	0.1				
		15:08	21.1	0.1				
		15:09	21.1	0.1				
		15:10	21.1	0.1				
		15:11	21.1	0.1				
		15:12	21.1	0.1				
		15:13	21.1	0.1				
		15:14	21.1	0.1				
		15:15	21.1	0.1				
		15:16	21.1	0.1				
		15:17	21.1	0.1				
		15:18	21.1	0.1				
		15:19	21.1	0.1				
		15:20	21.1	0.1				
		15:21	21.1	0.1				
		15:22	21.1	0.1				
		15:23	21.1	0.1				
		15:24	21.1	0.1				
		15:25	21.1	0.1				
		15:26	21.1	0.1				
		15:27	21.1	0.1				
		15:28	21.1	0.1				
		Avgs	21.0	0.1				

RUN SUMMARY

Client: Chemours Location: Fayetteville, NC Source: Division Stack	Calibration 1			Project Number: 15418.002.011.0001 Operator: Dryden Date: 25 Mar 2019
	Method Conc. Units	O 2 EPA 3A %	CO₂ EPA 3A %	
	Ti	ime: 13:14 to	o 15:28	
		Run Avera	iges	
		21.0	0.1	
	Pr	e-run Bias a	at 12:14	
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.1 8.9 8.9	
	Ро	st-run Bias	at 15:30	
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.0 8.9 8.9	
Run averages	s corrected for	the average	e of the pre	-run and post-run bias
		21.0	0.1	

BIAS AND CALIBRATION DRIFT

Number 2

Client: Location: Source:	Chemours Fayetteville, NC Division Stack	:	Calib	ration 1	Project Num Oper E	nber: 15418.0 ator: Dryden Date: 25 Mar 2	02.011.0001 2019	
			Start Ti	me: 15:30				
			Methoo Span Co	O₂ I: EPA 3A onc. 21.0 %				
			Bias	Results				
	Standard Gas Zero Span	Cal. % 0.0 12.0	Bias % 0.0 12.0	Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass		
	Ctondord	1	Calibration Drift					
	Standard Gas	initiai* %	Final %	Difference %	Drift %	Status		
	Zero	0.0	0.0	0.0	0.0	Pass		
=	Span	12.0 *Bias No. 1	12.0	0.0	0.0	Pass		
CO₂ Method: EPA 3A Span Conc. 16.6 %								
			Bias	Results				
	Standard	Cal.	Bias	Difference	Error			
	Gas	%	%	%	%	Status		
	∠ero Snon	0.0	0.0	0.0	0.0	Pass		
	Span	0.9	0.9	0.0	0.0	rass		
			Calibra	ation Drift				
	Standard	Initial*	Final	Difference	Drift			
	Gas	%	%	%	%	Status		
	Zero	0.1	0.0	-0.1	-0.6	Pass		
	Span	8.9	8.9	0.0	0.0	Pass		

*Bias No. 1

CALIBRATION DATA

Number 2

Client: Chemours Location: Fayetteville, NC Source: Division Stack Project Number: **15418.002.011.0001** Operator: **Dryden** Date: **26 Mar 2019**

Start Time: 07:40

0	2	

•2						
Method: EPA 3A						
Calibration Type: Linear Zero and High Span						

Calil	bration Standards
%	Cylinder ID
12.0	ČC18055
21.0	SG9169108
Ca	libration Results
Zero	16 mv
Span, 21.0	0 % 7985 mv
Cu	Irve Coefficients
Slope	Intercept
379.5	16

C							
Calibration Type: Line	ear Zero and High Span						
Calibration Standards							
% Cylinder ID							
8.9	ČC18055						
16.6	SG9169108						
Calibration Results							
Zero 53 mv							
Span, 16.6 %	8288 mv						
Curve Coefficients							
Slope	Intercept						
496.7	53						

CALIBRATION ERROR DATA

Client: cation: ource:	Chemours Fayetteville, NC Division Stack		Calibration	Projec 1	ect Number: 15418.002.011.000 Operator: Dryden Date: 26 Mar 2019		
			Start Time: 0	07:40			
			O ₂				
			Method: EP	A 3A			
			Span Conc. 2	1.0 %			
_		Slope	380.3	Intercept 4.0			
;	Standard	Result	Difference	Error			
	%	%	%	%	Status		
	Zero	0.0	0.0	0.0	Pass		
	12.0	12.0	0.0	0.0	Pass		
=	21.0	21.0	0.0	0.0	Pass		
_			CO ₂				
			Method: EP	A 3A			
			Span Conc. 1	6.6 %			
		Slope	500.1	Intercept 1.0			
	Standard	Result	Difference	Error			
	%	%	%	%	Status		
	Zero	0.0	0.0	0.0	Pass		
	8.9	8.9	0.0	0.0	Pass		
	16.6	16.6	0.0	0.0	Pass		

BIAS AND CALIBRATION DRIFT

Number 3

Client: Location: Source:	Chemours Fayetteville, No Division Stack	C	ration 2	Project Number: 15418.002.011.0001 Operator: Dryden Date: 26 Mar 2019					
	O ₂								
			Method	: EPA 3A					
			Span Co	onc. 21.0 %					
			Bias	Results					
	Standard	Cal.	Bias	Difference	Error	0 4 4			
	Gas	%	% 0.0	% 0.0	%	Status			
	Span	0.0 12 0	12.0	0.0	0.0	Pass			
		12.0	12.0	0.0	0.0				
			Calibra	ation Drift					
	Standard	Initial*	Final Difference		Drift				
	Gas	%	%	%	%	Status			
	Zero	0.0	0.0	0.0	0.0	Pass			
	Span	12.0	12.0	0.0	0.0	Pass			
=		[*] Blas No. 2							
				~~					
			(Methor						
			Span Co	onc. 16.6 %					
	_		Bias	Results					
	Standard	Cal.	Bias	Difference	Error				
	Gas	%	%	%	%	Status			
	Zero	0.0	0.0	0.0	0.0	Pass			
	Span	8.9	8.9	0.0	0.0	Pass			
			Calibra	ation Drift					
	Standard	Initial*	Final	Difference	Drift				
	Gas	%	%	%	%	Status			
	Zero	0.0	0.0	0.0	0.0	Pass			
	Span	8.9	8.9	0.0	0.0	Pass			

*Bias No. 2

Client: Chemours Location: Fayetteville, NC Source: Division Stack	Ca	alibration	2	Project Number: 15418 . Operator: Dryde Date: 26 Ma	.002.011.0001 n r 2019
	Time	O 2 %	CO ₂ %		
	RU	N 2 STA	RT		
	08.23	21.0	0.0		
	00.00	21.0	0.0		
	08:55	21.0	0.0		
	08:56	21.0	0.0		
	08:57	21.0	0.0		
	08:58	21.0	0.0		
	08:59	21.0	0.0		
	09:00	21.0	0.0		
	09:01	21.0	0.0		
	09:02	21.0	0.0		
	09:03	21.0	0.0		
	09:04	21.0	0.0		
	09:05	21.0	0.0		
	09:06	21.0	0.0		
	09:07	21.0	0.0		
	09:08	21.0	0.0		
	09:09	21.0	0.0		
	09:10	21.0	0.0		
	09:11	21.0	0.0		
	09:12	21.0	0.0		
	09:13	21.0	0.0		
	09:14	21.0	0.0		
	09:15	21.0	0.0		
	09:16	21.0	0.0		
	09:17	21.0	0.0		
	09:18	21.0	0.0		
	09:19	21.0	0.0		
	09:20	21.0	0.0		
	09:21	21.0	0.0		
	09:22	21.0	0.0		
	09:23	21.0	0.0		
	09:24	21.0	0.0		
	09:25	21.0	0.0		
	09:26	21.0	0.0		
	09:27	21.0	0.0		
	09:28	21.1	0.0		
	09:29	21.1	0.0		
	09:30	21.1	0.0		

Client: Chemours Location: Fayetteville, NC Source: Division Stack	C	alibration	2	Project Number: Operator: Date:	15418.002.011.0001 Dryden 26 Mar 2019
	Time	O 2 %	CO ₂ %		
	09:31	21.1	0.0		
	09:32	21.1	0.0		
	09:33	21.1	0.0		
	09:34	21.1	0.0		
	09:35	21.1	0.0		
	09:36	21.1	0.0		
	09:37	21.1	0.0		
	09:38	21.1	0.0		
	09:39	21.1	0.0		
	09:40	21.1 DT OLIAN	0.0		
	PO		IGE		
	10.04	21 1	0.0		
	10:04	21.1	0.0		
	10:06	21.1	0.0		
	10:00	21.1	0.0		
	10:08	21.0	0.0		
	10:09	21.1	0.0		
	10:10	21.1	0.0		
	10:11	21.1	0.0		
	10:12	21.1	0.0		
	10:13	21.1	0.0		
	10:14	21.1	0.0		
	10:15	21.1	0.0		
	10:16	21.1	0.0		
	10:17	21.1	0.0		
	10:18	21.1	0.0		
	10:19	21.1	0.0		
	10:20	21.1	0.0		
	10:21	21.1	0.0		
	10:22	21.1	0.0		
	10:23	21.1	0.0		
	10.24	ZI.I 21.1	0.0		
	10.20	21.1 01.0	0.0		
	10.20	21.2	0.0		
	10.27	21.2	0.0		
	10.29	21.1	0.0		
	10:30	21.2	0.0		
	10:31	21.2	0.0		
			0.0		

Client: Chemours Location: Fayetteville, NC Source: Division Stack Calibra			2	Project Number: 15418.002.011.0001 Operator: Dryden Date: 26 Mar 2019
	Time	O 2 %	CO ₂ %	
	10:32	21.2	0.0	
	10:33	21.2	0.0	
	10:34	21.2	0.0	
	10:35	21.2	0.0	
	10:36	21.2	0.0	
	10:37	21.2	0.0	
	10:38	21.2	0.0	
	10:39	21.2	0.0	
	10:40	21.2	0.0	
	10:41	21.2	0.0	
	10:42	21.2	0.0	
	10:43	21.2	0.0	
	10:44	21.2	0.0	
	10:45	21.2	0.0	
	10:46	21.2	0.0	
	10:47	21.2	0.0	
	10:48	21.2	0.0	
	10:49	21.2	0.0	
	10:50	21.2	0.0	
	10:51	21.2	0.0	
	10:52	21.2	0.0	
	Avgs	21.1	0.0	

