FLUOROMONOMERS MANUFACTURING PROCESS DIVISION STACK EMISSIONS TEST REPORT TEST DATES: 16 AND 17 JANUARY 2019

THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA

Prepared for:

THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306

Prepared by:

WESTON SOLUTIONS, INC.

1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380

4 March 2019

W.O. No. 15418.002.009

TABLE OF CONTENTS

Section

Page

1.	INTR	ODUCTION1
	1.1	FACILITY AND BACKGROUND INFORMATION1
	1.2	TEST OBJECTIVES1
	1.3	TEST PROGRAM OVERVIEW1
2.	SUM	MARY OF TEST RESULTS4
3.	PROC	CESS DESCRIPTIONS
	3.1	FLUOROMONOMERS
	3.2	PROCESS OPERATIONS AND PARAMETERS
4.	DESC	CRIPTION OF TEST LOCATIONS6
	4.1	DIVISION STACK
5.	SAMI	PLING AND ANALYTICAL METHODS8
	5.1	STACK GAS SAMPLING PROCEDURES8
		5.1.1 Pre-Test Determinations
	5.2	STACK PARAMETERS
		5.2.1 EPA Method 00108
		5.2.2 EPA Method 0010 Sample Recovery
		5.2.3 EPA Method 0010 Sample Analysis
	5.3	GAS COMPOSITION
6.	DETA	AILED TEST RESULTS AND DISCUSSION17

- APPENDIX A PROCESS OPERATIONS DATA
- APPENDIX B RAW AND REDUCED TEST DATA
- APPENDIX C LABORATORY ANALYTICAL REPORT
- APPENDIX D SAMPLE CALCULATIONS
- APPENDIX E EQUIPMENT CALIBRATION RECORDS
- APPENDIX F LIST OF PROJECT PARTICIPANTS

LIST OF FIGURES

Title	Page
Figure 4-1	Division Stack Test Port and Traverse Point Location
Figure 5-1	EPA Method 0010 Sampling Train
Figure 5-2	HFPO Dimer Acid Sample Recovery Procedures for Method 0010 13
Figure 5-3	WESTON Sampling System 16

LIST OF TABLES

Title	Page
Table 1-1 Sampling Plan for Division Stack Testing	3
Table 2-1 Summary of HFPO Dimer Acid Test Results	4
Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results Division Stack – Run and 3	
allu 5	10

1. INTRODUCTION

1.1 FACILITY AND BACKGROUND INFORMATION

The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. Chemours operating areas on the site include the Fluoromonomers, IXM and Polymers Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse.

Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid Fluoride, captured as HFPO Dimer Acid, emission testing on the Division Stack at the facility. Testing was performed on 16 and 17 January 2019 and generally followed the "Emission Test Protocol" reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program.

1.2 TEST OBJECTIVES

The specific objectives for this test program were as follows:

- Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid Fluoride from the Division stack which is located in the Fluoromonomers process area.
- Monitor and record process and emissions control data in conjunction with the test program.
- Provide representative emissions data.

1.3 TEST PROGRAM OVERVIEW

During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured at the Division Stack.

Table 1-1 provides a summary of the test location and the parameters that were measured along with the sampling/analytical procedures that were followed.

Section 2 provides a summary of test results. A description of the processes is provided in Section 3. Section 4 provides a description of the test location. The sampling and analytical

procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6.

Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data package is provided in electronic format and on CD with each hard copy.

Sampling Point & Location		Divi	sion Stack								
Number of Tests:	3										
Parameters To Be Tested:	HFPO Dimer Acid (HFPO-DA)	Volumetric Flow Rate and Gas Velocity	Oxygen	Water Content							
Sampling or Monitoring Method	EPA M-0010	EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests	EPA N	13/3A	EPA M4 in conjunction with M-0010 tests						
Sample Extraction/ Analysis Method(s):	LC/MS/MS	NA ⁶	N	4	NA						
Sample Size	$\geq 1.5 m^3$	NA	NA	NA	NA						
Total Number of Samples Collected ¹	3	3	3	3	3						
Reagent Blanks (Solvents, Resins) ¹	1 set	0	0	0	0						
Field Blank Trains ¹	0 per source	0	0	0	0						
Proof Blanks ¹	1 per train	0	0	0	0						
Trip Blanks ^{1,2}	1 set	0	0	0							
Lab Blanks	1 per fraction ³	0	0	0	0						
Laboratory or Batch Control Spike Samples (LCS)	1 per fraction ³	0	0	0	0						
Laboratory or Batch Control Spike Sample Duplicate (LCSD)	1 per fraction ³	0	0	0	0						
Media Blanks	1 set ⁴	0	0	0	0						
Isotope Dilution Internal Standard Spikes	Each sample	0	0	0	0						
Total No. of Samples	65	3	3	3	3						

Table 1-1Sampling Plan for Division Stack Testing

Key:

¹ Sample collected in field.

² Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.

³ Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).

⁴ One set of media blank archived at laboratory at media preparation.

⁵ Actual number of samples collected in field.

⁶ Not applicable.

2. SUMMARY OF TEST RESULTS

A total of three test runs were performed on the Division stack. Table 2-1 provides a summary of the HFPO Dimer Acid emissions test results. Detailed test results summaries are provided in Section 6.

It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and in this report include a percentage of each of the three compounds.

Table 2-1 Summary of HFPO Dimer Acid Test Results

Source	Run No.	Emission Rates									
Source	Kull 190.	lb/hr	g/sec								
Division Stack	1	4.70E-03	5.92E-04								
	2	4.90E-03	6.17E-04								
	3	4.45E-03	5.60E-04								
	Average	4.68E-03	5.90E-04								

3. PROCESS DESCRIPTIONS

The Fluoromonomers area is included in the scope of this test program.

3.1 FLUOROMONOMERS

These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Nafion®, Krytox®, and Viton®, as well as sales to outside customers.

Process emissions are vented to the Division waste gas scrubber system (which includes the secondary scrubber) and vents to the Carbon Bed and then onto the Division Stack. VE North building air also vents to the Carbon Bed and then onto the Division Stack.

3.2 PROCESS OPERATIONS AND PARAMETERS

The following table is a summary of the operation and products from the specific areas tested.

Source	Operation/Product	Batch or Continuous
VE North	PSEPVE	Condensation is continuous. Agitated Bed Reactor and Refining are batch.
HFPO Tower	HFPO	Continuous.

During the test program, the following parameters were monitored by Chemours and are included in Appendix A.

- Fluoromonomers Process
 - o VEN Precurser Rate
 - VEN Condensation Rate
 - VEN ABR Rate
 - o HFPO

4. DESCRIPTION OF TEST LOCATIONS

4.1 DIVISION STACK

Two 6-inch ID test ports were installed on the 36-inch ID fiberglass stack as shown below. The four vents that enter the top of the stack and the one vent ~11 feet below are catch pots which, under normal process operations, do not discharge to the stack. They are used to vent process gas to the stack in the event of a process upset and are not considered a flow contributor or a disturbance.

Per EPA Method 1, a total of 12 traverse points (six per axis) were used for M-0010 isokinetic sampling. Figure 4-1 provides a schematic of the test ports and traverse point locations.

Location	Distance from Flow Disturbance									
Location	Downstream (B)	Upstream (A)								
Division Stack	30 feet > 10 duct diameters	9 feet > 3 diameters								

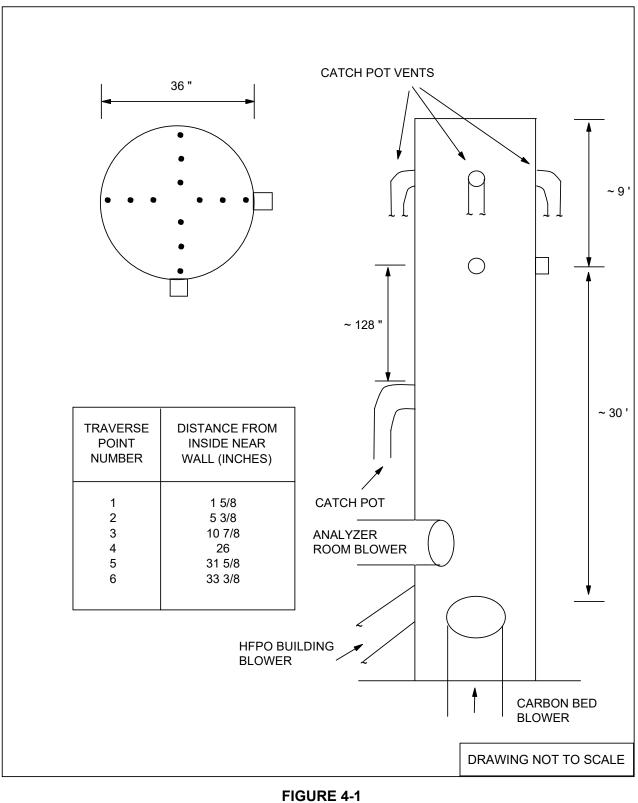


FIGURE 4-1 DIVISION STACK TEST PORT AND TRAVERSE POINT LOCATIONS

5. SAMPLING AND ANALYTICAL METHODS

5.1 STACK GAS SAMPLING PROCEDURES

The purpose of this section is to describe the stack gas emissions sampling trains and to provide details of the stack sampling and analytical procedures utilized during the emissions test program.

5.1.1 Pre-Test Determinations

Preliminary test data were obtained at each test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements.

A check for the presence or absence of cyclonic flow was previously conducted at the test location. The cyclonic flow checks were negative ($< 20^{\circ}$) verifying that the test location was acceptable for testing.

Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures.

Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures.

5.2 STACK PARAMETERS

5.2.1 EPA Method 0010

The sampling train utilized to perform the HFPO Dimer Acid sampling was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter.

