Welcome to your CDP Climate Change Questionnaire 2022

C0. Introduction

C0.1

(C0.1) Give a general description and introduction to your organization.

The Chemours Company is a leading, global provider of performance chemicals that are key inputs in end products and processes in a variety of industries. We deliver customized solutions with a wide range of industrial and specialty chemicals products for markets, including coatings, plastics, refrigeration and air conditioning, transportation, semiconductor and consumer electronics, general industrial, and oil and gas. Our principal products include titanium dioxide ("TiO2") pigment, refrigerants, industrial fluoropolymer resins, sodium cyanide (prior to the sale of Mining Solutions business in 2021), and performance chemicals and intermediates. We manage and report our operating results through reportable segments: Titanium Technologies, Thermal & Specialized Solutions, Advanced Performance Materials, and Other Segment. Our Titanium Technologies segment is a leading, global provider of TiO2 pigment, a premium white pigment used to deliver whiteness, brightness, opacity, and protection in a variety of applications. Our Thermal & Specialized Solutions segment is a leading, global provider of refrigerants, thermal management solutions, propellants, blowing agents, and specialty solvents. Our Advanced Performance Materials segment is a leading, global provider of high-end polymers and advanced materials that deliver unique attributes, including low friction coefficients, extreme temperature resistance, weather resistance, ultraviolet and chemical resistance, and electrical insulation.

C0.2

(C0.2) State the start and end date of the year for which you are reporting data.
C0.3

(C0.3) Select the countries/areas in which you operate.
- Belgium
- Brazil
- China
- France
- Mexico
- Netherlands
- Taiwan, China
- United States of America

C0.4

(C0.4) Select the currency used for all financial information disclosed throughout your response.
- USD

C0.5

(C0.5) Select the option that describes the reporting boundary for which climate-related impacts on your business are being reported. Note that this option should align with your chosen approach for consolidating your GHG inventory.
- Operational control

C-CH0.7

(C-CH0.7) Which part of the chemicals value chain does your organization operate in?
Row 1

- Bulk organic chemicals
- Bulk inorganic chemicals
 - Titanium dioxide
- Other chemicals
 - Specialty chemicals

C0.8

(C0.8) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

<table>
<thead>
<tr>
<th>Indicate whether you are able to provide a unique identifier for your organization</th>
<th>Provide your unique identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, a Ticker symbol</td>
<td>Ticker - CC</td>
</tr>
<tr>
<td>Yes, an ISIN code</td>
<td>US1638511089</td>
</tr>
</tbody>
</table>

C1. Governance

C1.1

(C1.1) Is there board-level oversight of climate-related issues within your organization?

Yes

C1.1a

(C1.1a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for climate-related issues.
<table>
<thead>
<tr>
<th>Position of individual(s)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other, please specify Board Chair/Director on board</td>
<td>The Chemours Company board of directors (the “board”) has active responsibility for broad corporate policy and overall performance of the Company through oversight of management and stewardship of the Company, including oversight of our Corporate Responsibility strategy, standards, goals and performance, which includes climate topics. Example board decision: The board approved updating the nominating and corporate governance committee charter to include oversight responsibility for ESG and climate-related matters, including reviewing progress towards achieving our climate related goals and reviewing the decision to update the climate goals to a more ambitious 60% absolute reduction goal.</td>
</tr>
<tr>
<td>Other, please specify President/Chief Executive Officer (CEO)</td>
<td>The president/CEO is a member of the board. In addition, the president and CEO and members of Chemours Executive Team (CET) manage day-to-day economic, environmental, and social risks and opportunities, which includes climate issues. Together, the president and CEO and CET are responsible for embedding sustainability risk and opportunities related to ESG into our enterprise risk management cycle, business strategy, and related plans and budgets; our mergers and acquisitions decisions; and achieving our Corporate Responsibility Commitment (CRC) goals. Example president and CEO decision: The president and CEO along with other CET members recently helped to develop and bring to forward the decision to pursue a Science-Based Target including a new Scope 3 reduction target. The decision to submit a Scope 3 target to the Science-Based Target Initiative (SBTi) was approved in 2022.</td>
</tr>
</tbody>
</table>

C1.1b

(C1.1b) Provide further details on the board’s oversight of climate-related issues.

<table>
<thead>
<tr>
<th>Frequency with which climate-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which climate-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled – some meetings</td>
<td>Reviewing and guiding strategy</td>
<td>Because environmental, social, and governance (ESG) matters are integral to the growth and long-term success of the Company, we believe that a two-tiered level of oversight provides the best avenue to integrate ESG risks and opportunities into our overall business strategy and help us meet the changing demands of all our stakeholders — customers, partners, investors, employees, and communities. The board has active responsibility for and oversees broad corporate policy, including climate-related issues, and overall company performance through</td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding risk management policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding annual budgets</td>
<td></td>
</tr>
</tbody>
</table>

Disclosure Insight Action
Reviewing and guiding business plans oversight of management. The nominating and corporate governance committee is responsible for the oversight of our policies, processes, performance metrics, and reporting in the areas of Corporate Responsibility, including climate-related matters. Our full board is responsible for the oversight of our corporate responsibility strategy, standards, goals, and performance. In addition, oversight of the enterprise risk management framework and cybersecurity risks are the responsibility of the audit committee. Under the guidance of the board, the president/CEO and other executive officers of the company execute our climate strategy, standards, goals, and performance. We believe this governance structure provides the best avenue to integrate ESG risks and opportunities, including climate-related matters, into our overall business strategy, and it helps us meet the changing demands of all our stakeholders. Our board and its committees receive regular updates from senior management on a variety of topics that directly or indirectly involve climate-related matters, such as overall corporate strategies and major business plans, annual budgets, capital expenditures, acquisitions and divestitures, and corporate risk management. Proposed corporate transactions and overall corporate strategy are reviewed by the full board with input from management on ESG risks and opportunities, including climate-related matters. Under board oversight, senior management continues to execute our Corporate Responsibility goals which focus on three key pillars of inspired people, a shared planet, and an evolved portfolio. With the board’s guidance, we have developed and are advancing progress on goals for climate change, water stewardship, waste management, diversity and inclusion, safety, product sustainability, and sustainable sourcing. We embed corporate responsibility in our business processes, guiding how we manage and operate our manufacturing sites, and inspiring the new products and offerings we bring to market. Our growth strategy is directly linked to corporate responsibility so that we aim not only to grow, but to grow responsibly.

C1.1d

(C1.1d) Does your organization have at least one board member with competence on climate-related issues?

| Board member(s) have competence on climate-related issues |
C1.2

(C1.2) Provide the highest management-level position(s) or committee(s) with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Responsibility</th>
<th>Frequency of reporting to the board on climate-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other, please specify</td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td>More frequently than quarterly</td>
</tr>
<tr>
<td>President/CEO</td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td>More frequently than quarterly</td>
</tr>
<tr>
<td>Chemours Executive Team (CET) which includes the COO (COO position no longer exists upon CEO announcement beginning July 2021), CFO, three business segment presidents, chief legal officer, HR lead, communications lead, and strategy lead</td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

C1.2a

(C1.2a) Describe where in the organizational structure this/these position(s) and/or committees lie, what their associated responsibilities are, and how climate-related issues are monitored (do not include the names of individuals).

Daily management of the Company is led by our President/CEO and members of the Chemours Executive Team (CET). Together they are responsible for embedding consideration for Corporate Responsibility, including environmental, social and governance, into our business strategy, plans and budgets; merger, acquisition, and divestiture decisions; and achieving our Corporate Responsibility Commitment goals. Members of the CET regularly report to the board on a variety of topics that directly or indirectly involve climate-related issues (such as the Company’s climate-related initiatives, progress against climate-related goals and targets; and capital expenditures). As announced in November 2021, our Chief Development Officer, a member of the CET, leads sustainability strategy and operationalizes governance of ESG matters, including climate-related issues, through our Chief Sustainability Officer, the corporate sustainability team and the corporate responsibility leadership team (CRLT) - a cross-functional team composed of senior leaders from each of our business segments and major corporate functions (e.g. operations, research and development, finance, legal, HR, product stewardship, legal, investor relations, corporate plans, procurement, EHS, marketing, etc.). Led by the chief sustainability officer, the CRLT
meets bi-monthly to: · Develop and/or reaffirm our Corporate Responsibility Commitment (CRC) purpose, strategy, standards, and goals, including climate goals; · Stay current on emerging ESG and climate-related trends; · Manage ESG and climate-related risks and opportunities; · Drive the implementation of our CRC program and make recommendations for short-, mid-, and long-term actions; · Ensure continued progress is made towards achieving 2030 CRC goals, including climate goals; and · Track and report our progress to the board, Chemours employees, and external stakeholders. For each of our 2030 CRC goals, we set a leadership structure that includes a CRLT sponsor who is accountable for goal strategy, execution, and resource allocation; a goal leader responsible for achieving the goal; and a team of cross-functional subject matter experts. The goal leaders with their teams are responsible for developing the enterprise-wide plans to achieve their goal, establishing performance metrics, tracking and reporting progress to the CRLT, and working with our business segments to identify and pursue short-term and mid-term opportunities to achieve our 2030 CRC goals. Additionally, each goal leader supports business team leaders in establishing business-specific plans and/or teams for meeting business-level, annual CRC performance targets. Ultimately, business and function line leadership, with assistance from the CRLT and goal leaders, is accountable for successful goal program execution.

C1.3

(C1.3) Do you provide incentives for the management of climate-related issues, including the attainment of targets?

<table>
<thead>
<tr>
<th>Provide incentives for the management of climate-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Yes</td>
<td></td>
</tr>
</tbody>
</table>

C1.3a

(C1.3a) Provide further details on the incentives provided for the management of climate-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Entitled to incentive</th>
<th>Type of incentive</th>
<th>Activity incentivized</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate executive team</td>
<td>Monetary reward</td>
<td>Emissions reduction project</td>
<td>A primary objective of the Company’s executive compensation philosophy is to promote a performance-based culture that strongly links executive rewards to shareholder interests and to the Company’s strategic and financial goals. This objective is achieved through fixed and variable compensation elements. Achievement of compensation performance measures is</td>
</tr>
<tr>
<td>Operational performance</td>
<td>enhanced by accomplishing the Company’s climate-related initiatives, such as providing customers with products that help solve climate and other sustainability challenges and reducing emissions from our manufacturing operations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| All employees | Monetary reward | Emissions reduction project
Energy reduction project
Efficiency project
Other (please specify)
New product development/offerings | Any manager may recognize an individual employee or project teams with monetary rewards or non-monetary recognitions for playing key roles in achieving beneficial projects through our Orange Awards system. Orange Awards can be used to recognize employees for climate-related accomplishments, including energy reduction or efficiency projects, GHG emissions reductions, or projects for development or sales of products that provide climate benefits. |
| All employees | Non-monetary reward | Emissions reduction project
Energy reduction project
Efficiency project
Other (please specify)
New product development/offerings | Any manager may recognize an individual employee or project teams with monetary rewards or non-monetary recognitions for playing key roles in achieving beneficial projects through our Orange Awards system. Orange Awards can be used to recognize employees for climate-related accomplishments, including energy reduction or efficiency projects, GHG emissions reductions, or projects for development or sales of products that provide climate benefits. |
| Management group | Monetary reward | Emissions reduction project | An objective of the Company’s compensation philosophy is to promote a performance-based culture that strongly links rewards to the Company’s strategic and financial goals. This objective is achieved through fixed and variable compensation elements. Achievement of compensation performance measures is enhanced by accomplishing the Company’s climate-related initiatives, such as completing on time implementation of emissions abatement technology to reduce emissions from our manufacturing operations. |
C2. Risks and opportunities

C2.1

(C2.1) Does your organization have a process for identifying, assessing, and responding to climate-related risks and opportunities?
Yes

C2.1a

(C2.1a) How does your organization define short-, medium- and long-term time horizons?

<table>
<thead>
<tr>
<th></th>
<th>From (years)</th>
<th>To (years)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td>0</td>
<td>1</td>
<td>Chemours has adopted an annual work execution cycle. Company performance objectives, budget targets, individual employee goals, risk management objectives, R&D goals, etc. are tracked and reported on an annual basis.</td>
</tr>
<tr>
<td>Medium-term</td>
<td>1</td>
<td>3</td>
<td>Chemours follows a three-year planning horizon for setting investor commitments, R&D priorities, risk/opportunity assessments, budget and resource allocations, etc. We align our business processes to the three-year plan to drive execution and deliver business results.</td>
</tr>
<tr>
<td>Long-term</td>
<td>3</td>
<td></td>
<td>Chemours typically follows a 10-year planning horizon for setting business strategy, identifying business opportunities, and risk mitigation. Longer term strategies may be developed for specific capital investments for long-lived assets, valuable intellectual property, or specific environmental, social, or governance topics due to the time scale for these issue areas. All major investment decisions, portfolio reviews, acquisitions and divestitures are reviewed in the light of long-term trends, opportunities and threats. Those reviews consider evolution of global trends in regulations, climate change, energy and raw material markets, and consumer demands.</td>
</tr>
</tbody>
</table>

C2.1b

(C2.1b) How does your organization define substantive financial or strategic impact on your business?
Substantive financial or strategic impacts are events that could materially impact our business or operations. In making this determination, we incorporate the concept of materiality as defined by the SEC and FASB, and we consider both qualitative and quantitative measures. The quantitative measures evaluated include potential impacts to revenue and earnings as well as certain non-GAAP financial measures that management uses in its financial and operational decision making. Qualitative measures include but are not limited to consideration of impacts to employee/community safety, our reputation, regulatory requirements, business continuity, trends in the underlying business, and customers. Material impacts would include those that would have a high likelihood to result in death, serious breaches of legal and regulatory compliance, customer market disintegration, significant impact on shareholders, fundamental or catastrophic business continuity exposure and fundamental financial losses/opportunities. The impacts considered include those related to our direct operations as well as possible impacts to the continuity of our supply chain and our ability to meet customer commitments. Consistent with guidance published by the SEC and FASB with regard to materiality, a specific climate-related risk or opportunity may be considered as having a substantive financial impact if it would reasonably be expected to affect the company’s planned earnings positively or negatively by a certain quantitative threshold. However, magnitude by itself, without regard to the nature of the specific risk or opportunity and the circumstances in which the judgment has to be made, will not generally be a sufficient basis for the materiality judgment. Chemours considers both qualitative and quantitative factors together when evaluating whether a specific climate-related risk or opportunity would have a substantive financial or strategic impact on the Company.

C2.2

(C2.2) Describe your process(es) for identifying, assessing and responding to climate-related risks and opportunities.