RUN SUMMARY

Client: Chemours Location: Fayetteville, NC Source: Division Stack		Calibratior	ו ז 2	Project Number: Operator: Date:	15418.002.011.0001 Dryden 26 Mar 2019			
	Method Conc. Units	O 2 EPA 3A %	CO₂ EPA 3A %					
Time: 08:52 to 10:52								
Run Averages								
		21.1	0.0					
	Pr	e-run Bias a	at 07:44					
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.0 8.9 8.9					
	Ро	st-run Bias	at 10:54					
	Zero Bias Span Bias Span Gas	0.0 12.1 12.0	0.0 8.9 8.9					
Run average	s corrected for	the average	of the pre-	-run and post-ru	ın bias			
		21.0	0.0					

BIAS AND CALIBRATION DRIFT

Number 4

Client: Location: Source:	Chemours Fayetteville, NO Division Stack	C	Calib Start Ti	ration 2	Project Number: Operator: Date:	15418.002.011.0001 Dryden 26 Mar 2019
			Otart II	110.04		
				O ₂		
			Metho	d: EPA 3A		
			Span Co	DNC. 21.0 %		
			Bias	Results		
	Standard	Cal.	Bias	Difference	Error	
	Gas	%	%	%	%	Status
	Zero	0.0	0.0	0.0	0.0	Pass
	Span	12.0	12.1	0.1	0.5	Pass
			Calibra	ation Drift		
	Standard	Initial*	Final	Difference	Drift	
	Gas	%	%	%	%	Status
	Zero	0.0	0.0	0.0	0.0	Pass
	Span	12.0	12.1	0.1	0.5	Pass
		*Bias No. 3				
=						
			(N 4 = 41= = = =			
			Span Co	$\frac{12}{166\%}$		
			opunio			
			Bias	Results		
	Standard	Cal.	Bias	Difference	Error	_
	Gas	%	%	%	%	Status
	Zero	0.0	0.0	0.0	0.0	Pass
	Span	8.9	8.9	0.0	0.0	Pass
			Calibra	ation Drift		
	Standard	Initial*	Final	Difference	Drift	
	Gas	%	%	%	%	Status
	Zero	0.0	0.0	0.0	0.0	Pass
	Span	8.9	8.9	0.0	0.0	Pass

*Bias No. 3

BIAS AND CALIBRATION DRIFT

Client: Location: Source:	t: Chemours n: Fayetteville, NC e: Division Stack Calibration 2				Project Number: 15418.002.011.0001 Operator: Dryden Date: 26 Mar 2019					
	Start Time: 14:22									
	O ₂									
	Method: EPA 3A									
			Sparroo	JIIC. 21.0 /0						
			Bias	Results						
	Standard	Cal.	Bias	Difference	Error	01-1				
	Gas	%	%	%	% 0.0	Status				
	Zero	0.0	0.0 12.0	0.0	0.0	Pass				
		12.0	12.0	0.0	0.0	1 855				
			Calibra	ation Drift						
	Standard	Standard Initial* Final Difference								
	Gas	%	%	%	%	Status				
	Zero	0.0	0.0	0.0	0.0	Pass				
	Span	12.1	12.0	-0.1	-0.5	Pass				
		[^] Blas No. 4								
			(
			Method	: EPA 3A						
			Span Co	onc. 16.6 %						
			Bias	Results						
	Standard	Cal.	Bias	Difference	Error					
	Gas	%	%	%	%	Status				
	Zero	0.0	0.0	0.0	0.0	Pass				
	Span	8.8	8.8	0.0	0.0	Pass				
			Calibra	ation Drift						
	Standard	Initial*	Final	Difference	Drift					
	Gas	%	%	%	%	Status				
	Zero	0.0	0.0	0.0	0.0	Pass				
	Span	8.9	8.8	-0.1	-0.6	Pass				
		*Bias No. 4								

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Client: Chemours Location: Fayetteville, NC Source: Division Stack	C	alibration	2	Project Number: 15418.002.011.0001 Operator: Dryden Date: 26 Mar 2019
RUN 3 START PORT 1 15:10 21.1 0.0 15:11 21.1 0.0 15:12 21.0 0.0 15:13 21.1 0.0 15:16 21.1 0.0 15:17 21.1 0.0 15:18 21.1 0.0 15:19 21.1 0.0 15:20 21.2 0.0 15:21 21.1 0.0 15:22 21.1 0.0 15:24 21.2 0.0 15:25 21.2 0.0 15:26 21.2 0.0 15:27 21.2 0.0 15:28 21.2 0.0 15:29 21.2 0.0 15:29 21.2 0.0 15:29 21.2 0.0 15:29 21.2 0.0 15:30 21.1 0.0 15:31 21.2 0.0 15:33 21.2		Time	O 2 %	CO 2 %	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15.10	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:10	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:12	21.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:13	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:14	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:15	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:16	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:17	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:18	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:19	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:20	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:21	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:22	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:23	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:24	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:25	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:26	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:27	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:28	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:29	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:30	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:31	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:32	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:33	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:34	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:35	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:36	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:37	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:38	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:39	21.2	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:40	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:41	21.1	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15:42	21.2	0.0	
15:44 21.2 0.0 15:45 21.2 0.0 15:46 21.2 0.0 15:47 21.2 0.0		15:43	21.2	0.0	
15:45 21.2 0.0 15:46 21.2 0.0 15:47 21.2 0.0		15:44	21.2	0.0	
15:46 21.2 0.0 15:47 21.2 0.0		15:45	21.2	0.0	
15:47 21.2 0.0		15:46	21.2	0.0	
		15:47	21.2	0.0	

Client: Chemours Location: Fayetteville, NC Source: Division Stack	Ca	alibration	2	Project Number: 15418.002.011.0001 Operator: Dryden Date: 26 Mar 2019
	Time	O 2 %	CO 2 %	
	15:48	21.2	0.0	
	15:49	21.2	0.0	
	15:50	21.2	0.0	
	15:51	21.2	0.0	
	15:52	21.2	0.0	
	15:53	21.2	0.0	
	15:54	21.2	0.0	
	15:55	21.2	0.0	
	15:56	21.2	0.0	
	15:57	21.2	0.0	
	15:58	21.2	0.0	
	POI	RT CHAN	IGE	
		PORT 2		
	16:21	21.1	0.0	
	16:22	21.1	0.0	
	16:23	21.1	0.0	
	16:24	21.1	0.0	
	16:25	21.1	0.0	
	10:20	21.1	0.0	
	16:27	21.1	0.0	
	10:28	21.2	0.0	
	10:29	21.2	0.0	
	10:30	21.2	0.0	
	10:31	21.2	0.0	
	10.32	21.Z 21.2	0.0	
	10.33	21.Z 21.2	0.0	
	16.35	21.2	0.0	
	10.35	21.2	0.0	
	16.30	21.2	0.0	
	16.38	21.2	0.0	
	16.30	21.2	0.0	
	16:30	21.2	0.0	
	16:41	21.2	0.0	
	16:42	21.2	0.0	
	16:43	21.2	0.0	
	16:44	21.2	0.0	
	16:45	21.2	0.0	
	16:46	21.2	0.0	
	16:47	21.2	0.0	
	10.71	£1.£	0.0	

Client: Location:	Chemours Fayetteville, NC	C	alibration	0	Project Number: Operator:	15418.002.011.0001 Dryden 26 Mor 2010		
	DIVISION SLACK			2	Dale.	20 Wiai 2019		
		Time	O 2 %	CO 2 %				
		16:48	21.2	0.0				
		16:49	21.2	0.0				
		16:50	21.2	0.0				
		16:51	21.2	0.0				
		16:52	21.2	0.0				
		16:53	21.2	0.0				
		16:54	21.2	0.0				
		16:55	21.2	0.0				
		16:56	21.2	0.0				
		16:57	21.2	0.0				
		16:58	21.2	0.0				
		16:59	21.2	0.0				
		17:00	21.2	0.0				
		17:01	21.2	0.0				
		17:02	21.2	0.0				
		17:03	21.2	0.0				
		17:04	21.2	0.0				
		17:05	21.2	0.0				
		17:06	21.2	0.0				
		17:07	21.2	0.0				
		17:08	21.2	0.0				
		17:09	21.2	0.0				
		Avgs	21.2	0.0				

RUN SUMMARY

Number 3

Client: Chemours Location: Fayetteville, NC Source: Division Stack	Calibration 2			Project Number: Operator: Date:	15418.002.011.0001 Dryden 26 Mar 2019			
	Method Conc. Units	O₂ EPA 3A %	CO₂ EPA 3A %					
Time: 15:09 to 17:09								
Run Averages								
		21.2	0.0					
	Pr	e-run Bias a	at 14:22					
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.0 8.8 8.9					
Post-run Bias at 17:11								
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.0 8.9 8.9					
Run averages	s corrected for	the average	of the pre	-run and post-ru	ın bias			

21.2 0.0

BIAS AND CALIBRATION DRIFT

Number 6

Client: Location: Source:	Chemours Fayetteville, NC Division Stack	nours tteville, NC ion Stack Calibration 2			Project Number: 15418.002.011.0001 Operator: Dryden Date: 26 Mar 2019			
			Start Ti	me: 17:11				
			Method	0₂ J: EPA 3A				
			Span Co	onc. 21.0 %				
	Bias Results							
	Standard Gas	Cal.	Bias %	Difference %	Error	Status		
	Zero	0.0	0.0	0.0	0.0	Pass		
	Span	12.0	12.0	0.0	0.0	Pass		
			Calibra	ation Drift				
	Standard	Initial*	Final	Difference	Drift			
	Gas	%	%	%	%	Status		
	Zero	0.0	0.0	0.0	0.0	Pass		
	Span	12.0	12.0	0.0	0.0	Pass		
=		*Bias No. 5						
			Methor	5 0 2 Η ΕΡΔ 3Δ				
	Span Conc. 16.6 %							
	Bias Results							
	Standard	Cal.	Bias	Difference	Error			
	Gas	%	%	%	%	Status		
	Zero	0.0	0.0	0.0	0.0	Pass		
	Span	8.8	8.9	0.1	0.6	Pass		
	Calibration Drift							
	Standard	Initial*	Final	Difference	Drift			
	Gas	%	%	%	%	Status		
	Zero	0.0	0.0	0.0	0.0	Pass		
	Span	8.8	8.9	0.1	0.6	Pass		

*Bias No. 5

APPENDIX C LABORATORY ANALYTICAL REPORT

Note: The analytical report is included on the attached CD.

Chemours VEN Carbon Bed Inlet Test Analytical Report TestAmerica Job No. 140-14725-1 April 10, 2019

The following samples exceeded the Method 8321A calibration range for HFPO-DA and required that dilution of the extracts be performed:

 K-2072,2073,2075 CB INLET R1 M0010 Back Half Composite (XAD-2 Resin and Glassware Rinses)

The original analysis concentration which displays the "E" flag is provided with the data set indicating that the value provided is estimated. The ${}^{13}C_3 - HFPO-DA$ isotope dilution internal standard (IDA) recovery percentage (%) however, is provided with this analysis run.