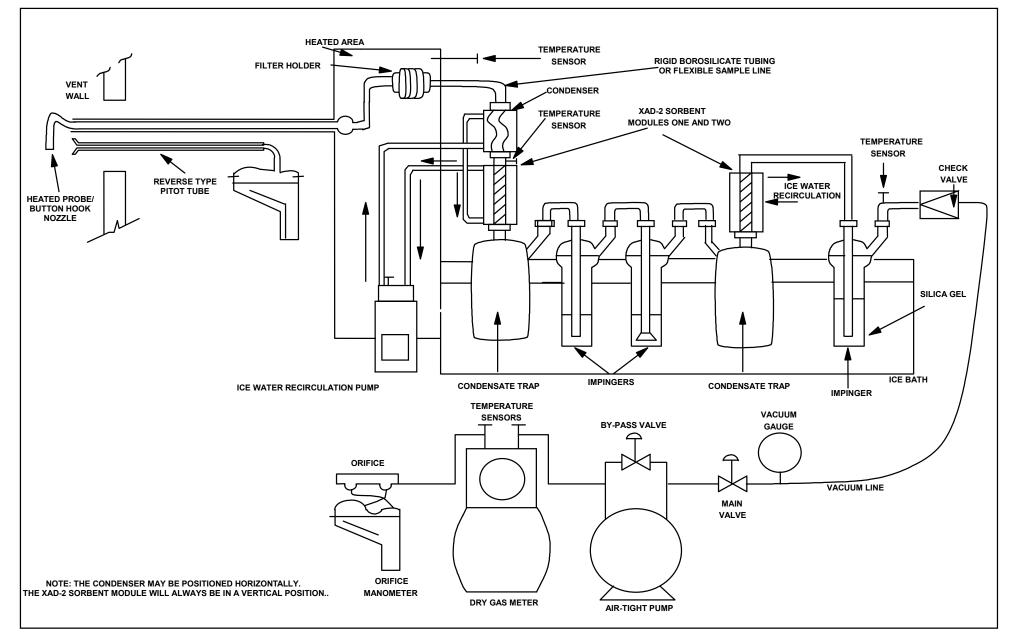


FIGURE 5-1 EPA METHOD 0010 SAMPLING TRAIN

A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 milliliters of high purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and both XAD-2 modules to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train.

HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid.

During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at $100\% \pm 10$. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required) or during midpoint port changes.

5.2.2 EPA Method 0010 Sample Recovery

At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery.

A consistent procedure was employed for sample recovery:

- 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled.
- 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments.
- 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remains. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed.
- 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.
- 5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed.
- 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.
- 7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed.
- 8. The silica gel in the final impinger was weighed and the weight gain value recorded.
- 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool.

See Figure 5-2 for a schematic of the Method 0010 sample recovery process.

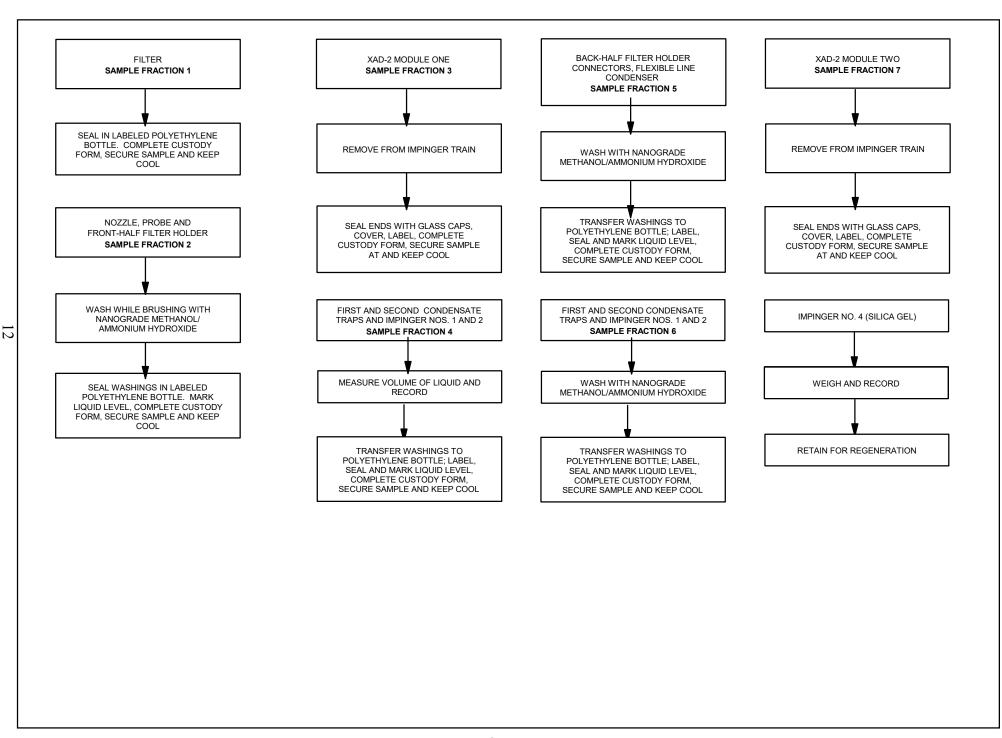


FIGURE 5-2 HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010

5.2.3 EPA Method 0010 Sample Analysis

Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:

- Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;
- Back-half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;
- Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;
- Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers.

The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough.

The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS.

Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries.

TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol.

5.3 GAS COMPOSITION

The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO_2) and oxygen (O_2) concentrations. A diagram of the Weston sampling system is presented in Figure 5-3.

The sample was collected at the exhaust of the Method 0010 sampling system. At the end of the line, a tee permitted the introduction of calibration gas. The sample was drawn through a heated Teflon[®] sample line to the sample conditioner. The output from the sampling system was recorded electronically, and one minute averages were recorded and displayed on a data logger.

Each analyzer was set up and calibrated internally by introduction of calibration gas standards directly to the analyzer from a calibration manifold. The calibration manifold is designed with an atmospheric vent to release excess calibration gas and maintained the calibration at ambient pressure. The direct calibration sequence consisted of alternate injections of zero and mid-range gases with appropriate adjustments until the desired responses were obtained. The high-range standards were then introduced in sequence without further adjustment.

The sample line integrity was verified by performing a bias test before and after each test period. The sampling system bias test consisted of introducing the zero gas and one up-range calibration standard in excess to the valve at the probe end when the system was sampling normally. The excess calibration gas flowed out through the probe to maintain ambient sampling system pressure. Calibration gas supply was regulated to maintain constant sampling rate and pressure. Instrument bias check response was compared to internal calibration responses to insure sample line integrity and to calculate a bias correction factor after each run using the ratio of the measured concentration of the bias gas certified by the calibration gas supplier.

The oxygen and carbon dioxide content of each stack gas was measured according to EPA Method 3A procedures which incorporate the latest updates of EPA Method 7E. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by sample bias checks before and after each test run.

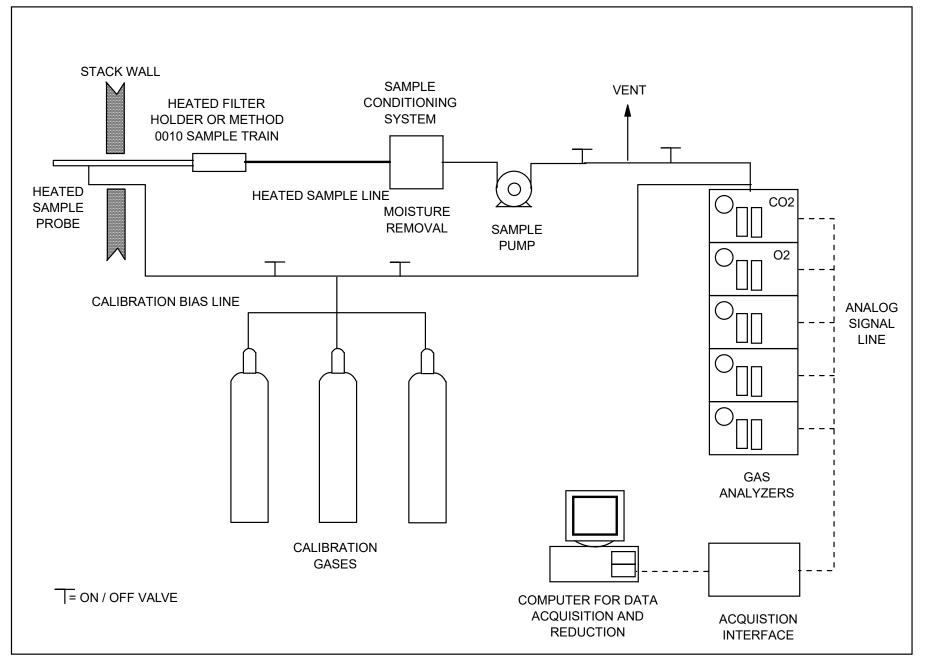


FIGURE 5-3 WESTON SAMPLING SYSTEM

6. DETAILED TEST RESULTS AND DISCUSSION

Each test was a minimum of 96 minutes in duration. A total of three test runs were performed at each location.

Table 6-1 provides detailed test data and test results for the Division stack.

The Method 3A sampling indicated that the O_2 and CO_2 concentrations were at ambient air levels (20.9% O_2 , 0% CO_2), therefore, 20.9% O_2 and 0% CO_2 values were used in all calculations.

TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK

Test Data			
Run number	1	2	4
Location	Divison Stack	Divison Stack	Divison Stack
Date	1/16/19	1/16/19	1/17/19
Time period	0941-1140	1312-1513	0842-1035
SAMPLING DATA:			
Sampling duration, min.	96.0	96.0	96.0
Nozzle diameter, in.	0.160	0.160	0.160
Cross sectional nozzle area, sq.ft.	0.000140	0.000140	0.000140
Barometric pressure, in. Hg	30.15	30.06	30.18
Avg. orifice press. diff., in H_2O	1.14	1.13	1.15
Avg. dry gas meter temp., deg F	49.1	59.2	40.9
Avg. abs. dry gas meter temp., deg. R	509	519	501
Total liquid collected by train, ml	21.5	21.1	21.6
Std. vol. of H ₂ O vapor coll., cu.ft.	1.0	1.0	1.0
Dry gas meter calibration factor	1.0069	1.0069	1.0069
Sample vol. at meter cond., dcf	53.660	53.775	53.146
Sample vol. at std. cond., dscf ⁽¹⁾	56.604	55.451	57.033
Percent of isokinetic sampling	98.5	98.0	97.9
GAS STREAM COMPOSITION DATA:			
CO_2 , % by volume, dry basis	0.0	0.0	0.0
O ₂ , % by volume, dry basis	20.9	20.9	20.9
N_2 , % by volume, dry basis	79.1	79.1	79.1
Molecular wt. of dry gas, lb/lb mole	28.84	28.84	28.84
H_20 vapor in gas stream, prop. by vol.	0.018	0.018	0.018
Mole fraction of dry gas	0.982	0.982	0.982
Molecular wt. of wet gas, lb/lb mole	28.65	28.65	28.65
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:			
Static pressure, in. H ₂ O	-0.70	-0.70	-0.70
Absolute pressure, in. Hg	30.10	30.01	30.13
Avg. temperature, deg. F	44	46	37
Avg. absolute temperature, deg.R	504	506	497
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	12	12	12
Avg. gas stream velocity, ft./sec.	69.0	68.4	69.0
Stack/duct cross sectional area, sq.ft.	7.07	7.07	7.07
Avg. gas stream volumetric flow, wacf/min.	29268	29016	29252
Avg. gas stream volumetric flow, dscf/min.	30315	29840	30735