Value chain stage(s) covered
- Direct operations
- Upstream
- Downstream

Risk management process
- Integrated into multi-disciplinary company-wide risk management process

Frequency of assessment
- Annually
Time horizon(s) covered

- Short-term
- Medium-term
- Long-term

Description of process

Corporate-level identification and evaluation of risk is systematically accomplished using an enterprise risk management (ERM) approach. Chemours defines major risks as those that could have a substantive financial or reputational impact on the company. The Chemours risk management team conducts an annual risk analysis process to validate existing and identify new and emerging risks facing Chemours – including considerations for risks or opportunities related to climate change. The risk analysis process considers input from internal business and function leaders on a broad range of economic, social and environmental topics, as well as external inputs collected through the strategy, budget, and corporate responsibility issue prioritization process. Each risk is reviewed, evaluated, and prioritized based on the potential likelihood the risk will occur and the degree of impact a given risk could have on the Company. Potential impacts evaluated include those related to our direct operations (e.g. financial impacts, threats to our right to operate, Company reputational damage, environment or community impact, etc.) as well as possible impacts to the continuity of our supply chain and ability to meet customer commitments. Any significant new or emerging risks that arise throughout the year are analyzed, prioritized, and added to the risk management process. This prioritization is conducted by internal subject matter experts working with the risk management team. The resulting prioritized risk inventory is reviewed with the Chemours Executive Team (CET) for final alignment, and then communicated to the board. The Chemours Board of Directors is responsible for overseeing the overall ERM process, and its leadership structure supports its effective oversight. In fulfilling its oversight responsibility, the board receives various management and board committee reports and engages in periodic discussions with the company’s officers, as it may deem appropriate. Specifically, the board audit committee oversees the policies and practices that govern the processes by which major risk exposures are identified, assessed, managed and controlled on an enterprise-wide basis. Responsibility for managing risk rests with the president/CEO and other executive officers of the Company. The appropriate Chemours function or business leaders are appointed as risk owners and sponsors for each major risk. Risk mitigation plans are developed and implemented by the risk owner with support from their respective team and risk sponsor. The risk owner develops and monitors key risk indicators to track progress managing the risk and determine if intervention or corrective action is needed. Risk management progress is periodically communicated to the CET, with a formal annual review with the Board of Directors and the Audit Committee. Additionally, all risks are reviewed and reassessed on at least a semi-annual basis to identify changes in the internal or external environment which may cause certain risks to recede or others to appear. Opportunities for new products or product applications that may arise as a result of the impacts of climate change are evaluated within the individual business segments using the same criteria applied to all new business opportunities. Market assessments are completed, the findings are integrated into
business strategy development, and a determination is made on the viability of the opportunity following corporate investment criteria. In late 2021, this process was completed to align with a climate change transition risk and opportunities assessment as guided by the Taskforce for Climate-Related Financial Disclosures (TCFD). For additional details on climate change scenarios and methodologies used, please refer to question C3.21. Similarly, physical climate risk assessments were completed using the climate change scenarios outlined in question C3.2a. In addition to the governance process outlined above for evaluating enterprise risks, physical climate change risk assessment results are also shared with site operations leadership and included within specific site operations sustainability reviews to evaluate stewardship strategies, engagement plans with local stakeholders and other management needs. An example of managing physical risks due to climate change is Chemours’ response to concerns that climate change may result in more frequent incidents of severe weather and the potential for rising sea levels. In the past, major hurricanes and severe weather events have caused significant disruption to our operations on the U.S. Gulf Coast (e.g. category 5 hurricane Katrina caused a 5 month outage at our DeLisle, MS plant in 2005), logistics across the region, and the supply of certain raw materials, which had an adverse impact on volume and cost for some of our products. To mitigate risks associated with severe weather, we have engineered our facilities to better withstand these events, including the construction of a tidal surge protection wall at our DeLisle, MS site. Additionally, our sites have specific emergency preparedness plans that detail actions to take in the event of severe weather. Historically, these emergency planning activities and associated costs are driven by normal operational preparedness. An example of managing transition risk/opportunities due to climate change is Chemours’ response to concerns about deselection of some of our refrigerant product offerings (e.g. HFC refrigerants that have high global warming potential). We led the industry in the Montreal Protocol-driven transition in 1987 from CFCs to the lesser ozone-depleting HCFCs and non-ozone-depleting HFCs. In 1988, we committed to cease production of CFCs and started manufacturing non-ozone-depleting HFCs in the early 1990s. Driven by new and emerging environmental legislation being enacted across the U.S., Europe, Latin America, and Japan, we invested in new technology research to develop a class of hydrofluoroolefin (HFO) refrigerant offerings that have lower global warming potential (GWP) and are non-ozone-depleting, and we invested $300 million in our manufacturing capacity at our Corpus Christi, TX site to increase global supply of these offerings. We have a team responsible for developing the marketing and advocacy strategy to enable the transition from high GWP refrigerants to lower GWP refrigerants. This transition is supported by the Kigali Amendment to the Montreal Protocol and the 2020 U.S. American Innovation and Manufacturing Act and is a part of the global strategy to achieve the goals of the Paris Agreement and UN SDG 13 targets. We value collaboration to drive change and commit to working with policymakers, our value chain, and other organizations to encourage collective action for reducing GHGs.

Value chain stage(s) covered

Direct operations
Upstream
Downstream

Risk management process
Integrated into multi-disciplinary company-wide risk management process

Frequency of assessment
More than once a year

Time horizon(s) covered
- Short-term
- Medium-term
- Long-term

Description of process
Other climate-related risks and opportunities are identified and evaluated as part of our corporate responsibility issue assessment process. The process considers external stakeholder input in addition to input from Chemours’ subject matter experts to identify, assess, and prioritize climate-related risks and opportunities considering the importance of the issue to our stakeholders and to Chemours. External stakeholder input is collected via surveys and interviews every two to three years and through quarterly data analysis using big data screening tools to assess trends in public information to track emerging risks and opportunities. Output from the corporate responsibility issue assessment process is used as input to the ERM process, as appropriate, to incorporate new/emerging climate risk information. The corporate responsibility team uses the output from the issue assessment to identify longer term risks and opportunities as input for setting our Corporate Responsibility Commitment goals. Several of our current 2030 goals are directly connected to climate-related transition risks and opportunities. • Reduce absolute greenhouse gas emissions from operations by 60% • Reduce fluorinated organic air process emissions by 99% or more • Have 50% or more of our revenue come from offerings that make a specific contribution to the UNSDGs (including SDG 7 and 13), as well as our decision to pursue a Scope 3 reduction target through an official Science-based Target submittal. Chemours’ process for managing the 2030 Corporate Responsibility Commitment climate goals includes appointing a goal leader and a goal sponsor for each goal who are accountable for developing action plans to advance the goals, setting interim targets, and measuring progress. Teams have been chartered to drive execution against the goals, and these teams report progress monthly to a cross-function corporate responsibility leadership team for overall program governance. Progress towards meeting the goals is tracked and reported internally to the Chemours executive team and board and externally in the annual Corporate Responsibility Commitment report.
C2.2a

(C2.2a) Which risk types are considered in your organization’s climate-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current regulation</td>
<td>Relevant, always included</td>
</tr>
</tbody>
</table>

| **Emerging regulation** | Relevant, always included | Global environmental laws, regulations, and enforcements may change and could become more stringent over time, which could result in significant additional compliance costs, investments in, or restrictions on our operations. As an energy and emissions intensive company, Chemours may be subject to current and emerging regulations targeting energy use and efficiency as well as reduction of emissions. Such regulations could result in significant additional compliance costs, including increased cost of purchased energy, or other raw materials, additional capital costs for installation or modification of GHG-emitting equipment, and/or additional direct costs (such as cap-and-trade systems or carbon taxes) associated with GHG emissions. For instance, as part of the Paris Climate Agreement, most countries committed to specific reductions of greenhouse gas emissions. Climate change regulations are emerging and changing in different geographies where Chemours has operations, such as US, China, Taiwan and Mexico. Also, with the change in government |
administration, there are increasingly more conversations about climate change regulations in the United States where Chemours has a significant presence. We carefully manage our emissions and closely monitor regulatory changes in the regions where we operate to remain compliant and prepared to adapt operational practices accordingly. Chemours has processes in place through Government Affairs; Sustainability & Regulatory Affairs; Environment, Health, and Safety; and Product Sustainability to track regulations and provide input for consideration in the Enterprise Risk Management process. We also engage with governments either directly or indirectly through industry organizations to ensure there is an understanding of our businesses and that we more fully understand the impact of emerging regulations. We value collaboration to drive change and commit to working with policymakers, our value chain, and other organizations to encourage collective action for reducing GHGs.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Our industries and the end-use markets into which we sell our products experience periodic technological changes and product improvements. Our future growth will depend on our ability to gauge the direction of commercial and technological progress in key end-use markets and our ability to fund and successfully develop, manufacture, and market products in such changing end-use markets. If we fail to keep pace with the evolving technological innovations in our end-use markets on a competitive basis including with respect to innovation with regard to the development of alternative uses for, or application of, products developed that utilize such end-use products, our financial condition and results of operations could be adversely affected. Technology is extremely relevant to Chemours’ ability to address risks related to climate change. Chemours has mature, large capital-intensive assets in place that are energy and emissions intensive (e.g. boilers and high temperature reactors). There is little innovation around those technologies – making technology changes challenging. Alternatives to reduce emissions such as carbon capture and storage or use or electrification of processes are cost prohibitive and largely unproven at this point. Chemours’ operations and R&D organizations are constantly looking into new technologies - assessing and considering market and technological trends – to reduce our emissions and to identify opportunities to enhance product attributes and/or develop new product offerings that address climate risk, such as our Nafion™ fuel cell membranes. It is important to remain aware of current effective technologies as well as future technology trends that we may adopt to help manage climate-related risks. Chemours has processes in place through the business segment technology organizations to track evolving technology trends, explore piloting new emissions control technologies, and provide input for consideration in the Enterprise Risk Management process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Legal</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Our results of operations could be adversely affected by litigation and other commitments and contingencies. As a publicly traded company, Chemours is required to disclose detailed financial filings in accordance with the Securities Exchange Commission, which include descriptions of material risks that are identified through the company's enterprise risk</td>
</tr>
</tbody>
</table>
management approach. Legal risks, including regulatory issues, are closely monitored and managed with respect to ensuring transparent and consistent information is available for shareholders including such matters that may be relevant and related to climate change. Chemours’ Legal team monitors legal risks and provides input for consideration in the Enterprise Risk Management process.

<table>
<thead>
<tr>
<th>Market</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our industries and the end-use markets into which we sell our products experience periodic technological changes and product improvements as well as changes in mandates on or regulation of products and services. Our future growth will depend on our ability to gauge the direction of commercial and technological progress in key end-use markets (e.g. electric vehicles, energy storage, and the transition to low GWP refrigerants), our ability to fund and successfully develop, manufacture, and market products in such changing end-use markets, including markets that deliver solutions to address world challenges such as energy efficiency and climate change. We continue to invest in R&D to develop safer, cleaner, and more efficient products and processes that help our customers and consumers reduce both their GHG emissions and their overall environmental footprint. We work closely with our customers to develop superior offerings that help us mutually achieve our sustainability objectives and maintain our market positions. We value collaboration to drive change and commit to working with policymakers, our value chain, and other organizations to encourage collective action for reducing GHGs. Each Chemours business segment conducts impact assessments of market trends, integrates the findings into business strategy development, and reports impacts to the enterprise risk management team, as appropriate, depending on the magnitude and likelihood of impact.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reputation</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our stakeholders expect Chemours to operate responsibly and act proactively on the challenges of climate change. Some major investors are becoming increasingly outspoken about the risk of climate change to the financial market. If major investors or sustainability-oriented customers perceive Chemours business activities to be misaligned with the growing global momentum to act against climate change, this could pose a reputational risk to the company that could lead to customer deselection, and ultimately to lower sales and a reduced market valuation. This aspect of our reputation could also be significant from an employer branding perspective, impacting our ability to attract and retain new, especially young, employees. Chemours’ recent update to its 2030 climate goal to commit to absolute GHG emissions reductions, in-line with science-based targets, and actions taken to mitigate the company’s contributions to climate change help reduce associated reputational risks. Chemours has processes in place through our Investor Relations, Environment, Health and Safety, Marketing, Product Sustainability, and Talent Acquisition teams to collect external stakeholder feedback and provide input for consideration in the Enterprise Risk Management process. Reputation risk is one of our evaluation criteria in our Enterprise Risk Management process used to evaluate whether or not a risk is a major risk to the Company.</td>
<td></td>
</tr>
</tbody>
</table>
Chemours operates 3 production sites in the US Gulf Coast region and production sites in other regions that are prone to the acute physical impacts of climate change including severe weather events and increased frequency of hurricanes/typhoons, extreme temperature events, or river flooding. Respective changes in physical climate parameters can lead to more extreme weather conditions, which represent an inherent risk for our production capacity and supply chains. Potential impacts arising from severe weather events are considered in the Enterprise Risk Management process. To mitigate risks associated with severe weather, we engineer our facilities to better withstand these events. Additionally, our corporate crisis management plan, business continuity planning, and emergency preparedness plans detail actions to take in the event of severe weather. Chemours’ finance team and EHS team assess the remaining risks in terms of potential capital damage, revenue losses by business interruptions etc. in order to ensure sufficient insurance coverages.

Chemours either directly operates or is a joint venture partner in 30 sites located in 9 countries, including seven sites located in potentially water-stressed basins. Manufacturing operations depend upon having a sufficient quantity of quality water for production and cooling purposes, and many sites use nearby waterways for supply chain logistics. Our manufacturing sites have the potential to be impacted by chronic effects of climate change such as drought, water level rise, temperature rise, and changing rainfall patterns. Lower precipitation levels in certain areas of the world as a result of significant climate shifts could reduce the availability and quality of water to certain manufacturing plants which could impact Chemours’ manufacturing operations causing decreased production capacity and/or a change in mode of transport due to limited navigability of waterways. Chemours has processes in place through Environment, Health, and Safety and Operations to monitor evolving water supply issues and/or potential chronic effects of climate change and provide input for consideration in the Enterprise Risk Management process.

C2.3

(C2.3) Have you identified any inherent climate-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes

C2.3a

(C2.3a) Provide details of risks identified with the potential to have a substantive financial or strategic impact on your business.
Identifier
Risk 1

Where in the value chain does the risk driver occur?
Direct operations

Risk type & Primary climate-related risk driver
Chronic physical
Other, please specify
Increased severity and frequency of extreme weather

Primary potential financial impact
Decreased revenues due to reduced production capacity

Company-specific description
The nature of our business dictates that we maintain significant concentrations of physical assets in certain geographical locations, some of which may be prone to weather-related events and natural disasters (e.g. 3 US Gulf Coast locations, 4 US East Coast locations and 2 AP coastal locations). Such weather events could be exacerbated by climate change and could also seriously harm our operations, as well as the operations of our customers and raw material suppliers. Any of the afore mentioned disruptions and/or events could have a negative impact on our business, results of operations, financial condition, and cash flows. E.g, Our facilities in DeLisle, MS and LaPorte, TX each experienced some degree of storm damage and/or operations interruptions during hurricanes Katrina (2005, MS) and Harvey (2017, TX). More recently, our facilities in Corpus Christi, TX, El Dorado, AR and LaPorte, TX experienced physical damage resulting in plant downtime along with significant increases in utility costs during and immediately following winter storm Uri in February 2021. Our sites at DeLisle, MS and New Johnsonville, TN were also affected but to a lesser degree, and all business segments experienced supply chain disruptions as a result of the storm.

Time horizon
Short-term

Likelihood
More likely than not
Magnitude of impact
Medium-high

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact figure
Medium to high potential impact: It is difficult to predict the exact change and impact of each climate parameter, and only some significant changes to the climate may have an impact on the Company. Financial implications could include higher energy and logistics costs from damaged infrastructure, higher insurance costs at facilities exposed to wind, flood, costs of physical repairs, and loss of profit following a significant weather-related event. Disruption of utilities (electric, gas, water) could result in prolonged facility outages, causing disruption in the production and supply of raw materials and finished goods and could have negative revenue implications. In early 2022, we completed a detailed physical risk analysis using two climate scenarios to better evaluate potential financial impacts to our operations from climate-related physical risks due to chronic weather events. We are continuing to refine our financial model in order to allow for future high quality reporting of these potential risks.

Cost of response to risk
0

Description of response and explanation of cost calculation
To mitigate risks associated with severe weather, we design, operate, and maintain our facilities to better withstand these events. Chemours engineering design standards and process safety information take into consideration severe weather impacts for equipment and building design specifications, providing resiliency for plant assets. When necessary, we may also invest in engineered protection systems, further ensuring
plant resiliency. For example, following hurricane Katrina, we upgraded the site earthen levees and constructed a 7,000 ft steel flood protection barrier at our DeLisle, MS manufacturing site to protect it from future hurricane damage. The enhanced levee system successfully protected the site from tidal surge flooding during hurricane Zeta in 2020.

We also take proactive actions to prepare for severe weather events and other natural hazards. Preparedness plans pertaining to the physical-related aspects of our business have been developed and detail the actions needed in the event of unforeseen events or severe weather in order to maximize the safety of our employees, our communities, the environment, and production assets. We formed a multi-disciplinary team to develop a severe weather process hazards assessment methodology which will be implemented at applicable manufacturing facilities. This process will incorporate industry recommended practices and guidelines for assessing and mitigating severe weather and natural hazard risks.