A second analysis concentration displays an accurate concentration of the HFPO-DA in the diluted sample extract, but the value is uncorrected for the IDA recovery percentage from the original matrix. The recovery percentage presented with the second concentration represents a post-spike of IDA to benchmark the instrument guantification of native HFPO-DA.

Final recovery-corrected concentrations of the native HFPO-DA are provided by calculation using the original recovery value of the IDA and the diluted extract values of the native HFPO-DA. The final concentrations are calculated as follows:

K-2072,2073,2075 CB INLET R1 M0010 Back Half Composite (XAD-2 Resin and Glassware Rinses)

 $(22800 ug) \times \left(\frac{74}{117}\right) = 14421 ug$

\\tafs\Lab\Knoxville\Public\Users Folders\AdkinsC\Project Documents\Special Reporting\Chemours Corrected Values\Fayetteville\Chemours Corrected Results for E-values HFPO-DA CB INLET 04102019.docx Created on 01/30/2018 Last edited on 4/11/2019 8:25 AM

Job ID: 140-14725-1

Client Sample ID: K-2070,20 Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train		L	Lab Sample ID: 140-14725-1 Matrix: Air						
Method: 8321A - PEOA and PEO	s								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	223		1.51	0.163	ug/Sample		03/29/19 07:19	04/03/19 13:36	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	70	D	50 - 200				03/29/19 07:19	04/03/19 13:36	10
Client Sample ID: K-2072,20 Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	73,2075	CB INLE	T R1 M001	10 BH		L	ab Sample.	Bid: 140-14 Mat	725-2 trix: Air
Method: 8321A - PFOA and PFO	S								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	17800	E	25.0	5.00	ug/Sample		03/28/19 08:51	04/03/19 11:58	100
HFPO-DA	22800	н	200	40.0	ug/Sample		04/08/19 07:39	04/10/19 07:58	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	117	D	50 - 200				03/28/19 08:51	04/03/19 11:58	100
13C3 HFPO-DA	74	D	50 - 200				04/08/19 07:39	04/10/19 07:58	10
Client Sample ID: K-2074 CE Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	3 INLET	R1 M001	0 IMP 1,28	3		L	ab Sample.	e ID: 140-14 Mat	725-3 trix: Air
Method: 8321A - HFPO-DA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	3910		22.0	1.12	ug/Sample		03/29/19 07:34	04/03/19 14:51	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	139	D	50 - 200				03/29/19 07:34	04/03/19 14:51	100
Client Sample ID: K-2076 CE BREAKTHROUGH XAD-2 RE Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55	B INLET ESIN TU	R1 M001 IBE	0			L	ab Sample.	D: 140-14	725-4
Sample Container: Air Train									
Method: 8321A - PFOA and PFO	S								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	988		10.0	2.00	ug/Sample		03/28/19 08:51	04/03/19 12:01	50
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	69	D	50 - 200				03/28/19 08:51	04/03/19 12:01	50

Job ID: 140-14725-1

Client Sample ID: K-2077,2 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train		L	ab Sample.	e ID: 140-14 Mat	725-5 trix: Air				
Method: 8321A - PFOA and PF	OS	Qualifian	5		11-14		Durana	Arreleand	D!! E
	77 3	Qualifier		0 109	ug/Sample		03/29/19 07:19	Analyzed	10
	11.0			000	ag, campio		00.20.10 01110		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HEPO-DA	78	D	50 - 200				03/29/19 07:19	04/03/19 13:39	10
Client Sample ID: K-2079,2 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	2080,2082	CBINLE	ET R2 M0010	BH		L	ab Sample	e ID: 140-14 Mat	725-6 trix: Air
Method: 8321A - PFOA and PF	•OS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	1310		15.0	3.00	ug/Sample		03/28/19 08:51	04/03/19 12:04	50
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac
13C3 HFPO-DA	71	D	50 - 200				03/28/19 08:51	04/03/19 12:04	50
Sample Container: Air Train Method: 8321A - HFPO-DA Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
THE FO-DA	52.0		0.000	5.0400	ug/Sample		03/23/13 07.34	04/03/13 14.20	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HEPO-DA	82	D	50 - 200				03/29/19 07:34	04/03/19 14:28	4
Client Sample ID: K-2083 (BREAKTHROUGH XAD-2 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	CB INLET RESIN TU	R2 M00 ⁴ BE	10			L	ab Sample.	e ID: 140-14 Mat	725-8 trix: Air
Method: 8321A - PFOA and PF	OS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	2.21		0.200).0400	ug/Sample		03/28/19 08:51	04/03/19 12:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	13	X	50 - 200				03/28/19 08:51	04/03/19 12:08	1
Client Sample ID: K-2084,2 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	2085 CB I	NLET R3	M0010 FH			L	ab Sample.	e ID: 140-14 Mat	725-9 trix: Air
Method: 8321A - PFOA and PF	OS	Qualifier			Unit	-	Duonora	Anak	
	Result	Qualifier		MDL		D	Prepared	Analyzed	DII Fac
	108		1.20	0.130	ug/sample		03/29/19/07:19	04/03/19 13:46	10

Job ID: 140-14725-1

Client Sample ID: K-2084,2085 CB INLET R3 M0010 FH Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train							Lab Sample ID: 140-14725- Matrix: A			
Surrogate %	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	73	D	50 - 200				03/29/19 07:19	04/03/19 13:46	10	
Client Sample ID: K-2086,208 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	87,2089	CB INLET	R3 M0010	BH		La	b Sample	ID: 140-147 Mat	25-10 rix: Air	
Method: 8321A - PFOA and PFOS	S Result	Qualifier	RI	мы	Unit	П	Prenared	Analyzed	Dil Fac	
HFPO-DA	2450		25.0	5.00	ug/Sample		03/28/19 08:51	04/03/19 12:14	100	
					0					
Surrogate %	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	105	D	50 - 200				03/28/19 08:51	04/03/19 12:14	100	
Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - HFPO-DA Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac	
HFPO-DA	30.0		0.205	0.0105	ug/Sample		03/29/19 07:34	04/03/19 14:31	1	
		0 117					- <i>i</i>			
Surrogate %	Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac	
1363 TH PO-DA	71		50-200				03/29/19 07.34	04/03/19 14.51	1	
Client Sample ID: K-2090 CE BREAKTHROUGH XAD-2 RE	INLET	R3 M0010				La	b Sample	ID: 140-147	25-12	
Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train								Mat	rix: Air	
Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train								Mat	rix: Air	
Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte	S Result	Qualifier	RL	MDL	Unit	D	Prepared	Mat	Dil Fac	
Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte HFPO-DA	S Result 8.11	Qualifier	RL 0.200	MDL 0.0400	Unit ug/Sample	D	Prepared 03/28/19 08:51	Mat Analyzed 04/03/19 12:17	Dil Fac	
Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte HFPO-DA Surrogate	S Result 8.11	Qualifier	RL 0.200	MDL 0.0400	Unit ug/Sample	D	Prepared 03/28/19 08:51 Prepared	Mat Analyzed 04/03/19 12:17 Analyzed	Dil Fac	

Job ID: 140-14729-1

Client Sample ID: E-2070,2071 CB OUTLET R1 M0010 FH Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train						Lab Sample ID: 140-14729 Matrix: /			
Method: 8321A - PFOA and Pf	FOS Becult	Qualifier	Ы	MDI	Unit	P	Bronorod	Applyzod	Dil Eco
HEPO-DA	140	Quaimer	1.26	0.136	ug/Sample		03/29/19 07:19	04/03/19 13:49	10
					0				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	/3	D	50 - 200				03/29/19 07:19	04/03/19 13:49	10
Client Sample ID: E-2072,2 Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	2073,2075	CB OU	TLET R1 M	0010 B	Н	L	.ab Sample	e ID: 140-14 Mat	729-2 trix: Air
Method: 8321A - PFOA and PF	os								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	39.3		0.250	0.0500	ug/Sample		03/28/19 08:51	04/03/19 12:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	17	X	50 - 200				03/28/19 08:51	04/03/19 12:21	1
Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train								Mat	irix: Air
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	9.33		0.210	0.0107	ug/Sample		03/29/19 07:34	04/03/19 14:34	1
Surrogato	% Pocovory	Qualifier	Limite				Proparad	Analyzod	Dil Eac
13C3 HFPO-DA	69	Quanner	50 - 200				03/29/19 07:34	04/03/19 14:34	1
Client Sample ID: E-2076 (BREAKTHROUGH XAD-2 Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55	CB OUTLI RESIN TU	et r1 m Be	0010			L	₋ab Sample	e ID: 140-14 Mat	729-4
Sample Container: Air Train									
Method: 8321A - PFOA and Pf Analyte	F <mark>OS</mark> Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.200	0.0400	ug/Sample		03/28/19 08:51	04/03/19 12:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	18	X	50 - 200				03/28/19 08:51	04/03/19 12:24	1
Client Sample ID: E-2077,2 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	2078 CB C	OUTLET	R2 M0010	FH		L	₋ab Sample	e ID: 140-14 Mat	729-5 trix: Air
Method: 8321A - PFOA and PF	os								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	68.9		1.01	0.109	ug/Sample		03/29/19 07:19	04/03/19 13:52	10

Client Sample ID: E-2077,2078 CB OUTLET R2 M0010 FH Lab Sample ID: 140-14729-5 Date Collected: 03/26/19 00:00 Matrix: Air Date Received: 03/27/19 08:55 Sample Container: Air Train Surrogate %Recovery Qualifier I imits Prepared Analyzed Dil Fac 13C3 HFPO-DA 75 D 50 - 200 03/29/19 07:19 04/03/19 13:52 10 Client Sample ID: E-2079,2080,8082 CB OUTLET R2 M0010 BH Lab Sample ID: 140-14729-6 Date Collected: 03/26/19 00:00 Matrix: Air Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analvte **Result Qualifier** RL MDL Unit Analvzed Dil Fac D Prepared 0.250 **HFPO-DA** 20.1 0.0500 ug/Sample 03/28/19 08:51 04/03/19 12:27 1 Surrogate %Recoverv Qualifier Limits Prepared Analvzed Dil Fac 13C3 HFPO-DA 13 X 03/28/19 08:51 04/03/19 12:27 50 - 200 1 Client Sample ID: E-2081 CB OUTLET R2 M0010 IMP 1,2&3 Lab Sample ID: 140-14729-7 Date Collected: 03/26/19 00:00 Matrix: Air Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - HFPO-DA MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac HFPO-DA 0.205 ND 0.0105 ug/Sample 03/29/19 07:34 04/03/19 14:38 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 50 - 200 03/29/19 07:34 04/03/19 14:38 71 1 Client Sample ID: E-2081 CB OUTLET R2 M0010 Lab Sample ID: 140-14729-8 BREAKTHROUGH XAD-2 RESIN TUBE Date Collected: 03/26/19 00:00 Matrix: Air Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyzed Analvte **Result Qualifier** RL MDL Unit D Dil Fac Prepared HFPO-DA 0.200 ND 0.0400 ug/Sample 03/28/19 08:51 04/03/19 12:34 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 12 X 50 - 200 03/28/19 08:51 04/03/19 12:34 1 Client Sample ID: E-2084,2085 CB OUTLET R3 M0010 FH Lab Sample ID: 140-14729-9 Date Collected: 03/26/19 00:00 Matrix: Air Date Received: 03/27/19 08:55 Sample Container: Air Train Method: 8321A - PFOA and PFOS Analyte **Result Qualifier** RL MDL Unit Analyzed Dil Fac п Prepared 1.26 **HFPO-DA** 192 0.136 ug/Sample 03/29/19 07:19 04/03/19 13:55 10 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3 HFPO-DA 72 D 50 - 200 03/29/19 07:19 04/03/19 13:55 10