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS DIVISION STACK

TEST DATA			
Run number	1	2	3
Location	Divison Stack	Divison Stack	Divison Stack
Date	1/16/19	1/16/19	1/17/19
Time period	0941-1140	1312-1513	0842-1035
LABORATORY REPORT DATA, ug.			
HFPO Dimer Acid	66.35	68.82	62.45
EMISSION RESULTS, ug/dscm.			
HFPO Dimer Acid	41.38	43.82	38.66
EMISSION RESULTS, lb/dscf.			
HFPO Dimer Acid	2.58E-09	2.74E-09	2.41E-09
EMISSION RESULTS, lb/hr.			
HFPO Dimer Acid	4.70E-03	4.90E-03	4.45E-03
EMISSION RESULTS, g/sec.			
HFPO Dimer Acid	5.92E-04	6.17E-04	5.60E-04

APPENDIX A PROCESS OPERATIONS DATA

Date 1/16/2019																									
Time	800		900	10	00	:	1100			12	00		1300	300 1400						1500			1600		
Stack Testing				RUN	1 941-	1140							RUN 2 - 1312-1513												
HFPO																									
VEN Product			PSEPVE																						
VEN Precursor																									
VEN Condensation (HFPO)																									
VEN ABR																									
VEN Refining																									
Stripper Column Vent																									
Division WGS Recirculation Flow		14000 kg/h																							
Division WGS Inlet Flow	80 kg/h	107 kg/h																							

Date 1/17/2019																
Time		80	00		900 1000 1100											
Stack Testing					0842-1035 (Run 3)											
НҒРО			-	-										-	-	
VEN Product							P:	SEP	VE							
VEN Precursor																
VEN Condensation (HFPO)																
VEN ABR																
VEN Refining		Ba	tch													
Stripper Column Vent																
Division WGS Recirculation Flow	14000 kg/h															
Division WGS Inlet Flow	100 kg/h															

APPENDIX B RAW AND REDUCED TEST DATA

CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS DIVISION STACK

Run number	1	2	3
Location	Divison Stack	Divison Stack	Divison Stack
Date	1/16/19	1/16/19	1/17/19
Time period	0941-1140	1312-1513	0842-1035
Operator	MW	MW	MW
Inputs For Calcs.			
Sq. rt. delta P	1.25716	1.24191	1.26546
Delta H	1.1436	1.1278	1.1545
Stack temp. (deg.F)	43.6	45.7	37.0
Meter temp. (deg.F)	49.1	59.2	40.9
Sample volume (act.)	53.660	53.775	53.146
Barometric press. (in.Hg)	30.15	30.06	30.18
Volume H ₂ O imp. (ml)	10.0	9.0	9.0
Weight change sil. gel (g)	11.5	12.1	12.6
% CO ₂	0.0	0.0	0.0
% O ₂	20.9	20.9	20.9
% N ₂	79.1	79.1	79.1
Area of stack (sq.ft.)	7.070	7.070	7.070
Sample time (min.)	96.0	96.0	96.0
Static pressure $(in.H_2O)$	-0.70	-0.70	-0.70
Nozzle dia. (in.)	0.160	0.160	0.160
Meter box cal.	1.0069	1.0069	1.0069
Cp of pitot tube	0.84	0.84	0.84
Traverse points	12	12	12

Test Data

	S	Client	HCMans		erse Point Data Sheet - Method 1
	Loa		Fayetter 11	<u>c N.</u> C.	
	r	Source	Virisia S	<u>SALL</u>	W.O. Number 154.18. 23
	Duct Typ Traverse	-	Circular Particulate Traverse		Rectangular Duct Indicate appropriate type Velocity Traverse CEM Traverse
Distance fi	rom far wall	to outside of p	ort (In.) = C 5<	-0	Flow Disturbances
Port Depth	n (in.) = D		12	in D	Upstream - A (ft)
Depth of D)uct, diamet	er (in.) = C-D	37	0	Downstream - B (ft)
Area of Du	<u>uct (ft²) 3</u>			55	Upstream - A (duct diameters)
	erse Points		$\frac{\sqrt{2}}{12}$		Downstream - B (duct diameters)
	erse Points		<u> </u>		Diagram of Stack
		Flange-Thread			
Monorail L			Ő	-	
	lar Ducts C	-	«) I		
		gular duct only ((in.)		
		ar duct only)	<u> </u>		
		: (2*L*W)/(L+W			
			-		30
		······	<u></u>		
	Tra	averse Point L	ocations		
_		Distance from			
Traverse Point	% of Duct	Inside Duct Wall (in)	Distance/from Outsk /Port (in)	de of	
		11.		0 18	
1	7,7	1,62	14 72 1		
2	14 6	5.40	2344	24/2/8	
3	29 6	10.95	227/2	21 1/e	
3					Duct Diameters upstream from Flow Disturbance (Distance A)
4	70.4	26,04	79,0		0.5 10 15 2.0 25
5	95.4	31,59	4948	50 Sler	
6	956	35.37	524	54 2/e	Stack Diameter > 24 inches
		5.51			
7					
8			MAAM)	
9					Minimum Number of B & Ste
					30 - Particulate Traverse Points
10					24 (ctrcular) 25 (roctangular ducts)
11					
12					
	3 Point/1	Angument (Inc) P	tratification Point Locations		20
1	0.167	inter and a			12
2	0.50				10 (Disturbance =Bend, Expansion, Contraction, etc.)
3	0.833				Staak Dia or EgitAnsianor Dia = 12 - 24 Inches
N		e port upstream	use EPA Method 1A		
	tack dia >24"	then adjust trav	erse point to 1 inch from v		
If stac	k dia <24° th	en adjust traver:	se point to 0.5 inch from w	vall	2 3 4 5 6 7 8 9 1 Duct Diametars Downstream from Flow Disturbance (Distance B)
	Trave		Percent of Stack -Circular		· · ·
		Number of 1	Traverse Points	11 12	Traverse Point Location Percent of Stack -Rectangular Number of Traverse Points
τ <u> 1 </u>	2 3	4 <u>5</u> 6 6.7 4.4		11 12	1 2 3 4 5 6 7 8 9 10 11 12
r 2	85.4	26 14.		67	T I 25.0 16.7 12.5 10.0 8.3 7.1 6.3 5.6 5.0 4.5 4.2 r 2
		75 29.6 93.3 70.4		11.8	a 3 833 625 500 417 357 313 278 250 227 208
r c S		85.4	4 67.7 34.2	25	a 4 87.5 70.0 58.3 50.0 43.8 38.9 35.0 31.8 29.2 r c 5 90.0 75.0 64.3 56.3 50.0 45.0 40.9 37.5
s a 6		95.0	<u>5 30.6 65.8 </u> 89.5 77.4	64.4	s a 6 7 7 7 8 91.7 78.6 68.8 41.1 55.0 50.0 45.8 4 s t 7 7 7 8 8 8 91.7 78.6 68.8 41.1 55.0 50.0 45.8 1 92.9 81.3 72.2 65.0 59.1 54.2 1
P 8	1	<u>i</u> i	96.8 85.4	75	P a B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 19			91.8	82.3	6 n 9 1 1 94.4 85.0 77.3 70.8 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n 11	11			93.3	n 11 95.5 87.5
12				97.9	1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WALEST DIN

nt .#	Chemours 15418	<u></u>	Stack Condit Assun		Meter Box ID Meter Box Y	b	12	<u>59 √</u>	-		K Factor)age o	- MR
ect ID	Chemours	% Moisture	22,1		Meter Box Del		1.881		• •	<i>(*1</i> 3)	Initial	Mid-Poir	
p. Loc. ID	STK	impinger Vol (Silica gel (g)	nn)		Probe ID / Len Probe Material		Q S Boro		Sample Train Leak Check (0.001	00.6	10.001
No.ID	1	CO2, % by Vo			Pitot / Thermod	ويسجونها أنست طمتنت	695		Pitot leak che	-	/ no	(y) / no	no Ves / no
Method ID	M0010 16JAN2019	O2, % by Vol Temperature	and the second	61	Pitot Coefficier Nozzie ID	it	0.84		Pitot Inspecti Method 3 Sys	-	yes / no	yes / no	
ce/Location	Division Stac	k Meter Temp (F) 40		Nozzie Measur	ements 0.160	0.160	0,160	Temp Chec		Pre-Te:		Post-Test Se
ple Date	20,15	Static Press (i	n H ₂ O)	0.1-0.7	Avg Nozzie Dia		0.160		Meter Box Te	•	36		्र्यू
. Press (in Hg) rator		A J Ambient Tem	o (°F) 4	la	Area of Stack (Sample Time	ft ⁻)	7.07.	- <u></u>	Reference Te Pass/Fall (+/-	1			Fasa / Fail
r	Walling of a	· · · ·			Total Traverse	Pts	12	\checkmark	Temp Chang		the second s	and the second	Ver / no
SA	WPLE CLOCK TIM	E VELOCITY	ORIFICE	DRY GAS METER		DGM OUTLET TEMP	,	FILTER		SAMPLE			
	E (min) (plant time	PRESSURE Delta	PRESSURE	READING (ft ³)	STACK TEMP (°F)	(°F)	PROBE TEMP (°F)	BOX TEMP	EXIT TEMP	TRAIN VAC	XAD EXIT TEMP (F)		COMMENTS
States and States	0 0941	P (in H2O)	Delta H (in H2O)	278,115	1540 (17)		TEAME (17)	(F)	(oF)	(in Hg)	in and the second se		
1	4	1.4	0.957	280,15	40	35	258	255-	66	3	66		
<u> </u>	2	1.5	1.02	282,51	90	35-	825	225	66	3	66		
	2	1.2	1.22	275.10	40	35	255	255	62	3	62		5150
	20	1, 8 1 a	1.35	286,96	40	<u>35</u> 40	755	255	62	4	62		&-New K, FACTOR
		1:4	1,35	292.10	24	-45-	255	255-	60	5-	60		K, PACTU
		1.8	1.29	294,35	44 1	49	2.55	251	60	5	60		· · · · · · · · · · · · · · · · · · ·
4	32	1.8	1128	296.55	44	50	235	251	डम	5	54		27.160
	6	4.6	1,14	299.00	44	51	255	251	54	5-	54		
	10	1.6	0.855	301.15	44	5	254	254	51	5	51		
	12 1029	1.2	n 255	305,278			253	253	51	>>	5		
	1052		<u> </u>	305.400							- 21		
	1	1,5	1.09	307.43	50	54	255	255	55	3	55		E0.72
15	<u> </u>	1:5	4.09	309.60	48	54	255	255	55	3	54		K-FACTO
	5	1.8	1 31	312.00	<i>44</i> 44	54	251	251	48	5	48		
	0	1 9	1,32	317.21	44	54	251	251	- 44	5			
3 8	14	1,9	1 38	39.24	44	54	251	231	42	5	42		26.500
	3	1. 8	1:31	321.05	45	54	251	251	40	5	40		
	52	1.8	1.31	324,68	45	54	250	250	40	5	40		
	0 328.18	15	1.09	326, 14	245	<u>54</u> 55	251	251	40		40		
	17 -20110	0.90	0.65	326.52	44	<u> </u>		251	40	3	40		
	48 11 40	0.90	0.65	331 900	441	55	218	248	. 40	3	40		
-		Avg Delta P V / i S9.583	Avg Delta H.J 1,14363	Total Volume	Avg Ts J 43,5	Ave J	Min/Max	Min/Max 248/23		Max Vac	Min/Max		
WEST	€N	1:59383 Avg Sqrt Delta PJ 1:25716	Avg Sqrt Del H	Comments:	143.2		248	248/27	r 100	5	40 66		,