We also insure our facilities to protect against losses from physical damages and business interruption. Insurance costs and the cost for routine management efforts are driven by normal operational preparedness. In early 2022, we completed a detailed physical risk analysis using two climate scenarios to better evaluate potential climate-related physical risks to our sites due to chronic weather events. Analysis results will be used to inform business continuity planning, emergency preparedness planning, and future investment decisions. We are continuing to refine our financial model in order to prepare for potential disclosure requirements expected in the future.

Comment
The cost for routine management efforts are driven by normal operational preparedness.

<table>
<thead>
<tr>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk 2</td>
</tr>
</tbody>
</table>

| Where in the value chain does the risk driver occur? |
| Direct operations |

| Risk type & Primary climate-related risk driver |
| Emerging regulation |
| Carbon pricing mechanisms |

| Primary potential financial impact |
| Increased direct costs |
Company-specific description
Global environmental laws, regulations, and enforcements may change and could become more stringent over time, which could result in significant additional compliance costs, increased costs of purchased energy or other raw materials, investments in or restrictions on our operations, installation or modification of GHG emitting equipment, or expanded emission trading schemes/taxes and/or enforcement initiatives. E.g. Carbon pricing related to carbon emissions already impacts operations in Europe, and climate change regulations are emerging and changing in different geographies where Chemours has operations, such as China, Taiwan, and Mexico. Mexico launched a national ETS pilot in 2020, and the Mexican state Tamaulipas enacted a fossil fuel carbon tax as of 2021 that applies to facilities that emit more than 25 MT CO2e. Both of these pricing schemes may directly impact our operations in Altamira, Mexico. Also, with the 2021 change in presidential administration, there are increasing conversations about climate change regulations in the United States where Chemours has a significant presence.

Time horizon
Medium-term

Likelihood
More likely than not

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)
30,000,000

Potential financial impact figure – maximum (currency)
110,000,000

Explanation of financial impact figure
Medium to high potential impact: We are not able to fully estimate the financial implications of new/evolving regulations, as it is difficult to assess the timing and effect of pending legislation and its impact on operations costs. Potential implications could include increased costs of purchased energy and additional costs associated directly with GHG emissions. For example, in the case of carbon taxes, prices could range upwards of ~$50/MT CO2e emitted in certain countries where Chemours operates. In March 2021, the EU ETS price surpassed $50/MT CO2e and the US updated the social cost of carbon to $51/MT CO2e rising to $85/MT CO2e by 2050. Whereas, a recently proposed carbon tax in Tamaulipas, Mexico prices carbon emissions at $13/MT CO2e. Applying this range of potential carbon taxes to Chemours’ non-fluorinated global Scope 1 GHG emissions, and assuming no further tax carve-outs, could yield estimated potential future costs of $30 – 110 million should global regions enact emissions pricing regulations.

Cost of response to risk

0

Description of response and explanation of cost calculation

Chemours continues to monitor for changes in regulations that could affect our operations as well as costs and supply of raw materials and energy. We engage with regulators independently and through industry groups, such as ACC, AHRI, and C2ES, to provide input on proposed regulatory changes and to establish benchmarks that are consistent with our manufacturing processes. This engagement provides the opportunity to educate regulators about our processes, while providing opportunities to influence potential impacts of proposed regulatory measures. We take proactive action to reduce GHG emissions to reduce our exposure to emerging carbon pricing mechanisms. We invest in R&D activities to develop new technologies to decrease the Company’s emissions and have set targets to reduce our absolute GHG operations emissions by 60% and our emissions of fluorinated organic process emissions by 99% or more by 2030. We work to make meaningful improvements in the efficiency of our operations and pursue opportunities to source renewable power to further reduce GHG emissions, reducing our exposure to future potential CO2e pricing. In addition, Chemours seeks opportunities to optimize GHG emissions reductions through our capital investments. Over the past 5 years, Chemours has invested ~$160 million in various capital projects that, in addition to primary business drivers, offer GHG emissions reduction benefits. Example projects include emission abatement projects in North Carolina, West Virginia, the Netherlands, and Taiwan; proactively installing refrigeration units that use low GWP refrigerant in Kentucky and Mexico; and converting to lower carbon intensity fuels at operations in Florida and West Virginia. The costs for energy efficiency management, power procurement efforts, and capital investments are integrated in normal operations.

Comment

The cost of management efforts is integrated in normal operations.

Identifier
Risk 3

Where in the value chain does the risk driver occur?
Direct operations

Risk type & Primary climate-related risk driver
Chronic physical
Changing precipitation patterns and types (rain, hail, snow/ice)

Primary potential financial impact
Decreased revenues due to reduced production capacity

Company-specific description
The nature of our business dictates that we maintain significant concentrations of physical assets in certain geographical locations, some of which may be prone to long-term changes in weather patterns and atmospheric temperatures caused by climate change. Such events could seriously impact our operations, thus we continue to study the long-term implications of changing climate parameters on current and future plant siting, operational issues, and water availability. Any of the afore mentioned disruptions and/or events could have a negative impact on our business, results of operations, financial condition, and cash flows. E.g. Climate change is creating shifts in rainfall patterns causing some regions to become wetter while exacerbating droughts in other regions. Increased frequency and intensity of rainfall in certain regions can lead to flooding – disrupting operations, transportation routes and damaging infrastructure. Conversely, lower precipitation levels in certain regions could reduce the availability and quality of water to manufacturing plants which could impact Chemours’ manufacturing operations causing decreased production capacity and/or a change in mode of transport due to limited navigability of waterways. Today six of our manufacturing sites are in areas with predicted water stress (two in the US, two in Mexico, and two in Europe), however that number could increase to 9 sites by 2030. These sites account for approximately 4% of Chemours’ total water withdrawals. At present, no manufacturing operations are limited by water availability.

Time horizon
Long-term

Likelihood
More likely than not

Magnitude of impact
Medium

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact figure
It is difficult to predict the exact change and impact of each changing climate parameter across all the geographies where we operate, and only some significant changes may have an impact on the Company. Financial implications could include higher energy and logistics costs from damaged infrastructure; disrupted operations due to extreme temperature events, flooding, or water scarcity from droughts; and costs of physical repairs, lost days of operation, and loss of profit following a significant weather-related event. Disruption of utilities (electric, gas, water) could result in prolonged facility outages, causing disruption in the production and supply of raw materials and finished goods and could have negative revenue implications. For example, Mississippi River flooding in 2010 and 2011 resulted in chlorine and other raw material supply disruptions to our New Johnsonville, TN site due to impacts on barge transportation, resulting in ~6 days of unplanned plant downtime. Additional potential supply disruptions during these floods and during the floods of 2014 and 2019 were avoided through rerouting raw material delivery to land based routes.

Cost of response to risk
Description of response and explanation of cost calculation

Chemours continues to evaluate the long-term implications of changing climate parameters on water availability, flooding potential, weather impacts, plant siting issues, and impacts and opportunities for products. We conduct simple climate physical risk scenario analyses to understand potential chronic climate-related physical impacts by using the WRI Aqueduct tool and other public models. The results from these models are used to inform business strategy and planning. In early 2022, we completed a detailed physical risk analysis using two climate scenarios to better evaluate potential long-term climate-related physical risks to our sites. Analysis results will be used to inform business continuity planning and future investment decisions. When appropriate, we may make structural changes to our supply chain to build in resiliency to climate impacts. For example, in 2014, the New Johnsonville site partnered with a commercial supplier to convert to onsite chlorine production to supply manufacturing operations, safeguarding against future Mississippi river flooding-related chlorine supply disruptions. To further mitigate risks associated with changing weather patterns, preparedness plans pertaining to the physical-related aspects of our business have been developed and detail the actions needed in the event of unforeseen events, extreme temperatures, or severe weather such as heavy rainfall/flooding events. We also insure our facilities to protect against losses from physical damages and business interruption. Insurance costs and the cost for routine management efforts are driven by normal operational preparedness.

Comment

The cost for management efforts are driven by normal operational preparedness.

C2.4

(C2.4) Have you identified any climate-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes

C2.4a

(C2.4a) Provide details of opportunities identified with the potential to have a substantive financial or strategic impact on your business.
Identifier
 Opp1

Where in the value chain does the opportunity occur?
 Downstream

Opportunity type
 Products and services

Primary climate-related opportunity driver
 Development and/or expansion of low emission goods and services

Primary potential financial impact
 Increased revenues resulting from increased demand for products and services

Company-specific description
 Global regulations driving the phase-down of HFCs (or higher global warming products) have increased the adoption and sale of our high performing Opteon™ products, that have lower global warming potential and zero ozone-depletion footprint, in a wide range of refrigeration and cooling applications, including food transportation, food and pharmaceutical/medical storage, food manufacturing and retail, automotive air conditioning, and residential and commercial building air conditioning. As the global middle class grows from 3.8 billion people in 2018 to an estimated 5.3 billion people in 2030, incomes will grow across the developing world increasing demand for comfort cooling, automobiles, and fresh food. Increasing global temperatures and regulatory frameworks built to address this environmental concern will compound the need for lower GWP solutions for building and automotive cooling and for distribution and storage of fresh food and medical supplies. In addition, there is a drive to transition to cleaner heating sources, and through that effort, industry is moving to more efficient heat pump designs, where lower GWP solutions offer safer and efficient solutions. Most developed countries have a robust “cold chain” – controlled temperatures applied throughout the supply chain, from refrigerated warehouses to refrigerated trucks – ensuring food gets from the farm to market safely. Robust cold chains will need to be extended to developing countries to meet the demands of the growing middle class. Our Opteon™ portfolio of lower GWP solutions will help keep people cool as temperatures rise and keep food fresh at a lower cost to the climate.

Time horizon
 Long-term
Likelihood
Very likely

Magnitude of impact
Medium

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact figure
Medium to high financial impact for our Thermal & Specialized Solutions business segment that can be realized over short, medium, and long-term horizons. TSS was a $1.3 billion business segment in 2021 and participates in a market that is projected to grow at a CAGR of 4.4% from 2020 to 2027 (according to an external market report). While Chemours is well positioned to benefit from both market growth and increased market share due to the transition away from HFCs and HCFCs to low GWP offerings like our Opteon™ portfolio of solutions, our actual revenue growth opportunity will depend on the market share captured for these products. Expected HFO adoption cadence is EU mobile air conditioning first, followed by US mobile air conditioning, then EU stationary air conditioning, and finally US stationary air conditioning.

Cost to realize opportunity
500,000,000

Strategy to realize opportunity and explanation of cost calculation
Our approach is driven by our commitment to achieve our 2030 Corporate Responsibility Commitment goal to have 50% or more of our revenues come from products that support sustainable growth and the UN SDGs and by a commitment to reduce Scope 3 Category 11 product
use phase emissions – helping our customers and consumers avoid generating excess GHG emissions. We assess the avoided GHG emissions benefits achieved by using our products versus the refrigerant it is designed to replace. Our strategy includes investing in opportunities to increase production capacities and investing in R&D to introduce new low GWP products and product applications into the market. Chemours has invested over $500M in R&D and capital investments over the past 5 years (including approximately $300M to build the largest HFO-1234yf facility in the US and over $200M in R&D) to commercialize the Opteon™ product line. Chemours also collaborates with value chain partners to accelerate adoption of our lower GWP product offerings, including partnering with major auto, HVAC, and refrigeration OEMs and end users to provide them with high performance, low GWP products for their equipment and product lines and with the National Hockey League to provide lower GWP cooling solutions for professional and community ice rinks across North America. Progress has already been made with these collaborations and partnerships in several areas. For example, in automotive air conditioning, we estimate that by the end of 2020, approximately 140 million cars have been equipped globally with HFO-1234yf air conditioning systems. In addition, major global stationary air conditioning OEMs have announced their selection of low GWP Opteon™ XL41 (R-454B) as their solution to replace the previous R-410A in key product lines for their residential air conditioning and chiller equipment businesses. Finally, through the NHL partnership, in just a few years, we have collaborated to drive over 150 rink conversions to lower GWP Opteon™ refrigerants across the US and Canada. This number continues to increase with a pipeline of new projects, not just in North America, but also globally in Europe, the Middle East, Russia, China and other ASEAN countries.

Comment
Sustainability benefits are among many market drivers that Chemours considers. We consider this a short, medium and long-term opportunity.

Identifier
Opp2

Where in the value chain does the opportunity occur?
Downstream

Opportunity type
Products and services

Primary climate-related opportunity driver
Development of climate adaptation, resilience and insurance risk solutions

Primary potential financial impact
Increased revenues resulting from increased demand for products and services

Company-specific description
Chemours fluoropolymers play a critical role in decarbonizing energy and transportation by bringing core chemical and process capabilities that are critical to enabling the production and use of hydrogen. To make the hydrogen economy a reality, hydrogen fuel cells and electrolyzers are needed. The technology primarily used for hydrogen fuel cells in transportation is based on proton exchange membranes; and proton exchange membranes have also begun to emerge as a leading technology for water electrolysis. In both cases, Chemours Nafion™ proton exchange membranes provide the needed durability, strong chemical resistance and high temperature performance for these applications. Electrolyzer projects and the transportation applications that use heavy-duty fuel cells continue to be announced, creating a tremendous opportunity for our materials and membranes. Many countries have already made commitments to convert heavy duty vehicles from diesel to clean technology, as converting these vehicles to fuel cells will provide a major impact in reducing carbon emissions. Chemours is focused on serving the PEM water electrolysis and heavy-duty fuel cell application spaces by providing a portfolio of products to meet the market needs. This is a dynamic market that is evolving rapidly. Compared to other approaches to water electrolysis, PEM based systems are essential in reaching operating stability quickly, operating at the needed lower temperatures for this application, and having a smaller physical footprint. This makes PEM water electrolysis systems ideal to couple with renewable energy sources, enabling green hydrogen generation and playing a major part in storing the energy that comes from solar panels or wind turbines.

Time horizon
Long-term

Likelihood
Very likely

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
No, we do not have this figure
Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact figure
Medium to high financial impact for our Advanced Performance Materials business segment. APM was a $1.4 billion business segment in 2021. While Chemours APM is well positioned to benefit from market growth and the transition to alternative, green fuel sources like hydrogen, our actual revenue growth opportunity will depend on the market share captured for our products that support this emerging industry. According to projections from a Roland Berger study completed in November 2020, PEM membranes will evolve into a multi-billion-dollar market by 2030. Specifically, Roland Berger projects the total addressable market for PEM membranes to be $2B - $3.6B based mostly on heavy duty truck adoption, where PEM is substantially advantaged.

Cost to realize opportunity

0

Strategy to realize opportunity and explanation of cost calculation
Our approach is driven by our commitment to achieve our corporate 2030 CRC goal to have 50% or more of our revenues come from products that support sustainable growth and the UN SDGs. Our strategy includes exploring opportunities to increase production capacities and by investing in R&D to introduce new products and product applications into the market that enable accelerating the decarbonization of energy and transportation. We are concentrating our R&D efforts via our hydrogen economy venture team to catalyze commercialization of this technology. Sustainability is among many market drivers that Chemours considers when developing new manufacturing processes and product applications. Activities to realize this opportunity are not separated from normal operations, thus we don't have a separate cost estimate cost to realize the opportunity.

Comment
Sustainability benefits are among many market drivers that Chemours considers. We consider this a medium and long-term opportunity.
Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Resilience

Primary climate-related opportunity driver
Participation in renewable energy programs and adoption of energy-efficiency measures

Primary potential financial impact
Reduced direct costs

Company-specific description
Increasing resource use efficiency through energy savings can contribute towards reducing our direct operating costs. Our manufacturing processes consume significant amounts of energy (~8 million MWh per year), the costs of which may be subject to worldwide supply and demand factors, GHG emissions-based regulations, and other factors beyond our control. Variations in the cost of energy, which primarily reflect market prices for oil and natural gas, may significantly affect our operating results from period to period. Chemours is investing in energy-efficiency programs and working to procure renewable energy through Power Purchase Agreements (PPAs) to reduce exposure to increasing energy costs and more stringent regulations on GHG emissions. For example, as of end of 2021 we've committed to ~35,000 MWh of renewable power to be completed in 2022 for our Louisville, KY and Starke, FL sites. In addition to reducing site manufacturing costs, these actions could also decrease sensitivity to future changes in the cost of carbon and increase our ability to meet evolving customer demands for low carbon products.