Client: Chemours Company FC, LLC The Project/Site: Fayetteville Emissions CB Outlet								Job ID: 140-7	14729-1	
Client Sample ID: E-2086, Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	Client Sample ID: E-2086,2087,2089 CB OUTLET R3 M0010 BH Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train						Lab Sample ID: 140-1472 Matrix			
Method: 8321A - PFOA and P	FOS	• •••				_				
Analyte	Result	Qualifier		MDL	Unit	_ D	Prepared	Analyzed	Dil Fac	
HFPO-DA	12.0		0.225	0.0450	ug/Sample		03/28/19 08:51	04/03/19 12:37	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	25	X	50 - 200				03/28/19 08:51	04/03/19 12:37	1	
Client Sample ID: E-2088		ET R3 M	0010 IMP 1	,2&3		La	b Sample	ID: 140-147	29-11	
Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train								Mat	trix: Air	
Method: 8321A - HFPO-DA										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
HFPO-DA	ND		0.210	0.0107	ug/Sample		03/29/19 07:34	04/03/19 14:41	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	73		50 - 200				03/29/19 07:34	04/03/19 14:41	1	
Client Sample ID: E-2090	CB OUTLI	ET R3 M	0010			La	b Sample	ID: 140-147	29-12	
BREAKTHROUGH XAD-2	RESIN TU	IBE								
Date Collected: 03/26/19 00:00								Mat	trix: Air	
Date Received: 03/27/19 08:55										
Sample Container: Air Train										
Method: 8321A - PFOA and P	FOS									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
HFPO-DA	0.253		0.200	0.0400	ug/Sample		03/28/19 08:51	04/03/19 12:40	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	21	X	50 - 200				03/28/19 08:51	04/03/19 12:40	1	

Eurofins TestAmerica, Knoxville

Job ID: 140-14723-1

Client Sample ID: Q-1470,1471 DIV STACK R1 M0010 FH Date Collected: 03/25/19 00:00							Lab Sample ID: 140-14723-1 Matrix: Air			
Date Received: 03/27/19 08:55										
Sample Container: Air Train										
Method: 8321A - PFOA and PI	FOS					_				
Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fac	
HFPO-DA	89.2		1.51	0.163	ug/Sample		03/29/19 07:19	04/03/19 13:26	10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	76	D	50 - 200				03/29/19 07:19	04/03/19 13:26	10	
Client Sample ID: Q-1472	1473 1475			010 BH	4	1	ah Sample	D· 140-14	723-2	
Date Collected: 03/25/19 00:00								Mat	trix: Air	
Date Received: 03/27/19 08:55										
Sample Container: Air Train										
Mothod: 8221A BEOA and B	508									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
HFPO-DA	23.4		0.200	0.0400	ug/Sample		03/28/19 08:51	04/03/19 11:35	1	
2	0/ D	0	1 5 54				D	A	D# 5	
Surrogate	%Recovery						Prepared	Analyzed	DII Fac	
	15	Λ	50-200				03/20/19 00:01	04/03/10 11:00		
Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train								Mat	trix: Air	
Method: 8321A - HFPO-DA										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
HFPO-DA	1.85		0.202	0.0103	ug/Sample		03/29/19 07:34	04/03/19 14:12	1	
Surrogate	%Recoverv	Qualifier	l imits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	70	Quanter	50 - 200				03/29/19 07:34	04/03/19 14:12	1	
Client Sample ID: Q-1476 BREAKTHROUGH XAD-2	DIV STAC RESIN TU	K R1 M	0010			L	ab Sample	e ID: 140-14	723-4	
Date Collected: 03/25/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train								Mat	trix: Air	
Method: 8321A - PFOA and PI	FOS									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
HFPO-DA	ND		0.200	0.0400	ug/Sample		03/28/19 08:51	04/03/19 11:38	1	
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C3 HFPO-DA	23	X	50 - 200				03/28/19 08:51	04/03/19 11:38	1	
Client Comple ID: 0 1477		OTACK				-	ah Camala		702 5	
Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55	1478 DIV 3	STACK		.н		L	ab Sample	e ID: 140-14 Mat	trix: Air	
Sample Container: Air Train										
Method: 8321A - PFOA and PI	FOS									
Analyte	Result	Qualifier		MDL	Unit		Prepared	Analyzed	Dil Fac	
HFPO-DA	60.0		1.02	0.110	ug/Sample		03/29/19 07:19	04/03/19 13:29	10	

Job ID: 140-14723-1

Client Sample ID: Q-1477,1478 DIV STACK R2 M0010 FH Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train						Lab Sample ID: 140-14723- Matrix: A			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	81	D	50 - 200				03/29/19 07:19	04/03/19 13:29	10
Client Sample ID: Q-1479 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	,1480,1482	2 DIV ST	ACK R2 M()010 Bł	1	L	₋ab Sample	e ID: 140-14 Mat	723-6 trix: Air
Method: 8321A - PFOA and P	FOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	12.8		0.200	0.0400	ug/Sample		03/28/19 08:51	04/03/19 11:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	18	X	50 - 200				03/28/19 08:51	04/03/19 11:42	1
Client Sample ID: Q-1481 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train		5K R2 M0	1010 IMP 1	2&3			Lad Sample	e ID: 140-14 Mai	123-7 trix: Air
Method: 8321A - HFPO-DA						_			
	Result	Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
III FO-DA	0.0705	5	0.202	0.0100	ug/oumpic		00/20/10 07:04	04/00/10 14.10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	77		50 - 200				03/29/19 07:34	04/03/19 14:15	1
Client Sample ID: Q-1483 BREAKTHROUGH XAD-2 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	DIV STAC RESIN TU	K R2 M0 IBE	010			L	₋ab Sample	e ID: 140-14 Mat	723-8 trix: Air
Method: 8321A - PFOA and P	FOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.309		0.200	0.0400	ug/Sample		03/28/19 08:51	04/03/19 11:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	16	X	50 - 200				03/28/19 08:51	04/03/19 11:45	1
Client Sample ID: Q-1484 Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train	,1485 DIV	STACK I	R3 M0010 I	Η		L	₋ab Sample	e ID: 140-14 Mat	723-9 trix: Air
Method: 8321A - PFOA and P	FOS	Qualifier	ы		Unit	-	Dronored	Apolymod	
HFPO-DA	144	Quaimer	1.02	0.110	ug/Sample		03/29/19 07:19	04/03/19 13:32	10
				0.110					.5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	78	D	50 - 200				03/29/19 07:19	04/03/19 13:32	10

Job ID: 140-14723-1

Client Sample ID: Q-1486,1487,1489 DIV STACK R3 M0010 BH Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train							Lab Sample ID: 140-14723-10 Matrix: Ai		
Method: 8321A - PFOA and F	PFOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	6.62		0.200	0.0400	ug/Sample		03/28/19 08:51	04/03/19 11:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	23	X	50 - 200				03/28/19 08:51	04/03/19 11:48	1
Client Sample ID: Q-1488	DIV STAC	K R3 M	010 IMP 1	2&3		La	b Sample	ID: 140-147	23-11
Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train);						-	Mat	trix: Air
Method: 8321A - HFPO-DA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.198	0.0101	ug/Sample		03/29/19 07:34	04/03/19 14:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	76		50 - 200				03/29/19 07:34	04/03/19 14:21	1
Client Sample ID: Q-1490 BREAKTHROUGH XAD-2	DIV STAC	K R3 M0 IBE	0010			La	b Sample	ID: 140-147	23-12
Date Collected: 03/26/19 00:00 Date Received: 03/27/19 08:55 Sample Container: Air Train)							Mat	trix: Air
Method: 8321A - PFOA and F	PFOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.200	0.0400	ug/Sample		03/28/19 08:51	04/03/19 11:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	24	X	50 - 200				03/28/19 08:51	04/03/19 11:51	1

APPENDIX D SAMPLE CALCULATIONS

SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010)

<u>Client: Chemours</u> <u>Test Number: Run 1</u> <u>Test Location: CBed Inlet</u> Plant: Favetteville, NC Test Date: 3/25/2019 Test Period: 1315-1528

1. HFPO Dimer Acid concentration, lbs/dscf.

Conal	_	W x 2.2046 x 10 ⁻⁹
Coller	_	Vm(std)
Conc1	=	19542.0 x 2.2046 x 10-9 56.888
Conc1	=	7.57E-07
Where:		
W	=	Weight of HFPO Dimer Acid collected in sample in ug
Conc1	=	HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10 ⁻⁹	=	Conversion factor from ug to lbs.

2. HFPO Dimer Acid concentration, ug/dscm.

Conc2	=	W / (Vm(std) x 0.02832)
Conc2	=	19542.0 / (56.888 x 0.02832)
Conc2	=	12128.6
Where:		
Conc2	=	HFPO Dimer Acid concentration, ug/dscm.
0.02832	=	Conversion factor from cubic feet to cubic meters.

3. HFPO Dimer Acid mass emission rate, lbs/hr.

MR1 _(Inlet) =	Concl x Qs(std) x 60 min/hr
MR1 _(Inlet) =	7.57E-07 x 13551 x 60
MR1 _(Inlet) =	6.16E-01
Where:	
MR1 _(Inlet) =	HFPO Dimer Acid mass emission rate, lbs/hr.