	Chemours		Stack Condit	ione	Meter Box ID		0010 - H	10				Page c	/
<u> </u>		<u> </u>	Assun		Meter Box ID		$-t \wedge$	069-	_		K Factor	0.72	D
t ID –	CHEMOURS	% Moisture	#250		Meter Box Del	н		812	_ Leak Cheo	:ks	Initial	Mid-Poi	nt Final
/Source ID		Impinger Vol (r		9.0	Probe ID / Leng	y th	P695	5	Sample Trai	-	0.001	0.00	· · · · · · · · · · · · · · · · · · ·
Loc. ID	STK	Silica gel (g)		12	Probe Material			loro	Leak Check	@ (in Hg)	015	17	e 7
.ID	2	CO2, % by Vol		V	_Pitot / Thermoo	•	P695		Pitot good		ver/ no	yee / no	
ethod ID	M0010	O2, % by Vol	. <u>20,7</u>		Pitot Coefficien	t		.84	Orsat good		eee / no	yes/n	
Location	16JAN2019 Division Stack	Temperature (* Meter Temp (*		5	Nozzle ID	(in)	<u> </u>		_Temp Che		Pre-1 جح	est Set	Post-Test S
Date	1/16/19	Static Press (ir		000000000000000000000000000000000000000	Avg Nozzle Dia Area of Stack (• •		1601	_Meter Box T Reference T		<u> </u>		51
Press (in Hg)	30,06	<u> </u>		100	Sample Time			16 5	- Pass/Fail (+,	2		/ Fail	Pass / Fail
or NR5	WINKELIEN	Ambient Temp	(°F) Pr	45953	Total Traverse	Pts		21		ge Response		/ no	
	2 1312	= 0 0 just 3.	ORIFICE 1970-9101 010-10-02-0 200-1 1.08	335 125 335 125	47	eri k μin nei Linini θ β	55	PROBE TERMINE 259	ELTER EON TEM: 2555	(15) 51	SAMPLE TRAIN VAC (In) Ho)	XADEXII TEXP(E)	COMMENT
$\frac{1}{2}$ $\frac{3}{2}$	>	1.5	1.08	336,75	47	1	55-	259	235	45	<i>Ľ</i>)	45	
T		1.7	<u>1. 22</u>	338.80	43		55	259	255	41	4	41	
2 11		1.7	1.22	341.23	43		56	258	285	40	5	40	27.365
3 2		1.8	1,29	343.66	94		56	255	225	41	5	415	
3 2		1.8	1,29	346.44	44		56	255	254	41	S	41	
	4	1.3	1,29	348,30	45		56	255	254	41	5	41	
	2	1.9	1.36	350,70	45		51	254	255	41	5	41	
<u> </u>	6	1,5	1.08	352,65	45		60	254	254	43	4	43	
7		1:5	1.08	355.10	45		60	254	254	4)3	4	43	
6 4		1,2	0.864	357,15	45		60	254	253	43	3	43	
<u> </u>	18 1400	1.2	0.864	359.490	45		60	254	253	43	3	43	
	1425			359,600									
	8	<i>I. L</i>	60.1	361,25	45		60	254	233	43	3	43	26. 41
	2	64	1.00	364,11	45		60	254	253	<u>U</u> 3	3	43	
$\frac{2}{2}$ it			122	366,20	45		6	254	253	45	-4/	45	
			<u> </u>	368.73	45		6	254	253	46	5	46	
3 24		1.a	<u>_1, 4</u> [371.01	47		61	2551	255	46	5	46E	+0.145
4 27		1.9	1.41	373.58			6	255-	255	46	<u> </u>	46	K-FActor
4 32		1.1	1.276	376.0	47		61	255	255	47.	4	47	
			1.36	378,21			62-	254	253	47-	4	47-	<u>.</u>
		1, 4		3 80. 52	41		62	254		47	4	47	
6 4	14		7,04	382.86	41		62		255	47	<u> </u>	47	
	12 8-1530 W	1.0	0,145	384.64	48		62	255	2.5-1	41	3	47	
		Avg ent Delta P	0.745	3 8 6 010 Total Volume	48	A	62,	255	254	48	2	48	<u> </u>
	1513	1.554[7]	Avg Delta H	53,7.75	Avg Ts V 45 J	AVg S	9.2	Min/Max こらて しちり	Min/Max	Max Temp 5 \	Max Vac	Max Temp	
		<u>, 1 2 1 1</u>	Ava Sart Del H.	Commonte			112	03 11001	253 (53-			51	3
	TOP-	- 1.24191	Locash	Commonto.						ELA MIGILIOO	0010 from EP	A 944-940	

lient	Chemours		Stack Condit	tione	Meter Box ID	lethod		2			r	Page o	<u>'</u>
V.O.#	Chemodra		Assur		Meter Box 1D			0691	-		K Factor	0,721	
roject ID	CHEMOURS	% Moisture	×1.5	the second se	Meter Box De	14		812	_ Leak Cheo	ko	LInitial	01 100	
Mode/Source ID		Impinger Vol	Statistical and statistical statistics	q	Probe ID / Le		A695-	12-	Sample Trai		0,001		
amp. Loc. ID	STK	Silica gel (g)		12.6	Probe Materia	-	-	Boro	Leak Check		215	27-	/1 0,00 ©7-
lun No.ID	3	CO2, % by V		1 12.0	Pitot / Thermo		P695	695-	Pitot good	(m rig)	yes / no		
est Method ID	M0010	O2, % by Vol		1 /	Pitot Coefficie).84	Orsat good				
ate ID	16JAN2019	Temperature			Nozzle ID			60	Temp Che	ck	Pre-T	est Set	Post-Test S
ource/Location	Division Stack				Avg Nozzle D	ia (in)		160 1	Meter Box T		36	001001	1 48
ample Date	1/17/19	Static Press (in H ₂ O) -0,7	01-0.7	Area of Stack	. ,	7.1		Reference T	•	36		-49
aro. Press (in Hg)	30,12						व		- Pass/Fail (+/			s / Fail	(Pase / Fail
perator M	WINKELE!	2 🗸 Ambient Tem	p(°F) 🗡 🗧	36	Total Travers	e Pts		21	Temp Chang			/ no	(ye) / no
Biting and the	1	d Sugaran and		. South and a second	- Tudes to grades to	1	1. 1. S. y	And the Contract	Sandrik katalaria	lation for the			
R. WRACK	E creating.	The state of the s	-05 Laciated	[1] 没有的。	e Xis		1 Carl Strange and Strange and Strange	1.1.1	A LAND		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
					f states and the	no en si curra Anto pacato	Soluna Bant.	at interesting	1 avrating	132 (14) 11 (2)	Nev North	100 V 161 20 10	200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0842	43 20 - 20 -	a la la ciante e co			all a catelogy					「東京の		
	0872	1 1 1	Super Content	387.510	N. Y. S. Wart Burg	Provide Article V		Sec. to	again in the	1		14.19	
		1,5	1,08	389,61	34	NA	33	255-	249	60	4	60	
_ 1 _ 2		1,5	1.02	391.32	3-1	1	34	255	251	63	4	63	
2 12		117	1.22	393.52	35		36	255-	258	63	5	63	
2/1		1,7	1,22	396.51	35		36	255	258	63	5-	63	
3 21	2	1.8	1,29	39-8,50	35		27	259	258	67	5	63	26,48
3 2'	1	1.7	1.29	400.86	34		37	259	258	63	5	63	-00,18
4 2	8	1.3	1.24	403.28	36		38	239	252	63	3	62	 _
	2	1.5	1 29	405.28	27		38	258	258	63	5	63	<u></u>
	10		1.00	487.23	36		38	255	255	63			
	10	1.4	1.00	410,00	36		22				4	63	<u> </u>
	14	+ <u> </u>	0,937					254	253	5	4	tr_	
		1.5		1110	36		39	254	253	62	4	62	
		1.3	0.937	413,990	37		39	252	253	62	3	62	
	0947			414,135									
A L		1.5	1,02	416,27	39		39	255	255	65-	4	05	
1 3		1,5	1,08	418,52	39		34.	7.55-	255-	65	-1	65-	
2 12		1.7	トレン	420.70	37		44	255	255-	63	Ś	63	26.66
2 10		117	1,22	472,91	37		44.	255	255-	63	5	63	
3 20		1.9	1.36	425,26	27		45-	255	255-	63	5	63	<u>†</u>
3 2'	1	1 a	1.36	427.66	マナ		45	255	254	63	2	63	
4 2		1 9	1,30	430.07	37		46		258	62	5		┢──
1 37		1.9	1.36	432 51	27		46	255-				62	
3		1.5			~ 0				258	62	5	62	
Y Y J J J J J J J J J J J J J J J J J J	<u>, </u>	113	1,00		39		47_	258	528	61	5	61	
	<u>40 </u>		1.08	436,70	40		48	258	288	62	۶	62	
	17	4.5	0.937.	438.77	40		42	258	258	63	7	63	
101	8 1035	1,3	0,937	440.201	40		42.	257	257	64	5	64	
p AVb - 1.1	mb33 V	Avg Sqrt Delta P	Avg Delta H	Total Volume 7	36.9	۵vg	TmqJ			Max Temp	Max Vac	Max Temp	
ا، ارس	0,0	1.26549	1115750	53.176	1.00	70	1141	12 0	Min/Max a	(05	5		1
O ANK		v	Avg Sqrt Del H 1.0722	Comments:	37.0 1			No.	// •n		0010 from EP	A SW-846	J
N 10			1.0624	F									