Time horizon
Medium-term

Likelihood
Very likely

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact figure
Low to Medium financial impact: The financial benefit for the use of renewable energy and implementing energy efficiency projects are reduced direct operating costs (COGS) for energy purchases, avoided emissions, and improved carbon management. For example, reducing energy usage by 15% through energy efficiency improvements can save the company approximately $37-75 million dollars per year in purchased energy costs based on reported COGS for January through December 2021 and an energy consumption range of 5-10% of COGS per year. Increasing the total percentage of purchased renewable energy reduces exposure to potential future carbon taxes on energy, providing additional opportunity for operations cost savings.

Cost to realize opportunity
0

Strategy to realize opportunity and explanation of cost calculation
Our approach is driven by our commitment to reduce our absolute GHG operations emissions by 60% by 2030 on our journey to achieve net-zero operations GHG emissions by 2050. Our strategy includes investing in solutions to improve energy efficiency in our manufacturing operations (e.g. efforts to reduce air compressor run time at our Belle, WV site), procuring electricity from renewable energy and/or certified
zero-carbon sources (e.g. Mechelen site is supplied by 100% wind power and carbon-neutral natural gas, and as of end of 2021 we’ve committed to ~35,000 MWh of renewable power to be completed in 2022 for our Louisville, KY and Starke, FL sites), and by converting high carbon intensity fuels to lower carbon intensity fuels (e.g. coal to natural gas boiler conversion at our DeLisle, MS, New Johnsonville, TN, and Washington Works, WV site). The cost for realizing energy efficiency cost savings and renewable energy benefits is integrated in normal business and capital allocation operations.

Comment
The cost for realizing the cost savings benefits is integrated in normal operations.

C3. Business Strategy

C3.1

(C3.1) Does your organization’s strategy include a transition plan that aligns with a 1.5°C world?

<table>
<thead>
<tr>
<th>Row 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition plan</td>
</tr>
<tr>
<td>No, but our strategy has been influenced by climate-related risks and opportunities, and we are developing a transition plan within two years</td>
</tr>
</tbody>
</table>

Explain why your organization does not have a transition plan that aligns with a 1.5°C world and any plans to develop one in the future

C3.2

(C3.2) Does your organization use climate-related scenario analysis to inform its strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis to inform strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>
(C3.2a) Provide details of your organization’s use of climate-related scenario analysis.

<table>
<thead>
<tr>
<th>Climate-related scenario analysis coverage</th>
<th>Temperature alignment of scenario</th>
<th>Parameters, assumptions, analytical choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition scenarios</td>
<td>Company-wide</td>
<td>To complete our transition risk and opportunities assessment, Chemours used IEA scenarios to evaluate emissions policy, end-market implications and potential outcomes across all of our business units.</td>
</tr>
<tr>
<td>IEA NZE 2050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition scenarios</td>
<td>Company-wide</td>
<td>To complete our transition risk and opportunities assessment, Chemours used IEA scenarios to evaluate emissions policy, end-market implications and potential outcomes across all of our business units.</td>
</tr>
<tr>
<td>IEA APS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition scenarios</td>
<td>Company-wide</td>
<td>To complete our transition risk and opportunities assessment, Chemours used IEA scenarios to evaluate emissions policy, end-market implications and potential outcomes across all of our business units.</td>
</tr>
<tr>
<td>IEA STEPS (previously IEA NPS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical climate scenarios</td>
<td>Company-wide</td>
<td>To complete our physical climate risk assessment, Chemours used RCP 2.6 and RCP 7.0 to evaluate future extreme weather impacts on all of our operation sites as well as key supplier sites. The weather hazards evaluated were: extreme temperatures, rainfall, flooding, hurricanes, water stress and drought. To evaluate water stress, the WWF water risk filter along with drought data from CMIP6 climate models were used.</td>
</tr>
<tr>
<td>RCP 2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical climate scenarios</td>
<td>Company-wide</td>
<td>To complete our physical climate risk assessment, Chemours used RCP 2.6 and RCP 7.0 to evaluate future extreme weather impacts on all of our operation sites as well as key supplier sites. The weather hazards evaluated were: extreme temperatures, rainfall, flooding, hurricanes, water stress and drought. To evaluate water stress, the WWF water risk filter along with drought data from CMIP6 climate models were used.</td>
</tr>
<tr>
<td>RCP 7.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C3.2b

(C3.2b) Provide details of the focal questions your organization seeks to address by using climate-related scenario analysis, and summarize the results with respect to these questions.

Row 1

<table>
<thead>
<tr>
<th>Focal questions</th>
<th>Description of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the impact of future extreme weather and future market & regulatory conditions on Chemours’ businesses in 2030?</td>
<td>The results of our climate analysis include a list of potential future risks and opportunities as well as a set of actions to address which were then considered as part of annual business strategy process. In addition, there are two examples of how the results of scenario analysis have influenced business strategy and financial planning. First, as part of our analysis, we evaluated the potential impact of future carbon taxes based on the regions where we operate. We were then able to create an internal price on carbon that is then used in financial planning processes and for evaluating energy efficiency and renewable energy projects. Second, the results of our assessments were used, where appropriate, as a direct input into business strategy process.</td>
</tr>
<tr>
<td>What actions do we need to take to address future risks and opportunities that may occur due to climate change?</td>
<td></td>
</tr>
</tbody>
</table>
Our portfolio management strategy for products benefiting from the change includes exploring opportunities to grow sales of products benefiting from the transition (e.g. the growth of lower GWP refrigerants and fluoropolymer materials for low-emissions transportation). The analysis considers short, medium, and long term horizons when evaluating portfolio impacts/opportunities. In 2019, we completed start-up of a new Opteon™ production facility in Texas, tripling the company’s production capacity to meet growing demand for these low GWP refrigerants. Our management strategy for sales of products potentially at risk is to comply with evolving regulations and follow market demand. To help guide our portfolio strategy, we set and are actively working towards meeting our 2030 goal to have 50% or more of Chemours revenue come from sales of products that contribute towards the UN SDGs, including SDGs 7 and 13 which address climate change. In 2021, about 47.2% of total Chemours sales can be attributed to products and solutions that make a specific contribution to the UN SDGs, including sales of our lower GWP Opteon™ products and fluoropolymers that enable high performance engines, lighter weight vehicles and lower emissions transportation.

<table>
<thead>
<tr>
<th>Supply chain and/or value chain</th>
<th>Yes</th>
</tr>
</thead>
</table>

Chemours has identified that there could be short to medium-term potential risks to our supply/value chain due to operational disruptions caused by climate-related weather events, therefore a business continuity planning (BCP) framework has been put in place to engage site supply chains and identify options to minimize potential disruption risks. In addition, carbon pricing and/or renewable energy regulation are longer-term risks that could impact our supply and value chain with increased costs that could be passed-through to us from our suppliers. We currently diversify our sourcing through multiple geographic regions and suppliers to ensure a stable and cost competitive supply. We also set a 2030 goal to improve the sustainability performance of the top 80% of our suppliers by spend. We are currently assessing their performance using EcoVadis and will be working with suppliers to discuss improvement opportunities identified through the assessments, including supplier emissions reduction performance. The number of Chemours customers considering sustainability-related information in their supply relationships (e.g. sustainability-oriented supplier performance reviews like EcoVadis, CDP Supply Chain Program, or sustainability characteristics of purchased products) is growing. Given Chemours’ significant corporate carbon footprint and its product portfolio that includes products with a high GHG intensity and/or GWP, company engagement and performance in climate protection is
becoming an essential consideration for meeting customer expectations. Actions we currently take to meet customer expectations include engaging with customers through the supplier sustainability assessments, taking action to reduce our absolute GHG operations emissions 60% by 2030 to reduce our product footprint, and meeting customer needs through products and offerings that deliver climate benefits. Additional actions are discussed in Products and Services and Investments in R&D.

<table>
<thead>
<tr>
<th>Investment in R&D</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our R&D investment strategy addresses medium to long term climate-related risks and opportunities through investments to develop safer, cleaner, and more efficient products and processes that help our customers and consumers reduce both their GHG emissions and their overall environmental footprint. Our commitment to deliver products to the market place that will help address climate-related impacts is part of our responsible growth business strategy and is expressed through our 2030 portfolio goal to have 50% or more of Chemours revenue come from sales of products that contribute to the UN SDGs (including SDGs 7 and 13 which address climate change) and our 2030 60% absolute emissions reduction goal. Our annual R&D investments support achieving these two goals through exploring new applications for existing products, optimizing current manufacturing operations, and developing new, innovative products and processes. For example, the need for sustainable and affordable fuel cell power has never been greater. Chemours is accelerating advancements in fuel cell technology through investments in developing new Nafion™ membranes and dispersions. In 2019, Chemours completed construction on a 312,000-square foot research facility, the Chemours Discovery Hub, which is located on the University of Delaware’s Science, Technology and Advanced Research (STAR) Campus in Newark, DE. In partnership with the University of Delaware, the Chemours Discovery Hub research facility will support research focused on new process, product and application development, providing new solutions to global challenges as outlined in the United Nations Sustainable Development Goals. The facility became fully operational in 2020.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemours has identified that there could be potential short to medium-term risks to our operations, supply chain, or community neighbors due to hurricanes and other climate-related weather events. Hurricane Katrina which hit the U.S. Gulf Coast in 2005, caused an ~5 month outage for the Company’s DeLisle, MS production facility. More recently, Hurricane Harvey, which hit the U.S. Gulf Coast in 2017, caused temporary logistics and supply chain disruptions as well as brief outages and/or slowdown of production rates for some of the Company's Gulf Coast facilities. In February 2021 our facilities in...</td>
<td></td>
</tr>
</tbody>
</table>
Corpus Christi, TX, El Dorado, AR and LaPorte, TX experienced physical damage resulting in plant downtime along with increases in utility costs during and immediately following winter storm Uri. Our sites at DeLisle, MS and New Johnsonville, TN were also affected to a lesser degree, and all business segments experienced supply chain disruptions as a result of the storm. To mitigate risks associated with severe weather, we engineer our facilities to better withstand impacts from these events and consider potential exposure to both acute and chronic climate-related weather risks when siting new production facilities as part of investment strategy and decision criteria. We strengthened our corporate crisis management approach to better prepare for responding to different events. The corporate crisis management plan includes provisions for business continuity planning and emergency preparedness that detail actions to take in the event of severe weather to assist our manufacturing sites in preparing for and recovering from severe weather events. The corporate emergency response team was activated during 2021 in response to winter storm Uri which impacted two sites in Texas as well as sites in AR, MS and TN and functioned effectively to help minimize potential losses/disruptions. Each site has also prepared an individual site-specific emergency preparedness plan that details actions to take in the event of severe weather in order to maximize the safety of our employees, our communities, the environment, and production assets. Lastly, Chemours’ finance team and EHS team assess the potential risks to operations from severe weather events in terms of potential capital damage, revenue losses from business interruptions etc. in order to ensure sufficient insurance coverages.

(C3.4) Describe where and how climate-related risks and opportunities have influenced your financial planning.

<table>
<thead>
<tr>
<th>Financial planning elements that have been influenced</th>
<th>Description of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>People and economies worldwide are being impacted by externalities, such as climate change and urbanization. These trends offer opportunities to profitably grow Chemours’ annual revenues by supporting customers with science-based, sustainable solutions to meet current and future needs. Chemours developed a “breakthrough” line of Opteon™ refrigerants that reduce GWP impact up to 99% versus incumbent HFC and HCFC refrigerants. The use of Opteon™ refrig...</td>
</tr>
<tr>
<td>Capital expenditures</td>
<td></td>
</tr>
<tr>
<td>Capital allocation</td>
<td></td>
</tr>
</tbody>
</table>
refrigerants is growing, increasing our current revenue while helping to avoid millions of tons of CO2e emissions globally. In 2019, we completed start-up of a new production facility in Texas, tripling the company’s production capacity to meet growing short to medium-term demand for Opteon™ low GWP refrigerants. Chemours estimates that, by the year 2025, sales of its low-GWP product line may avoid a cumulative ~325 million metric tons of CO2e. Our Ti-Pure™ pigments also offer climate-related opportunities such as uses in the manufacture of photovoltaic cells, roofing membranes and reflective coatings that help to cool buildings, and in agricultural films that enable farmers to reduce water and chemical use while increasing crop yields. Medium to long-term revenue planning considers contributions from future, innovative products and offerings. We invest a significant portion of our total annual R&D expenditures ($107 million USD in 2021) on new energy/resource efficiency and climate protection product and process innovations. Investing today is necessary to deliver future product/offering solutions and achieve our 2030 goal to achieve 50% or more of our revenue coming from products that contribute towards meeting the UN SDGs, including climate-related SDGs 7 and 13. In 2021, about 47.2% of total Chemours revenues was attributed to products and solutions, like our Opteon™ refrigerants, that make a particular contribution to the UN SDGs. As smart grids develop and energy storage needs increase, the need to manage peak demand and surges will drive the installation of intermittent renewable sources of power known as flow batteries which require ion exchange membranes (like Chemours’ Nafion™ product line) to perform at their peak. The use of fluoropolymers in green energy generation and storage applications is expected to grow by 40% or greater over the next 10 years. Chemours has a structured process to evaluate capital expenditures (e.g. capital projects and acquisitions), including their impacts on the environment, and respective costs. The process considers a project base case and alternative technology approaches and scenarios (as applicable). Climate-related aspects, including the expected likelihood and magnitude of impacts, can be applied to any case and become a complementary component of the evaluation for planning capital expenditures. Chemours is currently using a carbon price scenario informed from our climate change transition risk assessment that incorporates carbon costs in the evaluation process. The carbon price forecast includes pricing projections through 2040, covering the long-term timeframe relevant to planning capital investments. Chemours developed a single carbon price forecast using IEA price projections based on the regions where we operate, under three future temperature scenarios, internal evaluation of regulatory drivers, and by consulting with external experts. The internal carbon price can be applied to major investment projects to help focus investments towards clean technologies, lower-carbon solutions, and renewable energy projects to reduce potential future exposure to increased direct costs. The potential financial impact can vary significantly, depending on the nature of the project. The findings from the scenario analysis are intended to complement standard investment project evaluations and can be used
during the strategy process for review and consideration when recommending and planning investment choices. Chemours is committed to allocating capital to implement emissions reduction projects across the company to improve energy efficiency and reduce GHG emissions in support of the company’s goals to reduce absolute GHG emissions from operations by 60% and fluorinated organic air process emissions by 99% by 2030. In 2021, Chemours completed an upgrade of existing coal fired boilers to new natural gas-fired boilers for steam generation at the Washington Works, WV site. The project will reduce Chemours annual CO2e emissions by over 120,000 metric tons. We also successfully completed installing a thermal oxidizer at our Fayetteville, NC site to abate fluorinated organic process emissions in late 2019. In 2020, verification testing confirmed the unit reduced annual CO2e process emissions routed to it by 99%.

C4. Targets and performance

C4.1

(C4.1) Did you have an emissions target that was active in the reporting year?
Absolute target

C4.1a

(C4.1a) Provide details of your absolute emissions target(s) and progress made against those targets.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Year target was set</th>
<th>Target coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs 1</td>
<td>2021</td>
<td></td>
</tr>
</tbody>
</table>
Company-wide

Scope(s)
- Scope 1
- Scope 2

Scope 2 accounting method
Market-based

Scope 3 category(ies)

Base year
2018

Base year Scope 1 emissions covered by target (metric tons CO2e)
7,925,000

Base year Scope 2 emissions covered by target (metric tons CO2e)
1,401,000

Base year Scope 3 emissions covered by target (metric tons CO2e)

Total base year emissions covered by target in all selected Scopes (metric tons CO2e)
9,326,000

Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1
100

Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2
100
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)</td>
<td>100</td>
</tr>
<tr>
<td>Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes</td>
<td>100</td>
</tr>
<tr>
<td>Target year</td>
<td>2030</td>
</tr>
<tr>
<td>Targeted reduction from base year (%)</td>
<td>60</td>
</tr>
<tr>
<td>Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated]</td>
<td>3,730,400</td>
</tr>
<tr>
<td>Scope 1 emissions in reporting year covered by target (metric tons CO2e)</td>
<td>6,167,000</td>
</tr>
<tr>
<td>Scope 2 emissions in reporting year covered by target (metric tons CO2e)</td>
<td>1,473,000</td>
</tr>
<tr>
<td>Scope 3 emissions in reporting year covered by target (metric tons CO2e)</td>
<td></td>
</tr>
<tr>
<td>Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)</td>
<td>7,640,000</td>
</tr>
<tr>
<td>% of target achieved relative to base year [auto-calculated]</td>
<td>30.1308170706</td>
</tr>
<tr>
<td>Target status in reporting year</td>
<td>Underway</td>
</tr>
</tbody>
</table>
Is this a science-based target?
Yes, we consider this a science-based target, and the target is currently being reviewed by the Science Based Targets initiative.