4. HFPO Dimer Acid mass emission rate, g/sec.

MR2 _(Inlet) =	MR1 _(Inlet) x 453.59 / 3600
MR2 _(Inlet) =	6.16E-01 x 453.59 /3600
MR2 _(Inlet) =	7.75E-02
Where:	
MR2 _(Inlet) =	HFPO Dimer Acid mass emission rate, g/sec.
453.59 =	Conversion factor from pounds to grams.
3600 =	Conversion factor from hours to seconds.

5. HFPO Dimer Acid Removal Efficiency, %

RE	=	$MR1_{(Inlet)}$ - $MR1_{(Outlet)}$
		MR1 _(Inlet)
RE	=	(7.22E-01) - (6.23E-03)
		7.22E-01
RE	=	99.0
Where:		
RE	=	Carbon Bed Removal Efficiency.
MR1 _{(Inle}	et) =	Carbon Bed Inlet HFPO Dimer Acid mass rate, lbs/hr.
MR1 _{(Outle}	et) =	Carbon Bed Outlet HFPO Dimer Acid mass rate, lbs/hr.

EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS

<u>Client: Chemours</u> <u>Test Number: Run 1</u> <u>Test Location: VEN-Carbon Bed Inlet</u> Facility: Fayetteville, NC Test Date: 3/25/19 Test Period: 1315-1528

1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.

Vm(std) =	delta H 17.64 x Y x Vm x (Pb +
	1.013
	17.64 x 1.0001 x 57.651 x (30.02 +)
	13.6
Vm(std) =	= 56.888
	78.04 + 460
Where:	
Vm(std) =	Volume of gas sample measured by the dry gas meter,
Vm =	Volume of gas sample measured by the dry gas meter
•	at meter conditions, dcf.
Pb =	Barometric Pressure, in Hg.
delt H =	Average pressure drop across the orifice meter, in H2O
Tm =	Average dry gas meter temperature , deg F.
Y =	Dry gas meter calibration factor.
17.64 =	Factor that includes ratio of standard temperature (528 deg R)
	to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =	Specific gravity of mercury.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

Vw(std) =	(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std) =	(0.04707 x 14.4) + (0.04715 x 15.7) = 1.42
Where:	
Vw(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vwc =	Volume of liquid condensed in impingers, ml.
Wwsg =	Weight of water vapor collected in silica gel, g.
0.04707 =	Factor which includes the density of water
	(0.002201 lb/ml), the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), ft3/ml.
0.04715 =	Factor which includes the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), and
	453.6 g/lb, ft ³ /g.

3. Moisture content

	Vw(std)
bws =	
	Vw(std) + Vm(std)
	1.40
	1.42
bws =	= 0.024
	1.42 + 56.888

Where:

bws =	Proportion of water vapor, by volume, in the gas
	stream, dimensionless.

4. Mole fraction of dry gas.

Md =	l - bws
Md =	1 - 0.024 = 0.976
Where:	
Md =	Mole fraction of dry gas, dimensionless.

5. Dry molecular weight of gas stream, lb/lb-mole.

MWd =	$(\ 0.440\ x\ \%\ CO_2\)+(\ 0.320\ x\ \%\ O_2\)+(\ 0.280\ x\ (\%\ N_2+\%\ CO)\)$
MWd =	(0.440 x 0.0) + (0.320 x 20.9) + (0.280 x (79.1 + 0.00))
MWd =	28.84
Where:	
MWd =	Dry molecular weight, lb/lb-mole.
% CO2 =	Percent carbon dioxide by volume, dry basis.
% O ₂ =	Percent oxygen by volume, dry basis.
% N ₂ =	Percent nitrogen by volume, dry basis.
% CO =	Percent carbon monoxide by volume, dry basis.
0.440 =	Molecular weight of carbon dioxide, divided by 100.
0.320 =	Molecular weight of oxygen, divided by 100.
0.280 =	Molecular weight of nitrogen or carbon monoxide,
	divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

MWs =	(MWd x Md) + (18 x (1 - Md))
MWs =	(28.84 x 0.976) +(18 (1 - 0.976)) = 28.57
Where:	
MWs = 18 =	Molecular weight of wet gas, lb/lb-mole. Molecular weight of water, lb/lb-mole.

7. Average velocity of gas stream at actual conditions, ft/sec.

Ts (avg) 85.49 x Cp x ((delt p) ^{1/2})avg x (
543
$85.49 \ge 0.84 \ge 0.66432 \ge ()^{1/2} = 38.3$ 29.54 \times 28.57
Average gas stream velocity, ft/sec.
(lb/lb-mole)(in. Hg) ^{1/2}
Pitot tube constant, ft/sec x
(deg R)(in H ₂ O)
Pitot tube coefficient, dimensionless.
Absolute gas stream temperature, deg $R = Ts$, deg $F + 460$.
P(static)
Absolute gas stack pressure, in. Hg. = Pb +
13.6
Velocity head of stack, in. H ₂ O.

8. Average gas stream volumetric flow rate at actual conditions, wacf/min.

Qs(act) =	60 x Vs x As
Qs(act) =	60 x 38.3 x 6.31 = 14478
Where:	
Qs(act) =	Volumetric flow rate of wet stack gas at actual conditions, wacf/min.
As =	Cross-sectional area of stack, ft2.
60 =	Conversion factor from seconds to minutes.

9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.

Qs(std) =	Ps 17.64 x Md x x Qs(act) Ts
Qs(std) =	29.54 17.64 x 0.976 x x 14478 543.2
Qs(std) =	13551
Where:	
Qs(std) =	Volumetric flow rate of dry stack gas at standard conditions, dscf/min.

10. Isokinetic variation calculated from intermediate values, percent.

I –	17.327 x Ts x Vm(std)
1 -	$Vs x O x Ps x Md x (Dn)^2$
I –	17.327 x 543 x 56.888
1 -	38.3 x 96 x 29.54 x 0.976 x (0.215)^2
Where:	
I =	Percent of isokinetic sampling.
O =	Total sampling time, minutes.
Dn =	Diameter of nozzle, inches.
17.327 =	Factor which includes standard temperature (528 deg R), standard pressure (29.92 in Hg) the formula for
	calculating area of circle $D^{2/4}$ conversion of square
	fact to square inches (144), conversion of seconds
	to minutes (60) and conversion to percent (100)
	$(in Ha)(in^2)(min)$
	(<u>in. Hg)(in)(min)</u>
	$(\deg R)(ft^{-})(sec)$

SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010)

<u>Client: Chemours</u> <u>Test Number: Run 1</u> <u>Test Location: CBed Outlet</u> <u>Plant: Fayetteville, NC</u> <u>Test Date: 3/25/19</u> <u>Test Period: 1315-1529</u>

1. HFPO Dimer Acid concentration, lbs/dscf.

		W x 2.2046 x 10 ⁻⁹
C_1	=	
		Vm(std)

C	_	188.6 x 2.2046 x 10-9
C_1	_	59 509
		59.509

= 6.99E-09

Where:

W	=	Weight of HFPO Dimer Acid collected in sample in ug.
C ₁	=	HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10 ⁻⁹	=	Conversion factor from ug to lbs.

2. HFPO Dimer Acid concentration, ug/dscm.

C ₂	=	W / (Vm(std) x 0.02832)
C ₂	=	188.6 / (59.509 x 0.02832)
	=	1.12E+02

Where:

C ₂	=	HFPO Dimer Acid concentration, ug/dscm.
0.02832	=	Conversion factor from cubic feet to cubic meters.

3. HFPO Dimer Acid mass emission rate, lbs/hr.

PMR1	=	C ₁ x Qs(std) x 60 min/hr	
PMR1	=	6.99E-09 x 14856 x 60	
	=	6.23E-03	
Where:			
PMR1	=	HFPO Dimer Acid mass emission rate, lbs/hr.	
4. HFPO Du	mer 4	Acid mass emission rate, g/sec.	
PMR2	=	PMR1 x 453.59 / 3600	
PMR2	=	6.23E-03 x 453.59 /3600	
	=	7.84E-04	
Where:			
PMR2	=	HFPO Dimer Acid mass emission rate, g/sec.	
453.6	=	Conversion factor from pounds to grams.	
3600	=	Conversion factor from hours to seconds.	

SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010)

<u>Client: Chemours</u> <u>Test Number: Run 3</u> <u>Test Location: Divison Stack</u> Plant: Favetteville, NC Test Date: 3/26/2019 Test Period: 1510-1709

1. HFPO Dimer Acid concentration, lbs/dscf.

Conal	=	W x 2.2046 x 10 ⁻⁹
Coller		Vm(std)
Canal	_	150.6 x 2.2046 x 10-9
Concl	=	52.864
Conc1	=	6.28E-09
Where:		
W	=	Weight of HFPO Dimer Acid collected in sample in ug.
Conc1	=	Division Stack HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10 ⁻⁹	=	Conversion factor from ug to lbs.

2. HFPO Dimer Acid concentration, ug/dscm.

Conc2	=	W / (Vm(std) x 0.02832)
Conc2	=	150.6 / (52.864 x 0.02832)
Conc2	=	1.01E+02
Where:		
Conc2	=	Division Stack HFPO Dimer Acid concentration, ug/dscm.
0.02832	=	Conversion factor from cubic feet to cubic meters.

3. HFPO Dimer Acid mass emission rate, lbs/hr.

MR1 _(Outlet)	=	Concl x Qs(std) x 60 min/hr
MR1 _(Outlet)	=	6.28E-09 x 28665 x 60
MR1 _(Outlet)	=	1.08E-02
Where:		
MR1 _(Outlet)	=	Division Stack HFPO Dimer Acid mass emission rate, lbs/hr.
4. HFPO Di	mer Ac	id mass emission rate, g/sec.
MR2 _(Outlet)	=	PMR1 x 453.59 / 3600
MR2 _(Outlet)	=	1.08E-02 x 453.59 /3600
MR2 _(Outlet)	=	1.36E-03
Where:		
MR2 _(Outlet)	=	Division Stack HFPO Dimer Acid mass emission rate, g/sec.
453.6	=	Conversion factor from pounds to grams.
3600	=	Conversion factor from hours to seconds.

EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS

Client: Chemours Test Number: Run 3 Test Location: Division Stack Facility: Fayetteville, NC Test Date: 3/26/2019 Test Period: 1510-1709

1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.