SAMPLE RECOVERY FIELD DATA

EPA Method 0010 - HFPO Dimer Acid

Client Location/Pla	t	Cherr Fayettev	·	Sourc	W.O. #		Division	Stack		-
Locatorin		Fayeller		. Oourc	e a Locadon	<u></u>	DIAISIOLI	JIACK		
Run No.	1				Sample Date	1/16/1 pour/c	19	Recove	ry Date	<u>c/16/18</u> NA
Sample I.D.	Chemours - D	vivision - STK -	1 - M0010 -		Analyst	pour c	Ŵ	Filter N	umber	PA
					Impinge	·····	•			
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20				,	imp.rotal	Silica Gel	10(4)
	2			~						
Final		101	102	5				210	2115	
Initial	0	100	100	Q				200	300	
Gain	2	1	1	5				10	tho	225
Impinger Cold	or	chear			Labeled?			\checkmark	\checkmark	_
Silica Gel Cor		ලංගේ			Sealed?		(-
01100 001 001										-
Run No.	2				Sample Date	+ holi	2	Recove	ry Date	1/16/18
Sample I.D.	Chemours - D)ivision - STK -	2 - M0010 -		Analyst	dum.	/cu	Filter N	umber	NA
	[•	Impinge		<u> </u>			
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20	•					Silica Gel	
	16	9.3	96	4					3121	
Final	<i>k</i>		<u>v</u>	t						
Initial	0	100	100	Ø				200	300	- CO
Gain	16	~7	- 47	ч				29	124	124
Impinger Cold	or	متعلى	L		Labeled?			e l	\checkmark	2117
Silica Gel Cor		(e and			Sealed?	(-			-
				-4-1-107-14-11						<u> </u>
Run No.	3				Sample Date	c(17/19 Pull	- 4	Recove	ry Date	(In he
Sample I.D.	Chemours - D)ivision - STK -	3 - M0010 -		Analyst	Pull	cu	Filter N	umber	NA
•					Impinge					1
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20						Silica Gel	
Final	2	103	ior	2				242	312.6	
Initial	0	100	100	ı				200	300	
Gain	2	3	Z	2				9	12.6	21.6
		Cheer			Labolad?				V	
Impinger Cold	л <u>—</u>				Labeled?			·		-
Silica Gel Co	ndition	Good			Sealed?			/		-

Check COC for Sample IDs of Media Blanks

.

METHODS AND ANALYZERS

Client: Chemours Location: CHEMOURS Source: Division Stack Project Number: **15418.002.009** Operator: **CW** Date: **16 Jan 2019**

ent Folders.A-F\Chemours Fayetteville\15418.002.009 Fayetteville Jan 2019 Carbon Bed Test\Data\Division\011619 **Program Version:** 2.1, built 19 May 2017 **File Version:** 2.03 **Computer:** WSWCAIRSERVICES **Trailer:** 27 **Analog Input Device:** Keithley KUSB-3108

Channel 1

Analyte	O 2
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.0
Channel 2	
Analyte	CO ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900

Full-Scale Output, mv Analyzer Range, % Span Concentration, % EPA 3A, Using Bia Servomex 4900 10000 20.0 16.6

CALIBRATION DATA

Number 1

Client: Chemours Location: CHEMOURS Source: Division Stack
 Project Number:
 15418.002.009

 Operator:
 CW

 Date:
 16 Jan 2019

Start Time: 07:51

02
Method: EPA 3A
Calibration Type: Linear Zero and High Span

Calibration	Standards	
%	Cylinder ID	
12.0	ČC18055	
21.0	SG9169108	
Calibratio	n Results	
Zero	5 mv	
Span, 21.0 %	7991 mv	
 Curve Co	efficients	
Slope	Intercept	
380.3	5	

02 FPA 3A	
ar Zero and High Span	
Standards	
Cylinder ID	
ČC18055	
SG9169108	
n Results	
5 mv	
8383 mv	
pefficients	
Intercept	
5	
	EPA 3A ar Zero and High Span Standards Cylinder ID CC18055 SG9169108 n Results 5 mv 8383 mv pefficients Intercept

CALIBRATION ERROR DATA

Number 1

ocation:	Chemours CHEMOURS Division Stack		Calibration		Project Number: Operator: Date:	
			Start Time: 0	7:51		
			O ₂			
			Method: EP			
			Span Conc. 2			
		Slope	380.3	Intercept 5.0		
-	Standard	Result	Difference	Error		
	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	Pass	
	12.0	12.0	0.0	0.0	Pass	
	21.0	21.0	0.0	0.0	Pass	
Ξ						
			CO ₂			
			Method: EP			
		01	Span Conc. 1			
_		Slope	505.3	Intercept 5.0		
	Standard	Result	Difference	Error		
	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	Pass	
	8.9	8.6	-0.3	-1.8	Pass	
	16.6	16.6	0.0	0.0	Pass	

BIAS

Number 1

Location:	Chemours CHEMOURS Division Stack		Calib	pration 1	Proje	Operator:	15418.002.00 CW 16 Jan 2019	
			Start Ti	me: 07:58				
				O₂ d: EPA 3A onc. 21.0 %				
_	Standard Gas Zero Span	Cal. % 0.0 12.0	Bias Bias % 0.0 12.0	Results Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass		
			Metho	CO ₂ d: EPA 3A onc. 16.6 %				
				Results	_			
	Standard	Cal.	Bias	Difference	Error	Ctoture		
	Gas Zero	% 0.0	% 0.0	% 0.0	% 0.0	Status Pass		
	Span	0.0 8.6	0.0 8.5	-0.1	-0.6	Pass		

Client: Chemours Location: CHEMOURS Source: Division Stack	С	alibration	1	Project Number: Operator: Date:	
	Time	O 2 %	CO2 %		
	10:20	21.0	0.1		
	10:21	21.0	0.1		
	10:22	21.0	0.1		
	10:23	21.0	0.1		
	10:24	21.0	0.1		
	10:25	20.9	0.1		
	10:26	21.0	0.1		
	10:27	21.0	0.1		
	10:28	21.0	0.1		
	10:29	21.0	0.1		
	10.20	Port B	0.1		
	10:52	20.9	0.0		
	10:53	20.9	0.0		
	10:54	20.9	0.1		
	10:55	20.9	0.1		
	10:56	20.9	0.1		
	10:57	20.9	0.1		
	10:58	20.9	0.1		
	10:59	20.9	0.1		
	11:00	20.9	0.1		
	11:01	20.9	0.1		
	11:02	20.9	0.1		
	11:02	20.9	0.1		
	11:04	20.9	0.1		
	11:05	20.9	0.1		
	11:06	20.9	0.1		
	11:07	20.9	0.1		
	11:08	20.9	0.1		
	11:09	21.0	0.1		
	11:10	21.0	0.1		
	11:10	21.0	0.1		
	11:12	21.0	0.1		
	11:12	21.0	0.1		
	11:13	21.0	0.1		
	11:15	21.0	0.1		
	11:16	21.0	0.1		
	11:17	21.0	0.1		
	11:18	21.0	0.1		
	11:19	21.0	0.1		
	11:20	21.0	0.1		
	11.20	21.0	0.1		

Client: Chemours Location: CHEMOURS Source: Division Stack	(Calibration 1		Project Number: 15418.002.009 Operator: CW Date: 16 Jan 2019
	Time	O 2 %	CO 2 %	
	11:21	21.0	0.1	
	11:22	21.0	0.1	
	11:23	21.0	0.1	
	11:24	21.0	0.1	
	11:25	21.0	0.1	
	11:26	21.0	0.1	
	11:27	21.0	0.1	
	11:28	21.0	0.1	
	11:29	21.0	0.1	
	11:30	21.0	0.1	
	11:31	21.0	0.1	
	11:32	21.0	0.1	
	11:33	21.0	0.1	
	11:34	21.0	0.1	
	11:35	21.0	0.1	
	11:36	21.0	0.1	
	11:37	21.0	0.1	
	11:38	21.0	0.1	
	11:39	21.0	0.1	
	11:40	21.0	0.1	
		End Run 1		
	Avgs	21.0	0.1	

RUN SUMMARY

Client: Chemours Location: CHEMOURS Source: Division Stack		Calibratior	ו 1	Project Number: Operator: Date:	
	Method Conc. Units	O₂ EPA 3A %	CO ₂ EPA 3A %		
	Т	ime: 09:40 t	o 11:40		
		Run Avera	ges		
		21.0	0.1		
	Pr	e-run Bias a	at 07:58		
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.0 8.5 8.9		
	Ро	st-run Bias	at 12:04		
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.1 8.5 8.9		
Run average	s corrected for	the average	e of the pre-ru	in and post-run bia	IS
		21.0	0.0		