Target ambition
1.5°C aligned

Please explain target coverage and identify any exclusions
This target covers all of Chemours’ Scope 1 and 2 emissions from operations.

Plan for achieving target, and progress made to the end of the reporting year
We plan to achieve this target by enhancing emissions control technologies at our manufacturing sites, driving energy efficiency improvements across operations and increasing the amount of electricity and other energy generated from renewable sources. At the end of 2021, we’ve achieved a 18% reduction in absolute emissions from our 2018 base year.

List the emissions reduction initiatives which contributed most to achieving this target

C4.2

(C4.2) Did you have any other climate-related targets that were active in the reporting year?
Net-zero target(s)

C4.2c

(C4.2c) Provide details of your net-zero target(s).

Target reference number
NZ1

Target coverage
Company-wide

Absolute/intensity emission target(s) linked to this net-zero target
Abs1

Target year for achieving net zero
2050

Is this a science-based target?
No, but we are reporting another target that is science-based

Please explain target coverage and identify any exclusions
In early 2021, Chemours announced our new goal to reduce absolute Scope 1 and 2 operations GHG emissions by 60% by 2030 on our journey to achieve net-zero Scope 1 and 2 operations GHG emissions by 2050. Currently, we are executing on projects to achieve our 2030 target and are beginning planning activities to achieve net zero operations by 2050.

Do you intend to neutralize any unabated emissions with permanent carbon removals at the target year?
Yes

Planned milestones and/or near-term investments for neutralization at target year
Chemours’ net zero aspiration was announced in mid-2021. We are in the beginning stages of researching available technologies and value chain collaborations in order to complete our roadmap to net zero. We expect to be able to report on investments and planned actions in the future.

Planned actions to mitigate emissions beyond your value chain (optional)
We are in the beginning stages of researching available technologies and value chain collaborations in order to complete our roadmap to net zero. We are also piloting programs to explore circularity initiatives within our operations and value chain. Lastly, please refer to question 4.5a for more information on how our products allow our downstream customers to mitigate emissions.
C4.3

(C4.3) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Yes

C4.3a

(C4.3a) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Number of initiatives</th>
<th>Total estimated annual CO2e savings in metric tonnes CO2e (only for rows marked *)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under investigation</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>To be implemented*</td>
<td>4</td>
<td>500,000</td>
</tr>
<tr>
<td>Implementation commenced*</td>
<td>11</td>
<td>3,600,000</td>
</tr>
<tr>
<td>Implemented*</td>
<td>1</td>
<td>120,000</td>
</tr>
<tr>
<td>Not to be implemented</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

C4.3b

(C4.3b) Provide details on the initiatives implemented in the reporting year in the table below.

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-carbon energy consumption</td>
</tr>
<tr>
<td>Other, please specify</td>
</tr>
<tr>
<td>100% wind renewable electricity and carbon neutral natural gas</td>
</tr>
</tbody>
</table>
Estimated annual CO2e savings (metric tonnes CO2e)
6,000

Scope(s) or Scope 3 category(ies) where emissions savings occur
Scope 1
Scope 2 (market-based)

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in C0.4)
0

Investment required (unit currency – as specified in C0.4)
1,000

Payback period
No payback

Estimated lifetime of the initiative
1-2 years

Comment
Our site in Belgium completed converting its energy supply to 100% renewable wind power and carbon-neutral natural gas in May 2021. This results in an estimated annual reduction of 270 metric tons of CO2e emissions.

Initiative category & Initiative type
Other, please specify
Other, please specify
Switch to a lower carbon intensive fuel source by converting boilers from coal to natural gas.
Estimated annual CO2e savings (metric tonnes CO2e)
120,000

Scope(s) or Scope 3 category(ies) where emissions savings occur
Scope 1

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in C0.4)
0

Investment required (unit currency – as specified in C0.4)
30,000,000

Payback period
No payback

Estimated lifetime of the initiative
21-30 years

Comment
By the end of 2021, we successfully completed the conversion of coal-fired boilers to natural gas at our Washington Works, WV site.

C4.3c

(C4.3c) What methods do you use to drive investment in emissions reduction activities?

<table>
<thead>
<tr>
<th>Method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with regulatory requirements/standards</td>
<td></td>
</tr>
<tr>
<td>Dedicated budget for low-carbon product R&D</td>
<td></td>
</tr>
<tr>
<td>Employee engagement</td>
<td></td>
</tr>
</tbody>
</table>
Financial optimization calculations

Internal price on carbon

Other
Advancing progress on our 2030 Corporate Responsibility Commitment goals

C4.5

(C4.5) Do you classify any of your existing goods and/or services as low-carbon products?
Yes

C4.5a

(C4.5a) Provide details of your products and/or services that you classify as low-carbon products.

<table>
<thead>
<tr>
<th>Level of aggregation</th>
<th>Product or service</th>
</tr>
</thead>
</table>

Taxonomy used to classify product(s) or service(s) as low-carbon

Other, please specify
Internal EVOLVE 2030 methodology which includes lifecycle attributes

Type of product(s) or service(s)

Other
Other, please specify
Opteon™

Description of product(s) or service(s)

Low-GWP refrigerant
Have you estimated the avoided emissions of this low-carbon product(s) or service(s)
 Yes

Methodology used to calculate avoided emissions
 Other, please specify
 Cradle to grave LCA per ISO standards as part of EVOLVE 2030

Life cycle stage(s) covered for the low-carbon product(s) or services(s)
 Cradle-to-grave

Functional unit used
 Life of a mobile air conditioning unit (15 years)

Reference product/service or baseline scenario used
 R-134a for mobile air conditioning applications

Life cycle stage(s) covered for the reference product/service or baseline scenario
 Cradle-to-grave

Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario
 2

Explain your calculation of avoided emissions, including any assumptions
 The group of products contributing to climate benefits is made up of low GWP refrigerants, fluoropolymers used in the transportation sector that increase fuel economy and contribute to lower emissions and our Titanium Dioxide One Coat pigment product. Chemours has developed a third-party verified methodology, EVOLVE 2030. The EVOLVE 2030 methodology (developed from WBCSD’s Portfolio Sustainability Assessment methodology) will be used to evaluate our current offering portfolio and all new offerings to validate climate-related benefits. The assessments help us maximize the UNSDG contributions of our product portfolio, focusing on products and offerings with positive benefits and guiding choices to improve, or phase out, products with negative impacts. The reported 47.2% in the following column reflects total Chemours revenue in 2021 from products that's contribute to the UN Sustainable Development Goals using Chemours’ third party verified EVOLVE 2030 methodology.
<table>
<thead>
<tr>
<th>Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year</th>
<th>47.2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Level of aggregation</th>
<th>Product or service</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Taxonomy used to classify product(s) or service(s) as low-carbon</th>
<th>Other, please specify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal EVOLVE 2030 methodology which includes lifecycle attributes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of product(s) or service(s)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Other, please specify</td>
</tr>
<tr>
<td></td>
<td>Nafion™</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of product(s) or service(s)</th>
<th>Nafion™ fuel cell membrane</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Have you estimated the avoided emissions of this low-carbon product(s) or service(s)</th>
<th>Yes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Methodology used to calculate avoided emissions</th>
<th>Other, please specify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cradle to grave LCA per ISO standards as part of EVOLVE 2030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Life cycle stage(s) covered for the low-carbon product(s) or services(s)</th>
<th>Cradle-to-grave</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Functional unit used</th>
<th>Distance traveled: 1km traveled in 1 vehicle</th>
</tr>
</thead>
</table>
Reference product/service or baseline scenario used
Based on published literature we used a passenger vehicle with an internal combustion engine as the baseline case.

Life cycle stage(s) covered for the reference product/service or baseline scenario
Cradle-to-grave

Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario

Explain your calculation of avoided emissions, including any assumptions
The group of products contributing to climate benefits is made up of low GWP refrigerants, fluoropolymers used in the transportation sector that increase fuel economy and contribute to lower emissions and our Titanium Dioxide One Coat pigment product. Chemours has developed a third-party verified methodology, EVOLVE 2030. The EVOLVE 2030 methodology (developed off from WBCSD’s Portfolio Sustainability Assessment methodology) will be used to evaluate our current offering portfolio and all new offerings to validate climate-related benefits. The assessments help us maximize the UNSDG contributions of our product portfolio, focusing on products and offerings with positive benefits and guiding choices to improve, or phase out, products with negative impacts. The reported 47.2% in the following column reflects total Chemours revenue in 2021 from products that contribute to the UN Sustainable Development Goals using Chemours’ third party verified EVOLVE 2030 methodology.

Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year
47.2

Level of aggregation
Product or service

Taxonomy used to classify product(s) or service(s) as low-carbon
Other, please specify
Internal EVOLVE 2030 methodology which includes lifecycle attributes
Type of product(s) or service(s)
- Other
- Other, please specify
 - Ti-Pure™ One Coat

Description of product(s) or service(s)
- One coat pigment

Have you estimated the avoided emissions of this low-carbon product(s) or service(s)
- Yes

Methodology used to calculate avoided emissions
- Other, please specify
 - Cradle to grave LCA per ISO standards as part of EVOLVE 2030

Life cycle stage(s) covered for the low-carbon product(s) or services(s)
- Cradle-to-grave

Functional unit used
- 1 square meter covered

Reference product/service or baseline scenario used
- Generic TiO2 pigment in universal paint

Life cycle stage(s) covered for the reference product/service or baseline scenario
- Cradle-to-grave

Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario

Explain your calculation of avoided emissions, including any assumptions
The group of products contributing to climate benefits is made up of low GWP refrigerants, fluoropolymers used in the transportation sector that increase fuel economy and contribute to lower emissions and our Ti02 One Coat pigment product. Chemours has developed a third-party verified methodology, EVOLVE 2030. The EVOLVE 2030 methodology (developed off from WBCSD’s Portfolio Sustainability Assessment methodology) will be used to evaluate our current offering portfolio and all new offerings to validate climate-related benefits. The assessments help us maximize the SDG contributions of our product portfolio, focusing on products and offerings with positive benefits and guiding choices to improve, or phase out, products with negative impacts.

The reported 47.2% in the following column reflects total Chemours revenue in 2021 from products that’s contribute to the UN Sustainable Development Goals using Chemours’ third party verified EVOLVE 2030 methodology.

Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

47.2%

C5. Emissions methodology

C5.1

(C5.1) Is this your first year of reporting emissions data to CDP?

No

C5.1a

(C5.1a) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?

Row 1

Has there been a structural change?
Yes, other structural change, please specify
Divestiture

Name of organization(s) acquired, divested from, or merged with
Chemours Mining Solutions Business

Details of structural change(s), including completion dates
Effective December 1, 2021, Chemours sold its Mining Solutions Business to Draslovka Holdings.

C5.1b

(C5.1b) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Change(s) in methodology, boundary, and/or reporting year definition?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

C5.1c

(C5.1c) Have your organization’s base year emissions been recalculated as a result of the changes or errors reported in C5.1a and C5.1b?

<table>
<thead>
<tr>
<th>Base year recalculation</th>
<th>Base year emissions recalculation policy, including significance threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Yes</td>
<td>The base year emissions value shall be adjusted if any of the following scenarios occurs and results in an increase or decrease of 5% percent or greater (the threshold of significance) to the base year environmental data. This may include accounting for the cumulative effect of a number of small structural changes if the total sum exceeds the 5% significance threshold. While adding some complexity, this approach aligns with financial accounting practices, and provides a meaningful basis for measuring performance over time. Scenarios include: structural changes, including mergers, acquisitions, and divestments, insourcing or outsourcing of activities that existed at the time the base year was established, changes in calculation methodologies or improvements in emission factors/activity data, and errors or omissions of data from the base year.</td>
</tr>
</tbody>
</table>
C5.2

(C5.2) Provide your base year and base year emissions.

Scope 1

<table>
<thead>
<tr>
<th>Base year start</th>
<th>January 1, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
<td>December 31, 2018</td>
</tr>
<tr>
<td>Base year emissions (metric tons CO2e)</td>
<td>7,925,000</td>
</tr>
</tbody>
</table>

Comment
Base year Scope 1 emissions have been restated due to the sale of our Mining Solutions Business in 2021. 2018 Scope 1 emissions including emissions from generating electricity and steam for tenants and including a one-time release at one of our sites is 8,527,000 metric tons CO2e.

Scope 2 (location-based)

<table>
<thead>
<tr>
<th>Base year start</th>
<th>January 1, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
<td>December 31, 2018</td>
</tr>
<tr>
<td>Base year emissions (metric tons CO2e)</td>
<td>1,384,000</td>
</tr>
</tbody>
</table>

Comment
Base year Scope 2 emissions have been restated due to the sale of our Mining Solutions Business in 2021.
Scope 2 (market-based)

Base year start
January 1, 2018

Base year end
December 31, 2018

Base year emissions (metric tons CO2e)
1,401,000

Comment
Base year Scope 2 emissions have been restated due to the sale of our Mining Solutions Business in 2021.

Scope 3 category 1: Purchased goods and services

Base year start
January 1, 2018

Base year end
December 31, 2018

Base year emissions (metric tons CO2e)
7,890,000

Comment

Scope 3 category 2: Capital goods

Base year start
January 1, 2018
Base year end
 December 31, 2018

Base year emissions (metric tons CO2e)
 140,000

Comment

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

Base year start
 January 1, 2018

Base year end
 December 31, 2018

Base year emissions (metric tons CO2e)
 290,000

Comment

Scope 3 category 4: Upstream transportation and distribution

Base year start
 January 1, 2018

Base year end
 December 31, 2018

Base year emissions (metric tons CO2e)
 460,000
Comment

Scope 3 category 5: Waste generated in operations

Base year start
January 1, 2018

Base year end
December 31, 2018

Base year emissions (metric tons CO2e)
20,000

Comment

Scope 3 category 6: Business travel

Base year start
January 1, 2018

Base year end
December 31, 2018

Base year emissions (metric tons CO2e)
10,000

Comment

Scope 3 category 7: Employee commuting
Base year start
January 1, 2018

Base year end
December 31, 2018

Base year emissions (metric tons CO2e)
10,000

Comment

Scope 3 category 8: Upstream leased assets

Base year start
January 1, 2018

Base year end
December 31, 2018

Base year emissions (metric tons CO2e)
30,000

Comment

Scope 3 category 9: Downstream transportation and distribution

Base year start
January 1, 2018

Base year end
December 31, 2018
Base year emissions (metric tons CO2e)

430,000

Comment

Scope 3 category 10: Processing of sold products

<table>
<thead>
<tr>
<th>Base year start</th>
<th>January 1, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
<td>December 31, 2018</td>
</tr>
</tbody>
</table>

Base year emissions (metric tons CO2e)

N/A

Comment

Scope 3 category 11: Use of sold products

<table>
<thead>
<tr>
<th>Base year start</th>
<th>January 1, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
<td>December 31, 2018</td>
</tr>
</tbody>
</table>

Base year emissions (metric tons CO2e)

151,600,000

Comment
Scope 3 category 12: End of life treatment of sold products

Base year start
January 1, 2018

Base year end
December 31, 2018

Base year emissions (metric tons CO2e)
60,000

Comment

Scope 3 category 13: Downstream leased assets

Base year start
January 1, 2018

Base year end
December 31, 2018

Base year emissions (metric tons CO2e)

Comment
N/A

Scope 3 category 14: Franchises

Base year start
January 1, 2018
Base year end
December 31, 2018

Base year emissions (metric tons CO2e)

Comment
N/A

Scope 3 category 15: Investments

Base year start
January 1, 2018

Base year end
December 31, 2018

Base year emissions (metric tons CO2e)
120,000

Comment

Scope 3: Other (upstream)

Base year start

Base year end

Base year emissions (metric tons CO2e)
Comment

Scope 3: Other (downstream)

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment

C5.3

(C5.3) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

C6. Emissions data

C6.1

(C6.1) What were your organization’s gross global Scope 1 emissions in metric tons CO2e?