Vm(std) =	delta H 17.64 x Y x Vm x (Pb +
	1.419
	17.64 x 1.0010 x 51.653 x (29.96 +
Vm(std) =	= 52.864 58.50 + 460
Where:	
Vm(std) =	Volume of gas sample measured by the dry gas meter,
Vm =	Volume of gas sample measured by the dry gas meter at meter conditions, dcf.
Pb =	Barometric Pressure, in Hg.
delt H =	Average pressure drop across the orifice meter, in H2O
Tm =	Average dry gas meter temperature , deg F.
Y =	Dry gas meter calibration factor.
17.64 =	Factor that includes ratio of standard temperature (528 deg R)
	to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =	Specific gravity of mercury.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

Vw(std) =	(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std) =	(0.04707 x 7.0) + (0.04715 x 13.6) = 0.97
Where:	
Vw(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vwc =	Volume of liquid condensed in impingers, ml.
Wwsg =	Weight of water vapor collected in silica gel, g.
0.04707 =	Factor which includes the density of water
	(0.002201 lb/ml), the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft3)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), ft3/ml.
0.04715 =	Factor which includes the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), and
	453.6 g/lb, ft ³ /g.

3. Moisture content

	Vw(std)
bws =	Vw(std) + Vm(std)
bws =	0.97 = 0.018 0.97 + 52.864

Where:

bws =	Proportion of water vapor, by volume, in the gas
	stream, dimensionless.

4. Mole fraction of dry gas.

Md =	1 - bws
Md =	1 - 0.018 = 0.982
Where:	
Md =	Mole fraction of dry gas, dimensionless.

5. Dry molecular weight of gas stream, lb/lb-mole.

MWd =	$(\ 0.440\ x\ \%\ CO_2\)+(\ 0.320\ x\ \%\ O_2\)+(\ 0.280\ x\ (\%\ N_2+\%\ CO)\)$
MWd =	(0.440 x 0.0) + (0.320 x 20.9) + (0.280 x (79.1 + 0.00))
MWd =	28.84
Where:	
MWd =	Dry molecular weight, lb/lb-mole.
% CO2 =	Percent carbon dioxide by volume, dry basis.
% O ₂ =	Percent oxygen by volume, dry basis.
% N ₂ =	Percent nitrogen by volume, dry basis.
% CO =	Percent carbon monoxide by volume, dry basis.
0.440 =	Molecular weight of carbon dioxide, divided by 100.
0.320 =	Molecular weight of oxygen, divided by 100.
0.280 =	Molecular weight of nitrogen or carbon monoxide,
	divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

MWs =	(MWd x Md) + (18 x (1 - Md))
MWs =	(28.84 x 0.982) +(18 (1 - 0.982)) = 28.64
Where:	
MWs = 18 =	Molecular weight of wet gas, lb/lb-mole. Molecular weight of water, lb/lb-mole.

7. Average velocity of gas stream at actual conditions, ft/sec.

Vs =	Ts (avg) 85.49 x Cp x ((delt p) ^{1/2})avg x (³) ² Ps x MWs
Vs =	529 85.49 x 0.84 x 1.22257 x (
Where:	29.91 x 28.64
Vs =	Average gas stream velocity, ft/sec. (lb/lb mole)(in $Ha^{1/2}$
85.49 =	Pitot tube constant, ft/sec x
Cp =	Pitot tube coefficient, dimensionless.
Ts =	Absolute gas stream temperature, deg $R = Ts$, deg $F + 460$. P(static)
Ps =	Absolute gas stack pressure, in. Hg. = Pb +
	13.6
delt p =	Velocity head of stack, in. H ₂ O.

8. Average gas stream volumetric flow rate at actual conditions, wacf/min.

Qs(act) =	60 x Vs x As
Qs(act) =	60 x 69.0 x 7.07 = 29265
Where:	
Qs(act) =	Volumetric flow rate of wet stack gas at actual conditions, wacf/min.
As =	Cross-sectional area of stack, ft2.
60 =	Conversion factor from seconds to minutes.

9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.

Qs(std) =	Ps 17.64 x Md x x Qs(act) Ts
Qs(std) =	29.91 17.64 x 0.982 x x 29265 528.9
Qs(std) =	28665
Where:	
Qs(std) =	Volumetric flow rate of dry stack gas at standard conditions, dscf/min.

10. Isokinetic variation calculated from intermediate values, percent.

I –	17.327 x Ts x Vm(std)
1 –	$Vs \ge O \ge Ps \ge Md \ge (Dn)^2$
Ţ	17.327 x 529 x 52.864
I =	$= 97.3$ 69.0 x 96 x 29.91 x 0.982 x (0.160)^2
where:	
I =	Percent of isokinetic sampling.
O =	Total sampling time, minutes.
Dn =	Diameter of nozzle, inches.
17.327 =	Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for
	calculating area of circle D ^{2/4} , conversion of square
	feet to square inches (144), conversion of seconds
	to minutes (60), and conversion to percent (100),
	(in. Hg)(in ²)(min)
	(deg R)(ft ²)(sec)

APPENDIX E EQUIPMENT CALIBRATION RECORDS

INTERFERENCE CHECK

Date: 12/4/14-12/5/14 Analyzer Type: Servomex - O₂ Model No: 4900 Serial No: 49000-652921 Calibration Span: 21.09 % Pollutant: 21.09% O₂ - CC418692

	ANALYZEF			
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)	
CO ₂ (30.17% CC199689)	0.00	-0.01	0.00	
NO (445 ppm CC346681)	0.00	0.02	0.11	
NO ₂ (23.78 ppm CC500749)	NA	NA	NA	
N ₂ O (90.4 ppm CC352661)	ppm CC352661) 0.00 0.05		0.24	
CO (461.5 ppm XC006064B)	(461.5 ppm XC006064B) 0.00 0.02		0.00	
SO ₂ (451.2 ppm CC409079)	0.00	0.05	0.23	
CH ₄ (453.1 ppm SG901795)	NA	NA	NA	
H ₂ (552 ppm ALM048043)	43) 0.00 0.09		0.44	
HCl (45.1 ppm CC17830)	4Cl (45.1 ppm CC17830) 0.00		0.14	
NH ₃ (9.69 ppm CC58181)	iH ₃ (9.69 ppm CC58181) 0.00 0.01		0.03	
TOTAL INTERFERENCE RESPONSE			1.20	
METHOD SPECIFICATION			< 2.5%	

^(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>ChroDWaller</u>

INTERFERENCE CHECK

<u>Date: 12/4/14-12/5/14</u> <u>Analyzer Type: Servomex - CO₂</u> <u>Model No: 4900</u> <u>Serial No: 49000-652921</u> <u>Calibration Span: 16.65%</u> <u>Pollutant: 16.65% CO₂ - CC418692</u>

	ANALYZEF				
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)		
CO ₂ (30.17% CC199689)	NA	NA	NA		
NO (445 ppm CC346681)	0.00	0.02	0.10		
NO ₂ (23.78 ppm CC500749)	0.00	0.00	0.02		
N ₂ O (90.4 ppm CC352661)	n CC352661) 0.00 0.01		0.04		
CO (461.5 ppm XC006064B)	CO (461.5 ppm XC006064B) 0.00		m XC006064B) 0.00 0.01		0.00
SO ₂ (451.2 ppm CC409079)	79) 0.00 0.11		0.64		
CH ₄ (453.1 ppm SG901795)	0.00	0.07	0.44		
H ₂ (552 ppm ALM048043)	0.00	0.04	0.22		
HCl (45.1 ppm CC17830) 0.10		0.10 0.06			
NH ₃ (9.69 ppm CC58181)	(H ₃ (9.69 ppm CC58181) 0.00 0.02		0.14		
TOTAL INTERFERENCE RESPONSE			2.19		
METHOD SPECIFICATION			< 2.5%		

^(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>ChroDWaller</u>

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:

E03NI79E15A00E4 CC18055 124 - Riverton (SAP) - NJ B52018 CO2,O2,BALN

Reference Number: 82-401288926-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

150.5 CF 2015 PSIG 590 Sep 04, 2018

Expiration Date: Sep 04, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

ANALYTICAL RESULTS						
Compone	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON [DIOXIDE	9.000 %	8.864 %	G1	+/- 0.7% NIST Traceable	09/04/2018
OXYGEN		12.00 %	12.00 %	G1	+/- 0.4% NIST Traceable	09/04/2018
NITROGEN	N	Balance			-	
	CALIBRATION STANDARDS					
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060629	CC413730	13.359 % CARBON D	IOXIDE/NITROGEN	+/- 0.6%	May 09, 2019
Instrument/Make/Model Analytical Principle Last Multipoint Calibration						
Horiba VIA 510-CO2-19GYCXEG		NDIR		Aug 09, 2018		
Horiba MPA 510-O2-7TWMJ041		Paramagnetic		Aug 09, 2018		

Triad Data Available Upon Request

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI62E15A0224 SG9169108 124 - Riverton (SAP) - NJ B52017 CO2,O2,BALN

Reference Number: 82-401044874-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

157.2 CF 2015 PSIG 590 Nov 18, 2017

Expiration Date: Nov 18, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS							
Component		Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates	
CARBON I	DIOXIDE	17.00 %	16.58 %	G1	+/- 0.7% NIST Traceable	11/18/2017	
OXYGEN		21.00 %	21.00 %	G1	+/- 0.5% NIST Traceable	11/18/2017	
NITROGE	N	Balance			-		
	CALIBRATION STANDARDS						
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date	
NTRM	12061336	CC360792	11.002 % CARBON [DIOXIDE/NITROGEN	+/- 0.6%	Jan 11, 2018	
NTRM	09061415	CC273526	22.53 % OXYGEN/NITROGEN		+/- 0.4%	Mar 08, 2019	
	ANALYTICAL EQUIPMENT						
Instrume	Instrument/Make/Model Analytical Principle Last Multipoint Calibration						
Horiba VIA 510-CO2-19GYCXEG		NDIR		Oct 30, 2017			
Horiba MPA 510-O2-7TWMJ041		Paramagnetic Oct 27, 2017					