BIAS AND CALIBRATION DRIFT

Location: C	hemours HEMOURS ivision Stack		Calib	pration 1	Proje	Operator:	15418.002.009 CW 16 Jan 2019
			Start Ti	me: 12:04			
			Method	O₂ d: EPA 3A onc. 21.0 %			
	Standard Gas Zero Span	Cal. % 0.0 12.0	Bias Bias % 0.0 12.0	Results Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass	
	Standard Gas Zero Span	Initial* % 0.0 12.0 *Bias No. 1	Calibra Final % 0.0 12.0	ation Drift Difference % 0.0 0.0	Drift % 0.0 0.0	Status Pass Pass	
			Method	CO₂ d: EPA 3A onc. 16.6 %			
	Standard Gas Zero Span	Cal. % 0.0 8.6	Bias Bias % 0.1 8.5	Results Difference % 0.1 -0.1	Error % 0.6 -0.6	Status Pass Pass	
			Calibra	ation Drift			

Calibration Drift									
Standard	Initial*	Final	Difference	Drift					
Gas	%	%	%	%	Status				
Zero	0.0	0.1	0.1	0.6	Pass				
Span	8.5	8.5	0.0	0.0	Pass				
	*Bias No. 1								

Client: Chemours Location: CHEMOURS Source: Division Stack	C	alibration	1	Project Number: Operator: Date:		
	Time	O 2 %	CO2 %			
		Port A				
	13:12	20.8	0.0			
	13:13	20.8	0.0			
	13:14	20.9	0.0			
	13:15	20.9	0.0			
	13:16	20.9	0.0			
	13:17	20.9	0.1			
	13:18	20.9	0.1			
	13:19	20.9	0.1			
	13:20	20.9	0.1			
	13:21	20.9	0.1			
	13:22	20.9	0.1			
	13:23	20.9	0.1			
	13:24	20.9	0.1			
	13:25	20.9	0.1			
	13:26	20.9	0.1			
	13:27	20.9	0.1			
	13:28	20.9	0.1			
	13:29	20.9	0.1			
	13:30	20.9	0.1			
	13:31	20.9	0.1			
	13:32	20.9	0.1			
	13:33	20.9	0.1			
	13:34	20.9	0.1			
	13:35	20.9	0.1			
	13:36	20.9	0.1			
	13:37	20.9	0.1			
	13:38	20.9	0.1			
	13:39	20.9	0.1			
	13:40	20.9	0.1			
	13:41	20.9	0.1			
	13:42	20.9	0.1			
	13:43	20.9	0.1			
	13:44	20.9	0.1			
	13:45	20.9	0.1			
	13:46	20.9	0.1			
	13:47	20.9	0.1			
	13:48	20.9	0.1			
	13:49	20.9	0.1			
	13:50	20.9	0.1			

Client: Chemours Location: CHEMOURS			_	Project Number: 15418.002.009 Operator: CW
Source: Division Stack	C	alibration	1	Date: 16 Jan 2019
	Time	O 2 %	CO2 %	
	13:51	20.9	0.1	
	13:52	20.9	0.1	
	13:53	20.9	0.1	
	13:54	20.9	0.1	
	13:55	20.9	0.1	
	13:56	20.9	0.1	
	13:57	20.9	0.1	
	13:58	20.9	0.1	
	13:59	20.9	0.1	
	14:00	20.9	0.1	
	14.00		0.1	
	14:25	Port B 20.8	0.0	
			0.0	
	14:26	20.8	0.0	
	14:27	20.9	0.1	
	14:28	20.9	0.1	
	14:29	20.9	0.1	
	14:30	20.9	0.1	
	14:31	20.9	0.1	
	14:32	20.9	0.1	
	14:33	20.9	0.1	
	14:34	20.9	0.1	
	14:35	20.9	0.1	
	14:36	20.9	0.1	
	14:37	20.9	0.1	
	14:38	20.9	0.1	
	14:39	20.9	0.1	
	14:40	20.9	0.1	
	14:41	20.9	0.1	
	14:42	20.9	0.1	
	14:43	20.9	0.1	
	14:44	20.9	0.1	
	14:45	20.9	0.1	
	14:46	20.9	0.1	
	14:47	20.9	0.1	
	14:48	20.9	0.1	
	14:49	20.9	0.1	
	14:50	20.9	0.1	
	14:51	20.9	0.1	
	14:52	20.9	0.1	
	14:53	20.9	0.1	

Client: Chemours Location: CHEMOURS Source: Division Stack		Calibration 1		Project Number: Operator: Date:	
	Time	O2 %	CO ₂ %		
	14:54	20.9	0.1		
	14:55	20.9	0.1		
	14:56	20.9	0.1		
	14:57	20.9	0.1		
	14:58	20.9	0.1		
	14:59	20.9	0.1		
	15:00	20.9	0.1		
	15:01	20.9	0.1		
	15:02	20.9	0.1		
	15:03	20.9	0.1		
	15:04	20.9	0.1		
	15:05	20.9	0.1		
	15:06	20.9	0.1		
	15:07	20.9	0.1		
	15:08	20.9	0.1		
	15:09	20.9	0.1		
	15:10	20.9	0.1		
	15:11	20.9	0.1		
	15:12	20.9	0.1		
	15:13	20.9	0.1		
		End Run 2			
	Avgs	20.9	0.1		

RUN SUMMARY

Client: Chemours Location: CHEMOURS Source: Division Stack		Calibration 1			15418.002.009 CW 16 Jan 2019	
	Method Conc. Units	O₂ EPA 3A %	CO₂ EPA 3A %			
		ime: 13:11 to	o 15:13			
		Run Avera	ges			
		20.9	0.1			
	Pr	e-run Bias a	at 12:04			
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.1 8.5 8.9			
	Ро	st-run Bias	at 15:16			
	Zero Bias Span Bias Span Gas	0.0 12.0 12.0	0.0 8.5 8.9			
Run average	s corrected for	the average	of the pre-ru	in and post-run bia	IS	
		20.9	0.0			

BIAS AND CALIBRATION DRIFT

Location:	Chemours CHEMOURS Division Stack		Calib	ration 1	Projec	Operator:	15418.002.009 CW 16 Jan 2019
			Start Ti	me: 15:16			
				O₂ I: EPA 3A			
				onc. 21.0 %			
			Bias	Results			
	Standard	Cal.	Bias	Difference	Error	_	
	Gas	%	%	%	%	Status	i
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	12.0	12.0	0.0	0.0	Pass	
			Calibration Drift				
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	i
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	12.0	12.0	0.0	0.0	Pass	
_		*Bias No. 2					
			Method	CO₂ I: EPA 3A			
			Span Co	onc. 16.6 %			
	o	. .		Results	_		
	Standard	Cal.	Bias	Difference	Error	Otat	
	Gas	%	%	%	%	Status	i
	Zero Span	0.0 8.6	0.0 8.5	0.0 -0.1	0.0 -0.6	Pass Pass	
			Calibra	ation Drift			
	Standard	Initial*	Final	Difference	Drift		

Standard	Initial*	Final	Difference	Drift	
Gas	%	%	%	%	Status
Zero	0.1	0.0	-0.1	-0.6	Pass
Span	8.5 *Bias No. 2	8.5	0.0	0.0	Pass

METHODS AND ANALYZERS

Client: Chemours Location: CHEMOURS Source: Division Stack Project Number: **15418.002.009** Operator: **CW** Date: **17 Jan 2019**

ent Folders.A-F\Chemours Fayetteville\15418.002.009 Fayetteville Jan 2019 Carbon Bed Test\Data\Division\011719 Program Version: 2.1, built 19 May 2017 File Version: 2.03 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108

Channel 1

Analyte	O 2
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.0
Channel 2	
Analyte	CO ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900

Full-Scale Output, mv Analyzer Range, % Span Concentration, % EPA 3A, Using Bia Servomex 4900 10000 20.0 16.6

CALIBRATION DATA

Number 1

Client: Chemours Location: CHEMOURS Source: Division Stack Project Number: **15418.002.009** Operator: **CW** Date: **17 Jan 2019**

Start Time: 07:32

Method: EPA 3A	
Calibration Type: Linear Zero and High Span	

Calibration	Standards	
%	Cylinder ID	
12.0	ČC18055	
21.0	SG9169108	
Calibration	n Results	
Zero	8 mv	
Span, 21.0 %	8020 mv	
 Curve Co	efficients	
Slope	Intercept	
381.5	8	

	:EPA 3A ear Zero and High Span	
	<u> </u>	
Calibration	n Standards	
%	Cylinder ID	
8.9	ČC18055	
16.6	SG9169108	
Calibrati	on Results	
Zero	1 mv	
Span, 16.6 %	8293 mv	
Curve C	oefficients	
Slope	Intercept	
500.1	1	

CALIBRATION ERROR DATA

ocation:	Chemours CHEMOURS Division Stack		Calibration		Project Number: Operator: Date:	
			Start Time: 0)7:32		
			O₂ Method: EP Span Conc. 2			
		Slope	381.5	Intercept 8.0)	
-	Standard	Result	Difference	Error		
	%	%	%	%	Status	
	Zero 12.0	0.0 12.0	0.0 0.0	0.0 0.0	Pass Pass	
-	21.0	21.0	0.0	0.0	Pass	
-			CO ₂			
			Method: EP			
		Slope	Span Conc. 1 500.1	Intercept 1.0)	
-	Standard	Result	Difference	Error		
	_%	%	%	%	Status	
	Zero	0.0	0.0	0.0	Pass	
	8.9	8.6	-0.3	-1.8	Pass	
	16.6	16.6	0.0	0.0	Pass	

BIAS

Location:	Chemours CHEMOURS Division Stack		Calib	ration 1	Proje	Operator:	15418.002.009 CW 17 Jan 2019
			Start Ti	me: 07:36			
				O₂ d: EPA 3A onc. 21.0 %			
	Standard Gas Zero Span	Cal. % 0.0 12.0	Bias Bias % 0.0 12.0	Results Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass	
			Metho	CO ₂ d: EPA 3A onc. 16.6 %			
				Results	_		
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	8.6	8.5	-0.1	-0.6	Pass	