Reporting year

Gross global Scope 1 emissions (metric tons CO2e)
C6.2

(C6.2) Describe your organization’s approach to reporting Scope 2 emissions.

Row 1

Scope 2, location-based
We are reporting a Scope 2, location-based figure

Scope 2, market-based
We are reporting a Scope 2, market-based figure

Comment
Location-based Scope 2 numbers are calculated using location-based factors for US sites. Market-based Scope 2 numbers are calculated using supplier specific emissions factors for many of our sites that are located near utility generators. We also track emissions reductions from purchased renewable electricity purchases through our market-based Scope 2 number. Goal performance tracking will occur on our reported market-based Scope 2 figure.

C6.3

(C6.3) What were your organization’s gross global Scope 2 emissions in metric tons CO2e?

Reporting year

Scope 2, location-based
1,458,000
Scope 2, market-based (if applicable)
1,473,000

Comment
Location-based Scope 2 numbers are calculated using location-based factors for US sites. Market-based Scope 2 numbers are calculated using supplier specific emissions factors for many of our sites that are located near utility generators. We also track emissions reductions from purchased renewable electricity purchases through our market-based Scope 2 number. Goal performance tracking will occur on our reported market-based Scope 2 figure.

C6.4

(C6.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1 and Scope 2 emissions that are within your selected reporting boundary which are not included in your disclosure?

No

C6.5

(C6.5) Account for your organization’s gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
6,890,000

Emissions calculation methodology
Other, please specify
See below

Percentage of emissions calculated using data obtained from suppliers or value chain partners
Please explain

Using total spend on raw materials we identified 90% of all purchased products. The CO2e emissions of our raw materials was calculated by applying a LCA factor to the quantity of each material purchased. The total Scope 3 emissions were then extrapolated to 100% of the total raw materials purchasing volume. Cradle to gate LCA emission factors were obtained from commercially and publicly available databases. Emissions accounting for non-production related goods and services is under development.

Capital goods

<table>
<thead>
<tr>
<th>Evaluation status</th>
<th>Relevant, calculated</th>
</tr>
</thead>
</table>

| Emissions in reporting year (metric tons CO2e) | 90,000 |

<table>
<thead>
<tr>
<th>Emissions calculation methodology</th>
<th>Other, please specify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>We analyzed the CO2e emissions of our capital purchases by determining our total capital spending and then utilizing the Carnegie Mellon eiolca.net tool.</td>
</tr>
</tbody>
</table>

| Percentage of emissions calculated using data obtained from suppliers or value chain partners | 0 |

Please explain

We analyzed the CO2e emissions of our capital purchases by determining our total capital spending and then utilizing the Carnegie Mellon eiolca.net tool.

Fuel-and-energy-related activities (not included in Scope 1 or 2)

<table>
<thead>
<tr>
<th>Evaluation status</th>
<th>Relevant, calculated</th>
</tr>
</thead>
</table>
Emissions in reporting year (metric tons CO2e)
330,000

Emissions calculation methodology
Other, please specify
See below

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
We analyzed the CO2e emissions of our fuel related activities by determining the quantity for each fuel type purchased and applying appropriate cradle to gate LCA loss factors. We analyzed the CO2e emissions of our electricity related activities by determining the quantity of grid electricity purchased and applying appropriate transmission loss factors.

Upstream transportation and distribution

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
320,000

Emissions calculation methodology
Other, please specify
We analyzed the CO2 emissions by determining the mass, mode and miles shipped and applied appropriate emission factors.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
We analyzed the CO2 emissions by determining the mass, mode and miles shipped and applied appropriate emission factors.
Waste generated in operations

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
50,000

Emissions calculation methodology
Other, please specify
We analyzed the CO2e emissions of our waste generated in operations by determining the quantity of each type of carbon containing waste and multiplying it by the appropriate LCA emission factor.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
We analyzed the CO2e emissions of our waste generated in operations by determining the quantity of each type of carbon containing waste and multiplying it by the appropriate LCA emission factor.

Business travel

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
0

Emissions calculation methodology
Other, please specify
Due to social distancing and travel restrictions related to the COVID-19 pandemic response, we calculated 2020 business travel as de minimis as it contributed to less than 0.01% of total scope 3 footprint for the previous 2 years.
Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Due to social distancing and travel restrictions related to the COVID-19 pandemic response, we calculated 2020 business travel as de minimis as it contributed to less than 0.01% of total scope 3 footprint for the previous 2 years.

Employee commuting

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
0

Emissions calculation methodology
Other, please specify
Due to social distancing and travel restrictions related to the COVID-19 pandemic response, we calculated 2020 business travel as de minimis as it contributed to less than 0.01% of total scope 3 footprint for the previous 2 years.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Due to social distancing and travel restrictions related to the COVID-19 pandemic response, we calculated 2020 business travel as de minimis as it contributed to less than 0.01% of total scope 3 footprint for the previous 2 years.

Upstream leased assets

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
20,000

Emissions calculation methodology
Other, please specify
For our leased real estate, we took the total leased area for labs, offices and warehouses and applied space conditioning factors.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
For our leased real estate, we took the total leased area for labs, offices and warehouses and applied space conditioning factors.

Downstream transportation and distribution

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
390,000

Emissions calculation methodology
Other, please specify
We analyzed the CO2 emissions by determining the mass, mode and miles shipped and applied appropriate emission factors.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
We analyzed the CO2 emissions by determining the mass, mode and miles shipped and applied appropriate emission factors.

Processing of sold products

Evaluation status
Not relevant, explanation provided

Please explain

Due to the nature of our products, we do not generate emissions in the processing of sold products category.

Use of sold products

Evaluation status

Relevant, calculated

Emissions in reporting year (metric tons CO2e)

135,600,000

Emissions calculation methodology

Other, please specify

Our sold refrigerants are our only sold products that fall into Category 11 emissions. We analyzed the emissions of our sold refrigerants by determining the quantity of each refrigerant sold and applying GWP factors for each refrigerant.

Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

Please explain

Our sold refrigerants are our only sold products that fall into Category 11 emissions. We analyzed the emissions of our sold refrigerants by determining the quantity of each refrigerant sold and applying GWP factors for each refrigerant.

End of life treatment of sold products

Evaluation status

Relevant, calculated

Emissions in reporting year (metric tons CO2e)

210,000
Emissions calculation methodology

Other, please specify

See below

Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

Please explain

We analyzed the CO2e emissions from our end of life treatment of sold non-fluoro products by assuming all carbon converted to CO2. For fluoro products that are not incinerated, we assumed carbon was stable. For fluoro products that are incinerated, regional incineration rates were assumed and all carbon was assumed to convert to CO2.

Downstream leased assets

Evaluation status

Not relevant, explanation provided

Please explain

Due to the nature of our business, we do not generate emissions in the downstream leased assets category.

Franchises

Evaluation status

Not relevant, explanation provided

Please explain

Chemours does not generate emissions in the franchises category.

Investments

Evaluation status

Relevant, calculated
Emissions in reporting year (metric tons CO2e)

180,000

Emissions calculation methodology

Other, please specify

Emissions from our joint ventures fall into this category. We determined the Scope 1&2 footprint from our joint venture sites and applied our equity stake percentage.

Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

Please explain

Emissions from our joint ventures fall into this category. We determined the Scope 1&2 footprint from our joint venture sites and applied our equity stake percentage.

Other (upstream)

Evaluation status

Please explain

Other (downstream)

Evaluation status

Please explain
C6.7

(C6.7) Are carbon dioxide emissions from biogenic carbon relevant to your organization?
No

C6.10

(C6.10) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

<table>
<thead>
<tr>
<th>Intensity figure</th>
<th>4.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)</td>
<td>7,640,000</td>
</tr>
<tr>
<td>Metric denominator</td>
<td>unit of production</td>
</tr>
<tr>
<td>Metric denominator: Unit total</td>
<td>1,857,000</td>
</tr>
<tr>
<td>Scope 2 figure used</td>
<td>Market-based</td>
</tr>
<tr>
<td>% change from previous year</td>
<td>5</td>
</tr>
<tr>
<td>Direction of change</td>
<td>Decreased</td>
</tr>
</tbody>
</table>
Reason for change
Emissions intensity decreased from 2020 to 2021 due to emissions reductions projects. See question C4.3b for additional details on reduction initiatives.

Intensity figure
0.0012

Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)
7,640,000

Metric denominator
unit total revenue

Metric denominator: Unit total
6,345,000,000

Scope 2 figure used
Market-based

% change from previous year
8

Direction of change
Decreased

Reason for change
Emissions intensity decreased from 2020 to 2021 due to emissions reductions projects. See question C4.3b for additional details on reduction initiatives.
C7. Emissions breakdowns

C7.1

(C7.1) Does your organization break down its Scope 1 emissions by greenhouse gas type?

Yes

C7.1a

(C7.1a) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used greenhouse warming potential (GWP).

<table>
<thead>
<tr>
<th>Greenhouse gas</th>
<th>Scope 1 emissions (metric tons of CO2e)</th>
<th>GWP Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>2,393,000</td>
<td>IPCC Fourth Assessment Report (AR4 - 100 year)</td>
</tr>
<tr>
<td>HFCs</td>
<td>2,895,000</td>
<td>IPCC Fourth Assessment Report (AR4 - 100 year)</td>
</tr>
<tr>
<td>PFCs</td>
<td>150,000</td>
<td>IPCC Fourth Assessment Report (AR4 - 100 year)</td>
</tr>
<tr>
<td>Other, please specify</td>
<td>639,000</td>
<td>IPCC Fourth Assessment Report (AR4 - 100 year)</td>
</tr>
<tr>
<td>Fluorinated gases</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C7.2

(C7.2) Break down your total gross global Scope 1 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td>4,697,000</td>
</tr>
<tr>
<td>Other, please specify</td>
<td>1,470,000</td>
</tr>
<tr>
<td>Rest of world</td>
<td></td>
</tr>
</tbody>
</table>
C7.3

(C7.3) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

By activity

C7.3c

(C7.3c) Break down your total gross global Scope 1 emissions by business activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Energy</td>
<td>756,000</td>
</tr>
<tr>
<td>Non-fluorinated Process Emissions</td>
<td>1,051,000</td>
</tr>
<tr>
<td>Fluorinated Process Emissions & Fugitive Emissions</td>
<td>4,360,000</td>
</tr>
</tbody>
</table>

C-CE7.4/C-CH7.4/C-CO7.4/C-EU7.4/C-MM7.4/C-OG7.4/C-ST7.4/C-TO7.4/C-TS7.4

(C-CE7.4/C-CH7.4/C-CO7.4/C-EU7.4/C-MM7.4/C-OG7.4/C-ST7.4/C-TO7.4/C-TS7.4) Break down your organization’s total gross global Scope 1 emissions by sector production activity in metric tons CO2e.

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Scope 1 emissions, metric tons CO2e</td>
</tr>
<tr>
<td>Comment</td>
</tr>
<tr>
<td>Chemicals production activities</td>
</tr>
</tbody>
</table>

C7.5

(C7.5) Break down your total gross global Scope 2 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td>923,000</td>
<td>947,000</td>
</tr>
</tbody>
</table>
C7.6

(C7.6) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

By activity

C7.6c

(C7.6c) Break down your total gross global Scope 2 emissions by business activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchased Electricity</td>
<td>725,000</td>
<td>749,000</td>
</tr>
<tr>
<td>Purchased Steam</td>
<td>724,000</td>
<td>724,000</td>
</tr>
</tbody>
</table>

C-CE7.7/C-CH7.7/C-CO7.7/C-MM7.7/C-OG7.7/C-ST7.7/C-TO7.7/C-TS7.7

(C-CE7.7/C-CH7.7/C-CO7.7/C-MM7.7/C-OG7.7/C-ST7.7/C-TO7.7/C-TS7.7) Break down your organization's total gross global Scope 2 emissions by sector production activity in metric tons CO2e.

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 2 emissions come from both chemical production activities as well as our mineral sands mining activities. The 2021 Scope 2 impact of our mining activity is 36,000 metric tons of CO2e.</td>
</tr>
</tbody>
</table>
C-CH7.8

(C-CH7.8) Disclose the percentage of your organization’s Scope 3, Category 1 emissions by purchased chemical feedstock.

<table>
<thead>
<tr>
<th>Purchased feedstock</th>
<th>Percentage of Scope 3, Category 1 tCO2e from purchased feedstock</th>
<th>Explain calculation methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other (please specify)</td>
<td>93</td>
<td>All of our scope 3 category 1 emissions are based on lifecycle factors. We determined the quantity of each feedstock material purchased and then applied the LCA emissions factor for each material. In some circumstances we do have emissions due to the partial combustion of certain feedstocks – this emission impact is included in Scope 1 Process emissions. Feedstocks are defined as materials that are included in/become part of the final product.</td>
</tr>
</tbody>
</table>

C-CH7.8a

(C-CH7.8a) Disclose sales of products that are greenhouse gases.

<table>
<thead>
<tr>
<th></th>
<th>Sales, metric tons</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide (CO2)</td>
<td>0</td>
<td>Not sold by Chemours</td>
</tr>
<tr>
<td>Methane (CH4)</td>
<td>0</td>
<td>Not sold by Chemours</td>
</tr>
<tr>
<td>Nitrous oxide (N2O)</td>
<td>0</td>
<td>Not sold by Chemours</td>
</tr>
<tr>
<td>Hydrofluorocarbons (HFC)</td>
<td>122,000</td>
<td>The numbers reported here reflect all market segments and products that are considered Greenhouse Gases. This number includes our products with low-GWP.</td>
</tr>
<tr>
<td>Perfluorocarbons (PFC)</td>
<td>0</td>
<td>Not sold by Chemours</td>
</tr>
<tr>
<td>Sulphur hexafluoride (SF6)</td>
<td>0</td>
<td>Not sold by Chemours</td>
</tr>
</tbody>
</table>
Nitrogen trifluoride (NF3)

<table>
<thead>
<tr>
<th>Change in emissions (metric tons CO2e)</th>
<th>Direction of change</th>
<th>Emissions value (percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not sold by Chemours</td>
<td>0%</td>
</tr>
</tbody>
</table>

C7.9

(C7.9) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Increased

C7.9a

(C7.9a) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

<table>
<thead>
<tr>
<th>Change in renewable energy consumption</th>
<th>6,000</th>
<th>Decreased</th>
<th>1</th>
<th>Combined Scope 1 and Scope 2 emissions for the reporting year increased by a total of 12% since 2020. We arrived at a <1% reduction in emissions from emissions reduction initiatives by taking the impact of our renewable energy emissions reductions at the Chemours Mechelen, Belgium plant site (6000 metric tons CO2e from a combination of wind-powered electricity and certified carbon-neutral natural gas) and dividing this by our 2020 combined Scope 1 and 2 emissions of 7,640,000 metrics tons CO2e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other emissions reduction activities</td>
<td>120,000</td>
<td>Decreased</td>
<td>2</td>
<td>Combined Scope 1 and Scope 2 emissions for the reporting year increased by a total of 12% since 2020. We arrived at a 2% reduction in emissions from emissions reduction initiatives by taking the impact of our implemented boiler conversion emissions reductions at the Chemours Washington Works, WV plant site (120,000</td>
</tr>
</tbody>
</table>
metric tons CO2e) and dividing this by our 2020 combined Scope 1 and 2 emissions of 7,640,000 metric tons CO2e.

<table>
<thead>
<tr>
<th>Divestment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mergers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in output</th>
<th>806,000</th>
<th>Increased</th>
<th>11</th>
</tr>
</thead>
</table>

This change in output is attributed to an overall increase in production from 2020 to 2021. Combined Scope 1 and Scope 2 emissions for the reporting year increased by a total of 12% since 2020. We arrived at a 12% increase due to change in output by taking the difference between combined Scope 1 and 2 emissions in 2020 and 2021 (932,000 metric tons CO2e) and subtracting out the impact from emissions reduction initiatives taking effect in the reporting year (126,000 metric tons as reported in C4.3b) and then dividing the resulting 806,000 metric tons CO2e by our our 2020 combined Scope 1 and 2 emissions of 7,640,000 metric tons CO2e.