Triad Data Available Upon Request

Calibrator	MDW	_	Met	er Box Number	27	_	Ambient Temp	72		
Date 21-Feb-19		Wet Test Meter Number P-2952 Temp R		Thermocouple Reference Source (Accuracy +		Simulator ⊦/- 1°F)				
		-	Dry Gas	Meter Number	16787479					
Setting	Gas	Volume		Temper	ratures			Baro Press, in Hg (Pb)	29.16	
Orifice Manometer	Wet Test Meter	Dry gas Meter	Wet Test Meter		Dry Gas Meter			Calibration Results		
in H ₂ 0	ft ³	ft ³	°F	Outlet. °F	Inlet. °F	Average. °F	Time, min	~		
(∆H)	(Vw)	(Vd)	(Tw)	(Td _o)	(Td _i)	(Td)	(O)	Ŷ	ΔΗ	
		272.601	X 4	75.00	75.00	· · ·				
0.5	5.0	277.620	72.0	75.00	75.00	75.0	12.7	1.0006	1.8551	
		5.019		75.00	75.00					
4.0	5.0	278.620	70.0	75.00	75.00	75.0		1.0011	4 0 0 0 0	
1.0	5.0	283.630	72.0	75.00	75.00	75.0	9.0		1.8633	
		5.010		75.00	75.00					
15	10.0	204.300	72.0	75.00	75.00	75.0 15.2	15.2	1 0012	1 0031	
1.5	10.0	10,006	72.0	75.00	75.00		10.2	1.0012	1.9951	
		295 740		76.00	76.00					
2.0	10.0	305.748	72.0	76.00	76.00	76.0	13.0	1.0017	1.9402	
		10.008		76.00	76.00					
	10.0	307.745		76.00	76.00	76.5	10.7	0.9957		
3.0		317.835	70.0	77.00	77.00				1.9550	
		10.090		76.50	76.50					
							Average	1.0001	1.9213	
Vw - Gas Volun	ne passing th	rough the wet test	meter	0 - Time of calibra	ation run		$\lambda_{AV} * Dh$	* (td + 460)		
Vd - Gas Volum	ne passing thr	ough the dry gas n	neter	Pb - Barometric Pressure $Y = \frac{VW + D + (U + 400)}{[(A + 400)]}$						
Tw - Temp of g	as in the wet	test meter		∆H - Pressure diff	ferential across		Vd * Pb + $\frac{\sqrt{\Delta}}{\sqrt{2}}$	$\frac{\Pi}{2} * (tw + 460)$)	
Tdi - Temp of th	he inlet gas of	the dry gas meter		orifice			L 13	.6]		
Tdo - Temp of t	the outlet gas	of the dry gas met	er	Y - Ratio of accur	acy of wet test		, [0.0317 × /	∆H	0)*O] ²	
Td - Average te	emp of the gas	s in the dry gas me	ter	meter to dry gas r	meter	ΔF	$I = \left[\frac{Pb * (td + 4)}{Pb * (td + 4)} \right]$	60)]*[<u> </u>	<u>,</u>	
Refer	ence									
Tempe	rature		Temperature	Reading from In	dividual Therr	nocouple Input	1	Average	Temp	
Select Temperature				-		-		Temperature	Difference ²	
			Channe		l Number			Reading	(%)	
		1	2	3	4	5	6			
32	2	32	32	32	31	31		31.6	0.1%	
21	2	212	212	212	211	211		211.6	0.1%	
93	2	932	932	932	931	931		931.6	0.0%	
1832 1831		1831	1831	1831	1830	1830		1830.6	0.1%	

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console

1 - Channel Temps must agree with +/- 5°F or 3°C

2 - Acceptable Temperature Difference less than 1.5 %

Temp Diff =

 $\left[\frac{\left(\text{Reference Temp}(^{\circ}\text{F})+460\right)-\left(\text{Test Temp}(^{\circ}\text{F})+460\right)}{\text{Reference Temp}(^{\circ}\text{F})+460}\right]$

Y Factor Calibration Check Calculation

METHOD 0010 TEST TRAIN CARBON BED INLET

METER BOX NO. 27

RUN NO. 1 3/25/2019

MWd = Dry molecular weight source gas, lb/lb-mole.	
0.32 = Molecular weight of oxygen, divided by 100.	
0.44 = Molecular weight of carbon dioxide, divided by 100.	
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.	
% CO ₂ = Percent carbon dioxide by volume, dry basis.	0.0
$\% O_2 =$ Percent oxygen by volume, dry basis.	20.9

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 20.9) + (0.44 * 0) + (0.28 * (100 - (0 + 20.9)))

MWd = (6.69) + (0.00) + (22.15)

MWd = 28.84

Tma = Source Temperature, absolute(°R)	
Tm = Average dry gas meter temperature , deg F.	78.0

Tma = Ts + 460

Tma = 78.0 + 460

Tma = 538.04

Ps = Absolute meter pressure, inches Hg.	
13.6 = Specific gravity of mercury.	
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	1.01
Pb = Barometric Pressure, in Hg.	30.02

Pm = Pb + (delta H / 13.6)

Pm = 30.02 + (1.0125 / 13.6)

Pm = 30.09

Yqa = dry gas meter calibration check value, dimensionless.	
0.0319 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.	
29 = dry molecular weight of air, lb/lb-mole.	
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	57.651
Y = Dry gas meter calibration factor (based on full calibration)	1.0001
Delta H $@$ = Dry Gas meter orifice calibration coefficient, in. H2O.	1.9213
avg SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. H_2O	1.0484
O = Total sampling time, minutes,	96

Yqa = (O / Vm) * SQRT[(0.0319 * Tma * 29) / (Delta H@ * Pm * MWd)] * avg SQRT Delta H

Yqa = (96.00 / 57.65) * SQRT[(0.0319 * 538.04 * 29) / (1.92 * 30.09 * 28.84)] * 1.05

Yqa = 1.665 * SQRT[497.742 / 1,667.064] * 1.05

Yqa = 0.954

Diff = Absolute difference between Yqa and Y

Diff = ((Y - Yqa) / Y) * 100

Diff = ((1.0001 - 0.954) / 1.0001) * 100

Diff = 4.61

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

- 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
- 2) Record barometric pressure before and after calibration procedure.
- Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record readings in colored boxes below, other columns are automatically calculated.

INITIAL FINAL AVG (Pbar) DATE: 12/12/18 METER SERIAL #: 17096207 BAROMETRIC PRESSURE (in Hg): 29.52 29.50 29.51 METER PART #: AO29 CRITICAL ORIFICE SET SERIAL #: 1331s & 1825 Calibrated by: JAW K' TESTED ELAPSED FACTOR VACUUM DGM READINGS (FT³) AMBIENT DGM F° Avg DGM F° TIME (MIN) DGM AH (1) (2) (3) (4) ORIFICE # RUN # (AVG) (in Hg) INITIAL FINAL NET (V_m) INITIAL FINAL $(in H_2O)$ V_m (STD) V_{cr} (STD) ΔH_@ F° Tm θ Y 1 0.2313 24 46.326 57.923 11.597 73 38 11.341 11.238 0.991 1.826 12 2 0.3277 22.5 46.326 10.823 73 74 73 74 25 0.59 10.582 1.852 10.475 0.990 16 21.5 3 0.4349 20.574 35.503 14.929 73 74 74 74 26 1.10 14.602 14.458 0.990 1.963 19 20.5 0.5142 4 9.748 20.574 10.826 74 74 74 16 1.40 10.596 10.539 0.995 1.783 25 5 0.6742 18.5 1009.748 10.622 74 74 74 12 2.50 10.425 10.364 0.994 1.863 31 0.8108 6 54,126 70 75 73 51 53.431 53.02 0.992 1.919 0.992 1.868 AVG = USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, V_m (std), and the critical orifice, V_{cr} (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. PASS Individual Y's .02 from average? PASS Individual $\Delta H_{@}$ values 0.15 from average? Average Y value +/-.02 of 1.000? PASS = Net volume of gas sample passed through DGM, corrected to standard conditions (1) V_m (std) = $K_1 V_m P_{bar} + (\Delta H/13.6)$ K₁ = 17.64 °R/in. Hg (English), 0.3858 °K/mm Hg (Metric) Tm T_m = Absolute DGM avg. temperature (°R - English, °K - Metric) V_{cr} (std) = = Volume of gas sample passed through the critical orifice, corrected to standard conditions (2) Tamb = Absolute ambient temperature (°R - English, °K - Metric) K' = Average K' factor from Critical Orifice Calibration V_{cr} (std) (3) Y= = DGM calibration factor Next Calibration Due By: 12/12/2019 (4) AHa = ΔH 0.0319 Tm Θ² Pbar Y² Vm²

AO29 6-point 1331s & 1825 12-12-18 New DGM

Y Factor Calibration Check Calculation

METHOD 0010 TEST TRAIN CARBON BED INLET

METER BOX NO. AO29

RUN NO. 3 3/26/2019

MWd = Dry molecular weight source gas, lb/lb-mole.	
0.32 = Molecular weight of oxygen, divided by 100.	
0.44 = Molecular weight of carbon dioxide, divided by 100.	
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.	
% CO ₂ = Percent carbon dioxide by volume, dry basis.	0.0
$\% O_2 =$ Percent oxygen by volume, dry basis.	20.9

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 20.9) + (0.44 * 0) + (0.28 * (100 - (0 + 20.9)))

MWd = (6.69) + (0.00) + (22.15)

MWd = 28.84

Tma = Source Temperature, absolute(°R)	
$T_m = Average dry gas meter temperature , deg F.$	64.5

Tma = Ts + 460

Tma = 64.5 + 460

Tma = 524.54

Ps = Absolute meter pressure, inches Hg.	
13.6 = Specific gravity of mercury.	
delta $H = Avg$ pressure drop across the orifice meter during sampling, in H2O	1.11
Pb = Barometric Pressure, in Hg.	30.06

Pm = Pb + (delta H / 13.6)

Pm = 30.06 + (1.1071 / 13.6)

Pm = 30.14

Yqa = dry gas meter calibration check value, dimensionless.	
0.0319 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.	
29 = dry molecular weight of air, lb/lb-mole.	
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	55.610
Y = Dry gas meter calibration factor (based on full calibration)	0.992
Delta H $@$ = Dry Gas meter orifice calibration coefficient, in. H2O.	1.868
avg SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. H_2O	1.0484
O = Total sampling time, minutes,	96

Yqa = (O / Vm) * SQRT[(0.0319 * Tma * 29) / (Delta H@ * Pm * MWd)] * avg SQRT Delta H

Yqa = (96.00 / 55.61) * SQRT[(0.0319 * 524.54 * 29) / (1.87 * 30.14 * 28.84)] * 1.05