Client: Chemours Location: CHEMOURS Source: Division Stack	C	alibration	1	Project Number: Operator: Date:	
	Time	O 2 %	CO 2 %		
		Port A			
	08:42	20.9	0.0		
	08:43	20.9	0.0		
	08:44	20.9	0.0		
	08:45	20.9	0.0		
	08:46	20.9	0.1		
	08:47	20.9	0.1		
	08:48	20.9	0.1		
	08:49	20.9	0.1		
	08:50	20.9	0.1		
	08:51	20.9	0.1		
	08:52	20.9	0.1		
	08:53	20.9	0.1		
	08:54	20.9	0.1		
	08:55	21.0	0.1		
	08:56	20.9	0.1		
	08:57	21.0	0.1		
	08:58	21.0	0.1		
	08:59	21.0	0.1		
	09:00	21.0	0.1		
	09:01	21.0	0.1		
	09:02	20.9	0.1		
	09:02	20.9	0.1		
	09:04	21.0	0.1		
	09:05	20.9	0.1		
	09:06	20.9	0.1		
	09:07	21.0	0.1		
	09:08	20.9	0.1		
	09:09	21.0	0.1		
	09:10	21.0	0.1		
	09:10	21.0	0.1		
	09:12	21.0	0.1		
	09:12	21.0	0.1		
	09:10	21.0	0.1		
	09:14	21.0	0.1		
	09:15	21.0	0.1		
	09:10	21.0	0.1		
	09:18	21.0	0.1		
	09:10	21.0	0.1		
	09:19	21.0	0.1		
	00.20	21.0	0.1		

Client: Chemours Location: CHEMOURS				Project Number: 15418.002.009 Operator: CW
Source: Division Stack	C	alibration	1	Date: 17 Jan 2019
	Time	O 2 %	CO 2 %	
	09:21	21.0	0.1	
	09:22	21.0	0.1	
	09:23	21.0	0.1	
	09:24	21.0	0.1	
	09:25	21.0	0.1	
	09:26	21.0	0.1	
	09:27	21.0	0.1	
	09:28	21.0	0.1	
	09:29	21.0	0.1	
	09:30	21.0	0.1	
		Port B	-	
	09:47	20.8	0.0	
	09:48	20.8	0.0	
	09:49	20.8	0.1	
	09:50	20.9	0.1	
	09:51	20.9	0.1	
	09:52	20.9	0.1	
	09:53	20.9	0.1	
	09:54	20.9	0.1	
	09:55	20.9	0.1	
	09:56	20.9	0.1	
	09:57	20.9	0.1	
	09:58	21.0	0.1	
	09:59	21.0	0.1	
	10:00	20.9	0.1	
	10:01	21.0	0.1	
	10:02	21.0	0.1	
	10:03	21.0	0.1	
	10:04	21.0	0.1	
	10:05	21.0	0.1	
	10:06	21.0	0.1	
	10:07	21.0	0.1	
	10:08	21.0	0.1	
	10:09	21.0	0.1	
	10:10	21.0	0.1	
	10:11	21.0	0.1	
	10:12	21.0	0.1	
	10:13	21.0	0.1	
	10:14	21.0	0.1	
	10:15	21.0	0.1	

Client: Chemours Location: CHEMOURS Source: Division Stack	Ca	alibration 1		Project Number: 15418.002.009 Operator: CW Date: 17 Jan 2019
	Time	O 2 %	CO 2 %	
	10:16	21.0	0.1	
	10:17	21.0	0.1	
	10:18	21.0	0.1	
	10:19	21.0	0.1	
	10:20	21.0	0.1	
	10:21	21.0	0.1	
	10:22	21.0	0.1	
	10:23	21.0	0.1	
	10:24	21.0	0.1	
	10:25	21.0	0.1	
	10:26	21.0	0.1	
	10:27	21.0	0.1	
	10:28	21.0	0.1	
	10:29	21.0	0.1	
	10:30	21.0	0.1	
	10:31	21.0	0.1	
	10:32	21.0	0.1	
	10:33	21.0	0.1	
	10:34	21.0	0.1	
	10:35	21.0	0.1	
	E	Ind Run 3		
	Avgs	21.0	0.1	

RUN SUMMARY

Client: Chemours Location: CHEMOURS Source: Division Stack	Calibration 1		Project Number: Operator: Date:		
	Method	0 ₂ EPA 3A	CO₂ EPA 3A		
	Conc. Units	%	%		
	T	ime: 08:41 t	o 10:35		
		Run Avera	iges		
		21.0	0.1		
	Pr	e-run Bias a	at 07:36		
	Zero Bias	0.0	0.0		
	Span Bias	12.0	8.5		
	Span Gas	12.0	8.9		
	Ро	st-run Bias	at 10:43		
	Zero Bias	0.0	0.1		
	Span Bias	12.0	8.4		
	Span Gas	12.0	8.9		
Run average	s corrected for	the average	e of the pre-ru	in and post-run bia	IS
		21.0	0.0		

BIAS AND CALIBRATION DRIFT

Location: C	Chemours CHEMOURS Division Stack		Calib	ration 1	Projec	Operator:	15418.002.009 CW 17 Jan 2019
			Start Ti	me: 10:43			
			Method	O₂ d: EPA 3A onc. 21.0 %			
			Bias	Results			
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	12.0	12.0	0.0	0.0	Pass	
			Calibra	ation Drift			
	Standard	Initial*	Final	Difference	Drift		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	0.0	Pass	
	Span	12.0 *Bias No. 1	12.0	0.0	0.0	Pass	
				CO ₂			
				d: EPA 3A			
				onc. 16.6 %			
			Bias	Results			
	Standard	Cal.	Bias	Difference	Error		
	Gas	%	%	%	%	Status	
	Zero	0.0	0.1	0.1	0.6	Pass	
	Span	8.6	8.4	-0.2	-1.2	Pass	
			Calibr	ation Drift			

		Calibra	ation Drift		
Standard	Initial*	Final	Difference	Drift	
Gas	%	%	%	%	Status
Zero	0.0	0.1	0.1	0.6	Pass
Span	8.5 *Bias No. 1	8.4	-0.1	-0.6	Pass

APPENDIX C LABORATORY ANALYTICAL REPORT

Note: The analytical report is included on the attached CD.

Client Sample Results

Client Sample ID: Q-1877,	1878 DIV	STACK I	R1 M0010 F	ΞH		L	ab Sample	D: 140-14	017-1
Date Collected: 01/16/19 00:00									rix: Air
Date Received: 01/20/19 10:00									
Sample Container: Air Train									
Method: 8321A - PFOA and P	FOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	12.0		0.126	0.0136	ug/Sample		01/23/19 14:18	02/01/19 10:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	92		50 - 200				01/23/19 14:18	02/01/19 10:50	1
Client Sample ID: Q-1879,	1880 1882			010 B	4		ab Sample	D: 140_14	017_2
Date Collected: 01/16/19 00:00	1000,1002				•				
Date Received: 01/20/19 10:00								wat	rix: Air
Sample Container: Air Train									
Method: 8321A - PFOA and P	FOS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	54.1		0.500	0.100	ug/Sample		01/22/19 10:37	01/30/19 11:49	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	75	D	50 - 200				01/22/19 10:37	01/30/19 11:49	2
Client Sample ID: Q-1881	DIV STAC		010 IMP 1	2&3		1	ab Sample	D: 140-14	017-3
CONDENSATE			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Date Collected: 01/16/19 00:00								Mot	
Date Received: 01/20/19 10:00								wat	rix: Air
Sample Container: Air Train									
Method: 8321A - HFPO-DA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.0964	JH	0.210	0.0107	ug/Sample		01/30/19 04:42	02/04/19 11:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	88		50 - 200				01/30/19 04:42	02/04/19 11:11	1
Client Sample ID: Q-1883	DIV STAC		010			I	ab Sample	D: 140-14	017-4
BREAKTHROUGH XAD-2	_								
Date Collected: 01/16/19 00:00								Mot	rix: Air
Date Received: 01/20/19 10:00								Wat	HX. AI
Sample Container: Air Train									
Method: 8321A - PFOA and P	FOS								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.150	J	0.200	0.0400	ug/Sample		01/22/19 10:37	01/30/19 11:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	77		50 - 200				01/22/19 10:37	01/30/19 11:53	1

Client Sample Results

Client Sample ID: Q-1884,	1885 DIV	STACK I	R2 M0010 F	Ή		L	ab Sample	D: 140-14	017-5
Date Collected: 01/16/19 00:00									rix: Air
Date Received: 01/20/19 10:00									
Sample Container: Air Train									
Method: 8321A - PFOA and Pf	os								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
HFPO-DA	9.22		0.102	0.0110	ug/Sample		01/23/19 14:18	02/01/19 10:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	96		50 - 200				01/23/19 14:18	02/01/19 10:53	1
Client Sample ID: Q-1886,	1887,1889	DIV ST	ACK R2 MC	010 BH	1	L	ab Sample.	D: 140-14	017-6
Date Collected: 01/16/19 00:00								Mat	rix: Air
Date Received: 01/20/19 10:00									
Sample Container: Air Train									
Method: 8321A - PFOA and Pf	=OS								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
HFPO-DA	59.6		0.900	0.180	ug/Sample		01/22/19 10:37	01/30/19 11:56	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	82	D	50 - 200				01/22/19 10:37	01/30/19 11:56	4
Client Sample ID: Q-1888	DIV STAC	K R2 M0	010 IMP 1,	2&3		L	ab Sample	D: 140-14	017-7
CONDENSATE									
Date Collected: 01/16/19 00:00								Mat	rix: Air
Date Received: 01/20/19 10:00									
Sample Container: Air Train									
 _									
Method: 8321A - HFPO-DA		0				_	<u> </u>		
Analyte HFPO-DA		Qualifier		MDL			Prepared	Analyzed	Dil Fac
HFPO-DA	ND	н	0.218	0.0111	ug/Sample		01/30/19 04:42	02/04/19 11:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	87		50 - 200				01/30/19 04:42	•	1
Client Sample ID: Q-1890	DIV STAC	K R2 M0	010				ab Sample	D: 140-14	017-8
BREAKTHROUGH XAD-2	_		••••						• • • •
Date Collected: 01/16/19 00:00								Mot	rix: Air
Date Received: 01/20/19 10:00								Iviat	
Sample Container: Air Train									
Method: 8321A - PFOA and PF	OS								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.200	0.0400	ug/Sample		01/22/19 10:37	01/30/19 11:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	76		50 - 200				01/22/19 10:37	-	1