<table>
<thead>
<tr>
<th>Change in methodology</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in boundary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in physical operating conditions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidentified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C7.9b

(C7.9b) Are your emissions performance calculations in C7.9 and C7.9a based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?
Market-based

C8. Energy

C8.1

(C8.1) What percentage of your total operational spend in the reporting year was on energy?

More than 5% but less than or equal to 10%

C8.2

(C8.2) Select which energy-related activities your organization has undertaken.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Indicate whether your organization undertook this energy-related activity in the reporting year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstocks)</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td>No</td>
</tr>
<tr>
<td>Generation of electricity, heat, steam, or cooling</td>
<td>Yes</td>
</tr>
</tbody>
</table>

C8.2a

(C8.2a) Report your organization’s energy consumption totals (excluding feedstocks) in MWh.

<table>
<thead>
<tr>
<th>Heating value</th>
<th>MWh from renewable sources</th>
<th>MWh from non-renewable sources</th>
<th>Total (renewable and non-renewable) MWh</th>
</tr>
</thead>
</table>
C-CH8.2a

(C-CH8.2a) Report your organization’s energy consumption totals (excluding feedstocks) for chemical production activities in MWh.

Consumption of fuel (excluding feedstocks)

<table>
<thead>
<tr>
<th>Consumption of fuel (excluding feedstock)</th>
<th>HHV (higher heating value)</th>
<th>MWh consumed from renewable sources inside chemical sector boundary</th>
<th>MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)</th>
<th>MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstock)</td>
<td>HHV (higher heating value)</td>
<td>MWh consumed from renewable sources inside chemical sector boundary</td>
<td>MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)</td>
<td>MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary</td>
</tr>
<tr>
<td>Consumption of fuel (excluding feedstock)</td>
<td>HHV (higher heating value)</td>
<td>MWh consumed from renewable sources inside chemical sector boundary</td>
<td>MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)</td>
<td>MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary</td>
</tr>
<tr>
<td>Consumption of fuel (excluding feedstock)</td>
<td>HHV (higher heating value)</td>
<td>MWh consumed from renewable sources inside chemical sector boundary</td>
<td>MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)</td>
<td>MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td>112,000</td>
<td>1,570,000</td>
<td>1,682,000</td>
<td></td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td>0</td>
<td>2,705,000</td>
<td>2,705,000</td>
<td></td>
</tr>
<tr>
<td>Consumption of self-generated non-fuel renewable energy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total energy consumption</td>
<td>197,000</td>
<td>9,587,000</td>
<td>9,784,000</td>
<td></td>
</tr>
</tbody>
</table>
5,397,000

Consumption of purchased or acquired electricity

<table>
<thead>
<tr>
<th>MWh consumed from renewable sources inside chemical sector boundary</th>
<th>112,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)</td>
<td>1,570,000</td>
</tr>
<tr>
<td>MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary</td>
<td>0</td>
</tr>
<tr>
<td>Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary</td>
<td>1,682,000</td>
</tr>
</tbody>
</table>

Consumption of purchased or acquired steam

<table>
<thead>
<tr>
<th>MWh consumed from renewable sources inside chemical sector boundary</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)</td>
<td>2,705,000</td>
</tr>
<tr>
<td>MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary</td>
<td>0</td>
</tr>
<tr>
<td>Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary</td>
<td>2,705,000</td>
</tr>
</tbody>
</table>

Consumption of self-generated non-fuel renewable energy
MWh consumed from renewable sources inside chemical sector boundary
0

MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)
0

MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary
0

Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary
0

Total energy consumption

MWh consumed from renewable sources inside chemical sector boundary
197,000

MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)
9,587,000

MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary
0

Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary
9,784,000

C8.2b

(C8.2b) Select the applications of your organization's consumption of fuel.

<table>
<thead>
<tr>
<th>Indicate whether your organization undertakes this fuel application</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel for the generation of electricity</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Consumption of fuel for the generation of heat</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Consumption of fuel for the generation of steam</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Consumption of fuel for the generation of cooling</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Consumption of fuel for co-generation or tri-generation</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

C8.2c

(C8.2c) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Sustainable biomass

<table>
<thead>
<tr>
<th>Heating value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fuel MWh consumed by the organization</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>MWh fuel consumed for self-generation of heat</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>MWh fuel consumed for self-generation of steam</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Comment

Other biomass

<table>
<thead>
<tr>
<th>Heating value</th>
</tr>
</thead>
</table>
Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
0

Comment

Other renewable fuels (e.g. renewable hydrogen)

Heating value
HHV

Total fuel MWh consumed by the organization
85,000

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
0

Comment
Landfill gas

Coal
Total fuel MWh consumed by the organization
65,000

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
65,000

Comment

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Heating value</th>
<th>Total fuel MWh consumed by the organization</th>
<th>MWh fuel consumed for self-generation of heat</th>
<th>MWh fuel consumed for self-generation of steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gas</td>
<td>HHV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Total fuel MWh consumed by the organization
5,014,000

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
2,199,000

Comment

Other non-renewable fuels (e.g. non-renewable hydrogen)

Heating value
HHV

Total fuel MWh consumed by the organization
233,000

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
0

Comment
Includes diesel, gasoline, kerosene, LPG, propane and toluene.

Total fuel

Heating value
HHV
Total fuel MWh consumed by the organization
5,397,000

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
2,264,000

Comment

C8.2d

(C8.2d) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

<table>
<thead>
<tr>
<th></th>
<th>Total Gross generation (MWh)</th>
<th>Generation that is consumed by the organization (MWh)</th>
<th>Gross generation from renewable sources (MWh)</th>
<th>Generation from renewable sources that is consumed by the organization (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heat</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Steam</td>
<td>1,902,000</td>
<td>585,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cooling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

C-CH8.2d

(C-CH8.2d) Provide details on electricity, heat, steam, and cooling your organization has generated and consumed for chemical production activities.

Electricity
<table>
<thead>
<tr>
<th>Heat</th>
<th>Steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total gross generation inside chemicals sector boundary (MWh)</td>
<td>1,902,000</td>
</tr>
<tr>
<td>Generation that is consumed inside chemicals sector boundary (MWh)</td>
<td>585,000</td>
</tr>
<tr>
<td>Generation from renewable sources inside chemical sector boundary (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Generation from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary (MWh)</td>
<td>0</td>
</tr>
</tbody>
</table>
Generation from renewable sources inside chemical sector boundary (MWh)
0

Generation from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary (MWh)
0

Cooling

Total gross generation inside chemicals sector boundary (MWh)
0

Generation that is consumed inside chemicals sector boundary (MWh)
0

Generation from renewable sources inside chemical sector boundary (MWh)
0

Generation from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary (MWh)
0

C8.2e

(C8.2e) Provide details on the electricity, heat, steam, and/or cooling amounts that were accounted for at a zero or near-zero emission factor in the market-based Scope 2 figure reported in C6.3.

Sourcing method
Green electricity products from an energy supplier (e.g. green tariffs)

Energy carrier
Electricity
Low-carbon technology type
Wind

Country/area of low-carbon energy consumption
Belgium

Tracking instrument used
Contract

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
1,058

Country/area of origin (generation) of the low-carbon energy or energy attribute
Belgium

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment
Our site in Belgium completed converting its energy supply to 100% renewable wind power.

C8.2g

(C8.2g) Provide a breakdown of your non-fuel energy consumption by country.

Country/area
Belgium

Consumption of electricity (MWh)
1,058
Consumption of heat, steam, and cooling (MWh)

0

Total non-fuel energy consumption (MWh) [Auto-calculated]

1,058

C-CH8.3

(C-CH8.3) Does your organization consume fuels as feedstocks for chemical production activities?

No

C9. Additional metrics

C9.1

(C9.1) Provide any additional climate-related metrics relevant to your business.

C-CH9.3a

(C-CH9.3a) Provide details on your organization’s chemical products.

Output product

Specialty chemicals

Production (metric tons)

1,857,000
Capacity (metric tons)
125,000,000

Direct emissions intensity (metric tons CO2e per metric ton of product)
4.11

Electricity intensity (MWh per metric ton of product)
0.91

Steam intensity (MWh per metric ton of product)
1.45

Steam/ heat recovered (MWh per metric ton of product)
0

Comment
Reported capacity number reflects our TiO2 name plate capacity only. We do not disclose capacity for our other businesses.

<table>
<thead>
<tr>
<th>Investment in low-carbon R&D</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1: Yes</td>
<td></td>
</tr>
</tbody>
</table>

C-CH9.6a

(C-CH9.6a) Provide details of your organization’s investments in low-carbon R&D for chemical production activities over the last three years.
Chemours investigates process redesign opportunities and improvements in product yields, as well as new product and product application developments such as low-GWP refrigerants and fuel cell technology supporting the hydrogen economy. Information is confidential and we are unable to provide specific details.

C10. Verification

(C10.1) Indicate the verification/assurance status that applies to your reported emissions.

<table>
<thead>
<tr>
<th>Verification/assurance status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 1</td>
</tr>
<tr>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 2 (location-based or market-based)</td>
</tr>
<tr>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 3</td>
</tr>
<tr>
<td>No third-party verification or assurance</td>
</tr>
</tbody>
</table>

(C10.1a) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.
Verification or assurance cycle in place
Annual process

Status in the current reporting year
Underway but not complete for reporting year – previous statement of process attached

Type of verification or assurance
Limited assurance

Attach the statement

Chemours 2019 and 2020 GHG Emissions Limited Assurance Statement Final.pdf

Page/ section reference
1

Relevant standard
ISO14064-3

Proportion of reported emissions verified (%)
100

C10.1b

(C10.1b) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Scope 2 approach
Scope 2 market-based
Verification or assurance cycle in place
 Annual process

Status in the current reporting year
 Underway but not complete for reporting year – previous statement of process attached

Type of verification or assurance
 Limited assurance

Attach the statement
 Chemours 2019 and 2020 GHG Emissions Limited Assurance Statement Final.pdf

Page/ section reference
 1

Relevant standard
 ISO14064-3

Proportion of reported emissions verified (%)
 100

C10.2

(C10.2) Do you verify any climate-related information reported in your CDP disclosure other than the emissions figures reported in C6.1, C6.3, and C6.5?
 No, we do not verify any other climate-related information reported in our CDP disclosure
C11. Carbon pricing

C11.1

(C11.1) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?

Yes

C11.1a

(C11.1a) Select the carbon pricing regulation(s) which impacts your operations.

EU ETS

C11.1b

(C11.1b) Complete the following table for each of the emissions trading schemes you are regulated by.

EU ETS

| % of Scope 1 emissions covered by the ETS | 1 |
| % of Scope 2 emissions covered by the ETS | 0 |

Period start date

January 1, 2021

Period end date

December 31, 2021

Allowances allocated
740,000

Allowances purchased
0

Verified Scope 1 emissions in metric tons CO2e
820,000

Verified Scope 2 emissions in metric tons CO2e
0

Details of ownership
Facilities we own and operate

Comment
Three Chemours sites are covered by the EU ETS program. Specifically, the sites are located in Dordrecht, Netherlands, Villers St. Paul, France and Mechelen, Belgium. Although three sites are covered, only the Dordrecht, Netherland site participates in the scheme due to the applicable emissions activities at the site. Although allowances in 2021 were smaller than total verified Scope 1 emissions in 2021, the site used leftover allowances from the previous trading period and did not need to purchase any additional allowances.

C11.1d

(C11.1d) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?
Our Chemours strategy is to comply with all applicable laws, rules and regulations in the global regions where we operate, including climate pricing regulations such as the current EU ETS System and emerging pricing systems in Mexico and China. As regulations are implemented, Chemours takes the appropriate measures to allocate the necessary resources to remain compliant and competitive. Chemours’ global CRC commitment goal to reduce operations GHG emissions by 60% enables operating sites to align reduction strategies with enterprise level goals and regulatory obligations. Examples of actions on how Chemours is complying with the regulatory schemes to limit GHG emissions include: completing capital programs to reduce process GHG emissions through our operations GHG and fluorinated organic chemical emissions reduction goals, increasing procurement of renewable energy, improving the energy efficiency of our operations and working towards achieving net zero operations GHG emissions by 2050.
An example of Chemours’ strategy for complying with emerging regulatory schemes is demonstrated by our efforts to begin alignment with the emerging Mexico ETS requirements. On January 1, 2020, the Mexico pilot ETS started operation as part of a two-phase process to gradually establish a fully-fledged ETS for promoting cost-effective emission reductions without harming the international competitiveness of covered sectors. The first phase of the pilot consists of a three-year period during which the pilot ETS will test system design in 2020 and 2021, followed transition in 2022 to the fully operational ETS. During this first phase, companies are expected to annually self-report verified CO2e emissions to the ETS using electronic templates prepared by SEMARNAT in addition to reporting emissions to the RENE. In order to prepare for the fully functional ETS in 2022, the Chemours manufacturing site in Tamaulipas, Mexico, participated in training in August 2020 through their Mexico Chemical Industry Association (ANIQ) membership and submitted their first emissions report to the regulatory agency in April 2021.

C11.2

(C11.2) Has your organization originated or purchased any project-based carbon credits within the reporting period?

Yes

C11.2a

(C11.2a) Provide details of the project-based carbon credits originated or purchased by your organization in the reporting period.

<table>
<thead>
<tr>
<th>Credit origination or credit purchase</th>
<th>Credit purchase</th>
</tr>
</thead>
</table>

Project type

Other, please specify

- mix of wind, forestry, biogas projects

Project identification

- Our site in Mechelen, Belgium started purchasing offsets for 100% of their natural gas usage at the site starting in May 2020. The total amount of natural gas offset in 2021 is 1,037 MWH.

Verified to which standard
Gold Standard

Number of credits (metric tonnes CO2e)
181

Number of credits (metric tonnes CO2e): Risk adjusted volume
181

Credits cancelled
No

Purpose, e.g. compliance
Voluntary Offsetting

C11.3

(C11.3) Does your organization use an internal price on carbon?
Yes

C11.3a

(C11.3a) Provide details of how your organization uses an internal price on carbon.

Objective for implementing an internal carbon price
- Change internal behavior
- Drive energy efficiency
- Drive low-carbon investment
- Stress test investments

GHG Scope
Application
Business segment decisions regarding capital expenditure, operations, and R&D investments. Procurement decisions for sourcing renewable energy.

Actual price(s) used (Currency /metric ton)
41

Variance of price(s) used
Chemours determined our internal price on carbon by first evaluating the potential impact of future carbon taxes based on the regions where we operate. This was done during our climate change transition risk assessment using IEA future carbon price projections. We were then able to create an internal price on carbon taking the weighted average of the future carbon prices across the regions where we operate, for the moderate temperature scenario only. Using this methodology, we arrived at $41/metric ton CO2e.

Type of internal carbon price
Shadow price

Impact & implication
Capital investment projects face potential financial risks due to evolving national or regional legislation fostering the implementation or strengthening of a carbon price on emissions or required emissions reductions. Using shadow prices for carbon will help Chemours plan accordingly for anticipated increases in costs of operations that may arise in low-carbon economies. Chemours is currently piloting the use of a carbon price forecast scenario to assess the impact of potential future carbon pricing on capital investment choices. The scenario represents a conservative global approach for capital investment evaluations. This approach helps focus investments towards clean technologies, lower-carbon solutions, and renewable energy projects to reduce future exposure to increased direct costs and help achieve our 2030 GHG emissions and FOC process emissions reductions goals. As an example, Chemours recently used carbon pricing in the evaluation of a new refrigeration unit for one of our manufacturing facilities. Including the carbon price forecast in the analysis helped to demonstrate the total lifecycle cost of ownership for the different technology options under consideration and supported selecting a new system that uses low GWP refrigerants.
C12. Engagement

C12.1

(C12.1) Do you engage with your value chain on climate-related issues?
 Yes, our suppliers
 Yes, our customers/clients

C12.1a

(C12.1a) Provide details of your climate-related supplier engagement strategy.