Yqa = 1.726 * SQRT[485.253 / 1,623.511] * 1.05

Yqa = 0.990

Diff = Absolute difference between Yqa and Y

Diff = ((Y - Yqa) / Y) * 100

Diff = ((0.992 - 0.990) / 0.992) * 100

Diff = 0.2

Ambient Temp 70 Calibrator MDW Meter Box Number 28 Thermocouple Simulator Temp Reference Source (Accuracy +/- 1°F) Wet Test Meter Number P-2952 Date 27-Mar-18 Dry Gas Meter Number 15042594 Baro Press, in 30.16 Gas Volume Temperatures Setting Hg (Pb) Orifice Wet Test Wet Test Dry gas **Dry Gas Meter Calibration Results** Manometer Meter Meter Meter in H₂0 ft³ ft³ °F Outlet. °F Inlet. °F Average, °F Time, min Υ ΔH (∆H) (Vw) (Vd) (Td_{o}) (Td_i) (0) (Tw) (Td) 728.890 72.00 72.00 0.5 5.0 71.0 73.00 73.00 72.5 13.3 1.0060 1.9689 733.868 4.978 72.50 72.50 73.00 73.00 734.860 1.0 5.0 70.0 74.00 73.5 9.5 1.0052 1.9978 739.855 74.00 73.50 4.995 73.50 740.852 74.00 74.00 10.0 70.0 16.7 1.0035 1.5 750.865 75.00 75.00 74.5 2.3108 10.013 74.50 74.50 751.869 75.00 75.00 2.0 10.0 761.915 70.0 76.00 76.00 75.5 13.7 1.0009 2.0696 10.046 75.50 75.50 762.921 76.00 76.00 3.0 10.0 69.0 77.00 77.00 76.5 11.3 0.9980 2.1001 773.009 76.50 76.50 10.088 Average 1.0027 2.0895 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run $Y = \frac{Vw * Pb * (td + 460)}{Vd * \left[Pb + \frac{(\Delta H)}{13.6}\right] * (tw + 460)}$ Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter ΔH - Pressure differential across Tdi - Temp of the inlet gas of the dry gas meter orifice Tdo - Temp of the outlet gas of the dry gas meter $\Delta H = \left[\frac{0.0317 * \Delta H}{Pb * (td + 460)}\right] * \left[\frac{(tw + 460) * O}{Vw}\right]^2$ Y - Ratio of accuracy of wet test Td - Average temp of the gas in the dry gas meter meter to dry gas meter Reference Temp Temperature Temperature Reading from Individual Thermocouple Input¹ Average Select Temperature Difference² Temperature Channel Number Reading (%) °°C ● °F 5 1 2 3 4 6 32 32 32 32 32 33 32.2 0.0% 212 213 213 213 213 214 213.2 -0.2% 932 932 933 932 932 932 932.2 0.0% 1832 1832 1832 1831 1832 1834 1832.2 0.0% 1 - Channel Temps must agree with +/- 5°F or 3°C $(\text{Reference Temp}(^{\circ}\text{F}) + 460) - (\text{Test Temp}(^{\circ}\text{F}) + 460)^{-1}$ Temp Diff = 2 - Acceptable Temperature Difference less than 1.5 % Reference Temp($^{\circ}F$)+460

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console

Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN CARBON BED OUTLET METER BOX NO. WC 28 3/25/2019 + 3/26/2019

	Kull I	Kun Z	Kuli 5
MWd = Dry molecular weight source gas, lb/lb-mole.			
0.32 = Molecular weight of oxygen, divided by 100.			
0.44 = Molecular weight of carbon dioxide, divided by 100.			
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.			
% CO ₂ = Percent carbon dioxide by volume, dry basis.	0.0	0.0	0.0
$\% O_2$ = Percent oxygen by volume, dry basis.	20.9	20.9	20.9

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 20.9) + (0.44 * 0) + (0.28 * (100 - (0 + 20.9)))

MWd = (6.69) + (0.00) + (22.15)

MWd =	28.84	28.84	28.84
$Tma = Source Temperature, absolute(^{\circ}R)$			
Tm = Average dry gas meter temperature , deg F.	80.5	51.8	66.4

Tma = Ts + 460

Tma = 80.50 + 460

Tma =

Ps = Absolute meter pressure, inches Hg.			
13.60 = Specific gravity of mercury.			
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	1.43	1.38	1.46
Pb = Barometric Pressure, in Hg.	30.02	30.06	30.06

Pm = Pb + (delta H / 13.6)

Pm =

30.12 30.16 30.17

511.79

526.38

D.... 1

540.50

. .

Yqa = dry gas meter calibration check value, dimensionless.			
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.			
29.00 = dry molecular weight of air, lb/lb-mole.			
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	60.365	57.418	59.954
Y = Dry gas meter calibration factor (based on full calibration)	1.0027	1.0027	1.0027
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.	2.0895	2.0895	2.0895
avg SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. $\rm H_2O$	1.1700	1.1454	1.1850
O = Total sampling time, minutes.	96	96	96

Yqa = (O / Vm) * SQRT (0.0319 * Tma * 29) / (Delta H@ * Pm * MWd) * avg SQRT Delta H = (O / Vm) * (OR M + OR M) + (OR M + OR M) + (OR M + OR M) + (OR M) +

Yqa = (96.00 / 60.37) * SQRT (0.0319 * 540.50 * 29) / (2.09 * 30.12 * 28.84) * 1.17

Yqa = 1.590 * SQRT 500.017 / 1,814.815 * 1.17

Yqa =	0.9767	0.9775	0.9821
Diff = Absolute difference between Yqa and Y	2.59	2.51	2.05

Diff = ((Y - Yqa) / Y) * 100

Diff = ((1.0027 - 0.977) / 1.0027) * 100

Average Diff = 2.38

Allowable = 5.0
Calibrator	MDW	-	Met	er Box Number	22	-	Ambient Temp	72 Thermocouple	e Simulator
Date	23-May-18	_	Wet Tes	t Meter Number	P-2952	Temp Reference Source		(Accuracy +/- 1°F)	
			Dry Gas	s Meter Number	15550528	-		Para Praca in	
Setting	Gas	Volume		Temper	atures			Hg (Pb)	29.5
Orifice Manometer	Wet Test Meter	Dry gas Meter	Wet Test Meter		Dry Gas Meter	r		Calibration Results	
in H₂0	ft ³	ft ³	°F	Outlet, °F	Inlet, °F	Average, °F	Time, min	v	
(∆H)	(Vw)	(Vd)	(Tw)	(Td _o)	(Td _i)	(Td)	(O)	Y	ΔH
		973.135		75.00	75.00	, <i>, ,</i>			2.6243
0.5	5.0	978.210	72.0	76.00	76.00	75.5	15.2	0.9905	
		5.075		75.50	75.50				
1.0	5.0	985.000	70.0	76.00	76.00	70.5			0.4505
1.0	5.0	990.010	72.0	77.00	77.00	76.5	10.4	1.0039	2.4525
		5.010		76.50	76.50				
15	10.0	1000 780	72.0	70.00	77.00	76.5	17.1	1 0077	2 4864
1.5		9 970	72.0	76.50	76.50			1.0077	2.1001
	10.0	4,162	72.0	77.00	77.00	77.5	14.6	1.0005	2.4122
2.0		14.210		78.00	78.00				
		10.048		77.50	77.50				
	10.0	26.680	72.0	78.00	78.00	78.0	11.80	1.0023	2.3614
3.0		36.695		78.00	78.00				
		10.015		78.00	78.00				
							Average	1.0010	2.4674
/w - Gas Volume passing through the wet test meter /d - Gas Volume passing through the dry gas meter Fw - Temp of gas in the wet test meter Fdi - Temp of the inlet gas of the dry gas meter				0 - Time of calibration run Pb - Barometric Pressure ∆H - Pressure differential across orifice		Y	$' = \frac{Vw * Pb * (td + 460)}{Vd * \left[Pb + \frac{(\Delta H)}{13.6}\right] * (tw + 460)}$		
Tdo - Temp of the outlet gas of the dry gas meter Td - Average temp of the gas in the dry gas meter			er eter	Y - Ratio of accuracy of wet test meter to dry gas meter Δ			$H = \left[\frac{0.0317 * \Delta H}{Pb * (td + 460)}\right] * \left[\frac{(tw + 460) * O}{Vw}\right]^2$		
Reference Temperature Select Temperature		Temperature	emperature Reading from Individual Thermocouple Input ¹			Average Temperature	Temp Difference ²		
\bigcirc %				Channel Number				Reading	(%)
\bigcirc \circ \circ	● °F	1	2	3	4	5	6	_	. ,

 $(\text{Reference Temp}(^{\circ}\text{F}) + 460) - (\text{Test Temp}(^{\circ}\text{F}) + 460)$

Reference $Temp(^{\circ}F) + 460$

32.8

211.6

932.8

1832.6

-0.2%

0.1%

-0.1%

0.0%

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console

1 - Channel Temps must agree with +/- 5°F or 3°C

2 - Acceptable Temperature Difference less than 1.5 %

Temp Diff =

Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN DIVISION STACK METER BOX NO. 22 3/25/2019 + 3/26/2019

	Kun I	Run 2	Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.			
0.32 = Molecular weight of oxygen, divided by 100.			
0.44 = Molecular weight of carbon dioxide, divided by 100.			
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.			
% CO ₂ = Percent carbon dioxide by volume, dry basis.	0.1	0.0	0.0
$\% O_2 =$ Percent oxygen by volume, dry basis.	21.0	21.0	21.2

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 21) + (0.44 * 0.1) + (0.28 * (100 - (0.1 + 21)))

MWd = (6.72) + (0.04) + (22.09)

MWd =	28.86	28.84	28.85
Tma = Source Temperature, absolute(°R)			
Tm = Average dry gas meter temperature , deg F.	80.6	46.5	58.5

Tma = Ts + 460

Tma = 80.58 + 460

Tma =

Ps = Absolute meter pressure, inches Hg.
Image: Constraint of the state of t

Pm = Pb + (delta H / 13.6)

Pm =

30.02 30.06 30.06

506.50

518.50

D.... 1

540.58

. .

- -

Yqa = dry gas meter calibration check value, dimensionless.			
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.			
29.00 = dry molecular weight of air, lb/lb-mole.			
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	51.535	51.014	51.633
Y = Dry gas meter calibration factor (based on full calibration)	1.0010	1.0010	1.0010
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.	2.4674	2.4674	2.4674
avg SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. $\rm H_2O$	1.1540	1.1762	1.1859
O = Total sampling time, minutes.	96	96	96

Yqa = (O / Vm) * SQRT (0.0319 * Tma * 29) / (Delta H@ * Pm * MWd) * avg SQRT Delta H Ward MWd) + avg SQRT Delta H Ward MWd) + avg SQRT Delta H Ward MWd + avg SQRT N Ward N Ward

Yqa = (96.00 / 51.54) * SQRT (0.0319 * 540.58 * 29) / (2.47 * 30.02 * 28.86) * 1.15

Yqa = 1.863 * SQRT 500.094 / 2,137.403 * 1.15

Yqa =	1.0398	1.0359	1.0440
Diff = Absolute difference between Yqa and Y	3.88	3.49	4.30

Diff = ((Y - Yqa) / Y) * 100

Diff = ((1.001 - 1.040) / 1.001) * 100

Average Diff = 3.89

Allowable = 5.0

APPENDIX F LIST OF PROJECT PARTICIPANTS

The following WESTON employees participated in this project.

Paul Meeter	Senior Project Manager		
Jeff O'Neill	Senior Project Manager		
Steve Rathfon	Team Member		
Robert Scroggins	Team Member		
Jacob Little	Team Member		
Austin Squires	Team Member		
Kris Ansley	Team Member		