Type of engagement
- Information collection (understanding supplier behavior)

Details of engagement
- Collect climate change and carbon information at least annually from suppliers

% of suppliers by number
- 6

% total procurement spend (direct and indirect)
- 81

% of supplier-related Scope 3 emissions as reported in C6.5

Rationale for the coverage of your engagement
Chemours set a Corporate Responsibility Commitment goal to measure the sustainability performance of the top 80% of suppliers by spend and demonstrate a 15% improvement in supplier sustainability performance by 2030. This group of suppliers includes our major raw material suppliers and is a significant portion of our Scope 3 category 1 emissions. We are institutionalizing a systemic approach to evaluate our suppliers so that we can then engage with them to help drive improvements. Suppliers are invited to complete a third-party online sustainability assessment, using a globally applicable questionnaire. The supplier assessments provide us with valuable information on their sustainability performance, including GHG emissions, energy and emission reduction projects and relevant international certifications. This process helps us to understand and improve our supply chain sustainability impact.

Impact of engagement, including measures of success

Success is measured by progress advancing Chemours’ 2030 Corporate Responsibility Commitment sustainable supply chain goal. To do this, we use a third-party online platform to track supplier engagement, evaluate supplier sustainability performance, identify improvement opportunities, and track improvement in supplier sustainability scores. By the end of 2021, 81% of Chemours suppliers by spend completed the assessment and obtained a sustainability score, thereby achieving our goal ahead of schedule. The online third-party assessment provides an overall supplier sustainability performance score, which can be positively influenced by reporting on energy use and greenhouse gas (GHG) emissions, on energy and emission reduction projects, and by indicating that the supplier reports to CDP or holds ISO 5001 and ISO 14001 certifications. We measure the share of suppliers that report on these topics: In 2021, 55% of assessed suppliers reported on energy use and GHG emissions, 64% of assessed suppliers report taking actions on energy consumption and GHGs, 32% of assessed suppliers reported to the CDP, and 44% of assessed suppliers were ISO 14001 certified at least one operations site. In addition to the overall sustainability score, suppliers receive a score on their environmental performance. The average environmental score for our assessed suppliers was a 54 (on a scale of 1 to 100) which is above the average (44/100 points) for the total number of suppliers assessed by the third-party platform. Each individual supplier also receives a detailed proposal for improvement or corrective actions to advance their sustainability performance. Progress towards implementing these improvements can be tracked via reassessments through the online platform. We plan to use these proposals to engage with our suppliers to discuss improvement expectations. Although as of 2021 the goal has been achieved, we are continuing to work with suppliers to improve their individual scores in order to maintain the achievement of our 2030 goals.

Comment
(C12.1b) Give details of your climate-related engagement strategy with your customers.

Type of engagement & Details of engagement

Other, please specify

Chemours provides information to customers to educate and inform customers about our approach to climate change and GHG emissions management and the benefits of Chemours lower GWP fluorinated gases.

% of customers by number

94

% of customer related Scope 3 emissions as reported in C6.5

Please explain the rationale for selecting this group of customers and scope of engagement

Chemours engages with all Chemours customers through social media, our annual sustainability report, and by responding to requests for climate change-related data and sharing information on our Corporate Responsibility Commitment progress. In addition, we develop specific engagement opportunities for our TSS customers to educate them on the benefits of converting to lower GWP refrigerants via webinars, trade show events, and bespoke customer interactions.

Impact of engagement, including measures of success

We measure impact and track progress by tracking and reporting on avoided emissions from our products on an annual basis. We define avoided emissions as emissions not released into the atmosphere due to customers. We also track progress by tracking and reporting on the Scope 3 Category 11 category which is the emissions generated by the use of our refrigerant products. As customers transition from using higher GWP HFC products to lower GWP products, the avoided emissions benefit will grow and the product use emissions will decline as demonstrated by the Scope 3 Category 11 emissions.
Type of engagement & Details of engagement
Other, please specify
Other, please specify
Engagement & Incentivization. Multi-year partnership.

% of customers by number
1

% of customer - related Scope 3 emissions as reported in C6.5

Please explain the rationale for selecting this group of customers and scope of engagement
In 2018, Chemours announced their multi-year partnership focused on providing Opteon™ sustainable refrigerant solutions to support the NHL Greener Rinks Initiative to reduce environmental impact across all levels of hockey. Chemours continues to work with the NHL and community rink owners and operators to identify cost-effective, sustainable alternatives for rink operation, such as Opteon refrigerants which are non-ozone depleting and have a low global warming potential (GWP).

Impact of engagement, including measures of success
Measures of success include attainment of NHL initiatives and number of ice rinks converted to lower GWP refrigerants, as well as increase in demand of Opteon™ products. In just a few years, we have collaborated to complete over 150 rink conversions to lower GWP Opteon™ refrigerants across the US and Canada. This number continues to increase with a pipeline of new projects, not just in North America, but also globally in Europe, the Middle East, Russia, China and other ASEAN countries.

C12.2

(C12.2) Do your suppliers have to meet climate-related requirements as part of your organization's purchasing process?
Yes, suppliers have to meet climate-related requirements, but they are not included in our supplier contracts
C12.2a

(C12.2a) Provide details of the climate-related requirements that suppliers have to meet as part of your organization’s purchasing process and the compliance mechanisms in place.

<table>
<thead>
<tr>
<th>Climate-related requirement</th>
<th>Description of this climate related requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complying with regulatory requirements</td>
<td>As detailed in our supplier code of conduct, all Chemours suppliers must abide by all applicable laws and regulations where they operate, including all environmental laws and regulations. The supplier code of conduct is included in all supplier agreements.</td>
</tr>
</tbody>
</table>

% suppliers by procurement spend that have to comply with this climate-related requirement

100

% suppliers by procurement spend in compliance with this climate-related requirement

100

Mechanisms for monitoring compliance with this climate-related requirement

Other, please specify

Combination of grievance mechanism/Whistleblowing hotline and auditing supplier operations.

Response to supplier non-compliance with this climate-related requirement

Retain and engage

C12.3

(C12.3) Does your organization engage in activities that could either directly or indirectly influence policy, law, or regulation that may impact the climate?
Row 1

Direct or indirect engagement that could influence policy, law, or regulation that may impact the climate
 Yes, we engage directly with policy makers
 Yes, we engage indirectly through trade associations

Does your organization have a public commitment or position statement to conduct your engagement activities in line with the goals of the Paris Agreement?
 Yes

Attach commitment or position statement(s)

Post-Election-Climate-Statement-final-justified-47.pdf

Describe the process(es) your organization has in place to ensure that your engagement activities are consistent with your overall climate change strategy
 Our climate change strategy is fully integrated into our business strategy and as such regularly reviewed and discussed via line management which ensures full awareness in the line. Additionally, the Chemours corporate responsibility leadership team (CRLT) supports the development and deployment of the Corporate Responsibility Commitments which include climate change. The CRLT brings the different business and functional leaders together in the company. This leadership team ensures that the company’s direct and indirect activities are consistent with our overall climate change strategy. Communication structures across the company and within each business and function are effective to ensure a consistent and effective deployment of our strategy. This means that, when risks or opportunities emerge, in any of the jurisdictions where we have significant operations or other business interests, there is a governance structure in place to assess the situation and/or signal any improvements to be made in both our strategy and actions, as well as in our policy engagement.

C12.3a

(C12.3a) On what policy, law, or regulation that may impact the climate has your organization been engaging directly with policy makers in the reporting year?
Focus of policy, law, or regulation that may impact the climate
Climate-related targets

Specify the policy, law, or regulation on which your organization is engaging with policy makers
Kigali Amendment to Montreal Protocol and regulations on the AIM Act HFC phasedown

Policy, law, or regulation geographic coverage
Global

Country/region the policy, law, or regulation applies to

Your organization's position on the policy, law, or regulation
Support with no exceptions

Description of engagement with policy makers
Lobbying in support of the U.S. ratification and implementation of Kigali and engaging in the U.S. EPA’s rulemaking on the AIM Act phasing down of HFCs.

Details of exceptions (if applicable) and your organization’s proposed alternative approach to the policy, law or regulation

Have you evaluated whether your organization's engagement is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

C12.3b

(C12.3b) Provide details of the trade associations your organization engages with which are likely to take a position on any policy, law or regulation that may impact the climate.

Trade association
Other, please specify
Air Conditioning, Heating and Refrigeration Institute (AHRI)

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
AHRI members are committed to minimizing the impacts of climate change from stationary and mobile HVACR equipment. AHRI supports policies that promote environmental stewardship while meeting societal needs in an energy-efficient, safe, and cost-effective manner, and that appropriately address five key principles: provide global regulatory and business certainty, emphasize lower environmental impact, ensure product safety, allow for technology neutrality, promote the responsible, safe use and handling of all refrigerants.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Trade association
Other, please specify
Alliance Responsible Atmospheric Policy (ARAP)
Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
The Alliance currently monitors policy developments at the international, federal, and state government levels. Its overarching goal is to encourage responsible, reasonable, and cost-effective ozone protection and climate change policies to be determined at the international level.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Trade association
American Chemistry Council

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position
State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)

Climate change is a global challenge that requires long-term commitment and action by every segment of society. A combination of technology, market-based and policy solutions will be necessary to reduce greenhouse gas emissions (GHG) and achieve climate goals, such as those of the Paris Agreement. The chemical industry – and innovations in chemistry – are critical to achieving efficient and effective climate change solutions. As a significant manufacturing sector, we are continuously improving the energy efficiency and intensity of our own operations. The chemical industry is developing transformational technologies that cut emissions, improve energy efficiency and enable a socially, environmentally and economically sustainable future. The industry’s products are essential to food supplies, clean water, medical advancements, comfortable living standards, and a healthy environment. Because the use of chemistry in widespread applications helps avoid carbon emissions, the chemical industry is already at or approaching net carbon neutrality. GHG emissions reductions resulting from U.S. climate policy should be meaningful in both a national and global context. Reductions should be achieved in a balanced, efficient and cost-effective way. The chemical industry relies on essential and cost-sensitive feedstocks such as natural gas, natural gas liquids, hydrogen and others as well as processes that result in little or no GHG emissions. Manufacture and use of such feedstocks and processes should be exempted from climate regulation. Climate policy should address both mitigation and adaptation strategies.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?

Yes, we have evaluated, and it is aligned

Trade association

European Chemical Industry Council (CEFIC)
Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
As one of the largest and most diversified industries in Europe, the chemical industry plays an important role in helping to achieve long-term greenhouse gas emission reductions. We are continuously looking at ways to improve our production processes, to lower our carbon footprint and enable further emission reductions down the value chains. For the chemical sector and other energy intensive industries, evolving further towards carbon neutrality means major investments in new industrial processes involving the circular use of alternative feedstock sources, sectoral integration, and transformation of our existing plants. The European Commission has put forward different economy-wide pathways with various options for decarbonisation that should be debated with all stakeholders. Cefic is confident the chemical industry will seize the opportunities of this transformation and be the provider of the future solutions needed. As the debate evolves, Cefic continues to advocate for a package of policy, financial, innovation and regulatory support that will create an investment case putting the European chemical industry at the forefront of the next industrial revolution. These profound changes also mean the European chemical sector will need access to significant amounts of affordable low carbon electricity, access to a modern infrastructure and financial mechanisms to support the required innovation.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned
Trade association
National Association of Manufacturers

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
NAM has called for bold action on climate change. In the call to action, NAM says climate policy must have two core components: (1) an international, rules-based system that is consistently applied to bind all emitters and ensure a level playing field and (2) a unified domestic framework that applies to all emitters and harmonizes GHG regulation. NAM states that while those two elements are being negotiated, policymakers should move forward with measures that will reduce emissions immediately and accelerate the U.S. response to climate change.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
No, we have not evaluated

Trade association
Other, please specify
Hydrogen Council
Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
The Hydrogen Council is a global CEO-led initiative of leading companies with a united vision and long-term ambition: for hydrogen to foster the clean energy transition for a better, more resilient future. The Hydrogen Council believes that to mitigate the effects of climate change, we will need to transition to an energy system with fewer greenhouse gas emissions and more sustainable energy production and consumption. A long-term structural change in energy systems is needed, and Hydrogen Council members are developing hydrogen solutions to accelerate this energy transition.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization's engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

C12.4

(C12.4) Have you published information about your organization’s response to climate change and GHG emissions performance for this reporting year in places other than in your CDP response? If so, please attach the publication(s).
Publication
In voluntary sustainability report

Status
Underway – previous year attached

Attach the document

!chemours responsibility commitment report 2021.pdf

Page/Section reference
Page 64 to 77.

Content elements
Governance
Strategy
Risks & opportunities
Emissions figures
Emission targets
Other metrics

Comment
Our newest report reflecting the 2021 reporting year will be published on August 9th, 2022 and can be accessed from https://www.chemours.com/en/corporate-responsibility.
C15. Biodiversity

C15.1

(C15.1) Is there board-level oversight and/or executive management-level responsibility for biodiversity-related issues within your organization?

<table>
<thead>
<tr>
<th>Board-level oversight and/or executive management-level responsibility for biodiversity-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

C15.2

(C15.2) Has your organization made a public commitment and/or endorsed any initiatives related to biodiversity?

<table>
<thead>
<tr>
<th>Indicate whether your organization made a public commitment or endorsed any initiatives related to biodiversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

C15.3

(C15.3) Does your organization assess the impact of its value chain on biodiversity?

<table>
<thead>
<tr>
<th>Does your organization assess the impact of its value chain on biodiversity?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

C15.4

(C15.4) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

<table>
<thead>
<tr>
<th>Have you taken any actions in the reporting period to progress your biodiversity-related commitments?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>
C15.5

(C15.5) Does your organization use biodiversity indicators to monitor performance across its activities?

<table>
<thead>
<tr>
<th>Does your organization use indicators to monitor biodiversity performance?</th>
<th>Indicators used to monitor biodiversity performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td></td>
</tr>
</tbody>
</table>

C15.6

(C15.6) Have you published information about your organization’s response to biodiversity-related issues for this reporting year in places other than in your CDP response? If so, please attach the publication(s).

<table>
<thead>
<tr>
<th>Report type</th>
<th>Content elements</th>
<th>Attach the document and indicate where in the document the relevant biodiversity information is located</th>
</tr>
</thead>
<tbody>
<tr>
<td>In voluntary sustainability report or other voluntary communications</td>
<td>Other, please specify local biodiversity and land use management strategies specific to our individual operating sites.</td>
<td></td>
</tr>
</tbody>
</table>

C16. Signoff

C-FI

(C-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.
C16.1

(C16.1) Provide details for the person that has signed off (approved) your CDP climate change response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Chief Sustainability Officer</td>
</tr>
<tr>
<td>Chief Sustainability Officer</td>
<td>Chief Sustainability Officer (CSO)</td>
</tr>
</tbody>
</table>

SC. Supply chain module

SC0.0

(SC0.0) If you would like to do so, please provide a separate introduction to this module.

SC0.1

(SC0.1) What is your company’s annual revenue for the stated reporting period?

<table>
<thead>
<tr>
<th>Annual Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

SC1.1

(SC1.1) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

SC1.2

(SC1.2) Where published information has been used in completing SC1.1, please provide a reference(s).
SC1.3

(SC1.3) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

<table>
<thead>
<tr>
<th>Allocation challenges</th>
<th>Please explain what would help you overcome these challenges</th>
</tr>
</thead>
</table>

SC1.4

(SC1.4) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

SC2.1

(SC2.1) Please propose any mutually beneficial climate-related projects you could collaborate on with specific CDP Supply Chain members.

SC2.2

(SC2.2) Have requests or initiatives by CDP Supply Chain members prompted your organization to take organizational-level emissions reduction initiatives?

SC4.1

(SC4.1) Are you providing product level data for your organization’s goods or services?
Submit your response

In which language are you submitting your response?
 English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th></th>
<th>I understand that my response will be shared with all requesting stakeholders</th>
<th>Response permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please select your submission options</td>
<td>Yes</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please confirm below
 I have read and accept the applicable Terms