Client Sample Results

Client Sample ID: Q-1891,	1892 DIV	STACK F	R3 M0010 F	FΗ		L	ab Sample	D: 140-14	017-9
Date Collected: 01/17/19 00:00								Mat	rix: Air
Date Received: 01/20/19 10:00									
Sample Container: Air Train									
Method: 8321A - PFOA and PF						_	_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
HFPO-DA	1.93		0.101	0.0109	ug/Sample		01/23/19 14:18	02/01/19 10:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	103		50 - 200				01/23/19 14:18	02/01/19 10:56	1
Client Sample ID: Q-1893,	1894,1896	DIV ST	ACK R3 MC	010 BH	1	La	b Sample	ID: 140-140	17-10
Date Collected: 01/17/19 00:00								Mat	rix: Air
Date Received: 01/20/19 10:00									
Sample Container: Air Train									
Method: 8321A - PFOA and PF	os								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
HFPO-DA	60.1		0.800	0.160	ug/Sample		01/22/19 10:37	01/30/19 12:02	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	67	D	50 - 200				01/22/19 10:37	01/30/19 12:02	4
Client Sample ID: Q-1895	DIV STAC	K R3 M0	010 IMP 1,	2&3		La	b Sample	ID: 140-140	17-11
CONDENSATE									
Date Collected: 01/17/19 00:00								Mat	rix: Air
Date Received: 01/20/19 10:00									
Sample Container: Air Train									
Method: 8321A - HFPO-DA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.115		0.222		ug/Sample		01/30/19 04:42	•	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	92		50 - 200				01/30/19 04:42	•	1
Client Sample ID: Q-1897	DIV STAC	K R3 M0	010			La	b Sample	ID: 140-140	17-12
BREAKTHROUGH XAD-2	_								
Date Collected: 01/17/19 00:00								Mat	rix: Air
Date Received: 01/20/19 10:00								Mat	
Sample Container: Air Train									
Method: 8321A - PFOA and PF		0				_	. .		
Analyte		Qualifier		MDL		_ D	Prepared	Analyzed	Dil Fac
HFPO-DA	0.306		0.200	0.0400	ug/Sample		01/22/19 10:37	01/30/19 12:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	85		50 - 200				01/22/19 10:37	01/30/19 12:06	1

APPENDIX D SAMPLE CALCULATIONS

SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010)

<u>Client: Chemours</u> <u>Test Number: Run 3</u> <u>Test Location: Divison Stack</u> Plant: Fayetteville, NC Test Date: 1/17/19 Test Period: 0842-1035

1. HFPO Dimer Acid concentration, lbs/dscf.

Conc1 =		W x 2.2046 x 10 ⁻⁹
Coller –		Vm(std)
	(52.5 x 2.2046 x 10-9
Conc1 =	= -	57.033
Conc1 =	=	2.41E-09
Where:		
W =	- '	Weight of HFPO Dimer Acid collected in sample in ug.
Conc1 =	=]	Division Stack HFPO Dimer Acid concentration, lbs/dscf.
$2.2046 \times 10^{-9} =$	= (Conversion factor from ug to lbs.

2. HFPO Dimer Acid concentration, ug/dscm.

Conc2 =	W / (Vm(std) x 0.02832)
Conc2 =	62.5 / (57.033 x 0.02832)
Conc2 =	3.87E+01
Where:	
Conc2 =	Division Stack HFPO Dimer Acid concentration, ug/dscm.
0.02832 =	Conversion factor from cubic feet to cubic meters.

3. HFPO Dimer Acid mass emission rate, lbs/hr.

MR1 _(Outlet)	=	Concl x Qs(std) x 60 min/hr
MR1 _(Outlet)	=	2.41E-09 x 30735 x 60
MR1 _(Outlet)	=	4.45E-03
Where:		
MR1 _(Outlet)	=	Division Stack HFPO Dimer Acid mass emission rate, lbs/hr.
4. HFPO Di	mer Ac	id mass emission rate, g/sec.
MR2 _(Outlet)	=	PMR1 x 453.59 / 3600
MR2 _(Outlet)	=	4.45E-03 x 453.59 /3600
MR2 _(Outlet)	=	5.60E-04
Where:		
MR2 _(Outlet)	=	Division Stack HFPO Dimer Acid mass emission rate, g/sec.
453.6	=	Conversion factor from pounds to grams.
3600	=	Conversion factor from hours to seconds.

EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS

Client: Chemours Test Number: Run 3 Test Location: Division Stack Facility: Fayetteville, NC Test Date: 1/17/19 Test Period: 842-1035

1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.

Vm(std) =	delta H 17.64 x Y x Vm x (Pb +) 13.6
	(111 + 100)
Var(at)	1.155 17.64 x 1.0069 x 53.146 x (30.18 +
Vm(std) =	40.92 + 460
Where:	
Vm(std) =	Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf.
Vm =	Volume of gas sample measured by the dry gas meter at meter conditions, dcf.
Pb =	Barometric Pressure, in Hg.
delt H =	Average pressure drop across the orifice meter, in H2O
Tm =	Average dry gas meter temperature , deg F.
Y =	Dry gas meter calibration factor.
17.64 =	Factor that includes ratio of standard temperature (528 deg R) $(20.02 \text{ in } \text{H}) = \text{P}(\text{in } \text{H})$
13.6 =	to standard pressure (29.92 in. Hg), deg R/in. Hg. Specific gravity of mercury.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

Vw(std) =	(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std) =	(0.04707 x 9.0) + (0.04715 x 12.6) = 1.02
Where:	
Vw(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vwc =	Volume of liquid condensed in impingers, ml.
Wwsg =	Weight of water vapor collected in silica gel, g.
0.04707 =	Factor which includes the density of water
	(0.002201 lb/ml), the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), ft ³ /ml.
0.04715 =	Factor which includes the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), and
	453.6 g/lb, ft ³ /g.

3. Moisture content

	Vw(std)
bws =	
	Vw(std) + Vm(std)
	1.02
hws =	1.02 = 0.018
uws –	1.02 + 57.033 = 0.018
	1.02 + 57.055

Where:

bws =	Proportion of water vapor, by volume, in the gas
	stream, dimensionless.

4. Mole fraction of dry gas.

Md =	1 - bws
Md =	1 - 0.018 = 0.982
Where:	
Md =	Mole fraction of dry gas, dimensionless.

5. Dry molecular weight of gas stream, lb/lb-mole.

MWd =	(0.440 x % CO ₂) + (0.320 x % O ₂) + (0.280 x (% N ₂ + % CO))
MWd =	(0.440 x 0.0) + (0.320 x 20.9) + (0.280 x (79.1 + 0.00))
MWd =	28.84
Where:	
MWd =	Dry molecular weight, lb/lb-mole.
% CO2 =	Percent carbon dioxide by volume, dry basis.
% O ₂ =	Percent oxygen by volume, dry basis.
% N ₂ =	Percent nitrogen by volume, dry basis.
% CO =	Percent carbon monoxide by volume, dry basis.
0.440 =	Molecular weight of carbon dioxide, divided by 100.
0.320 =	Molecular weight of oxygen, divided by 100.
0.280 =	Molecular weight of nitrogen or carbon monoxide, divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

MWs =	(MWd x Md) + (18 x (1 - Md))
MWs =	(28.84 x 0.982) +(18 (1 - 0.982)) = 28.65
Where:	
MWs = 18 =	Molecular weight of wet gas, lb/lb-mole. Molecular weight of water, lb/lb-mole.

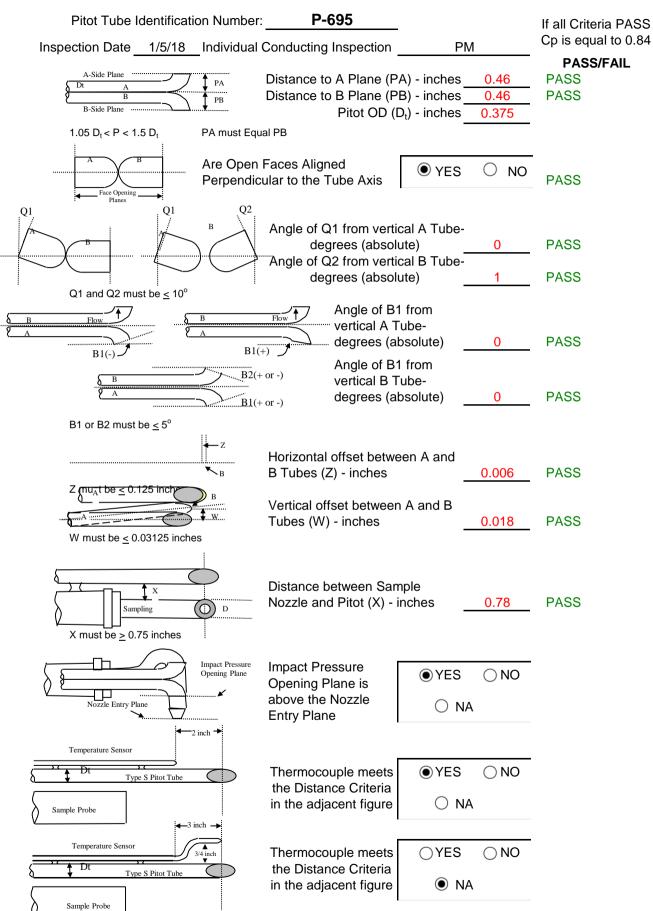
7. Average velocity of gas stream at actual conditions, ft/sec.

Vs =	$Ts (avg) \\ 85.49 x Cp x ((delt p)^{1/2})avg x (j^{2})^{2} \\ Ps x MWs$
Vs =	497 85.49 x 0.84 x 1.26546 x (
Where:	
Vs =	Average gas stream velocity, ft/sec. (lb/lb-mole)(in. Hg) ^{1/2}
85.49 =	Pitot tube constant, ft/sec x
	(deg R)(in H ₂ O)
Cp =	Pitot tube coefficient, dimensionless.
Ts =	Absolute gas stream temperature, deg $R = Ts$, deg $F + 460$.
	P(static)
Ps =	Absolute gas stack pressure, in. Hg. = Pb +
	13.6
delt p =	Velocity head of stack, in. H ₂ O.

8. Average gas stream volumetric flow rate at actual conditions, wacf/min.

Qs(act) =	60 x Vs x As
Qs(act) =	60 x 69.0 x 7.07 = 29252
Where:	
Qs(act) =	Volumetric flow rate of wet stack gas at actual conditions, wacf/min.
As =	Cross-sectional area of stack, ft2.
60 =	Conversion factor from seconds to minutes.

9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.


Qs(std) =	Ps 17.64 x Md x x Qs(act) Ts
Qs(std) =	30.13 17.64 x 0.982 x x 29252 497.0
Qs(std) =	30735
Where:	
Qs(std) =	Volumetric flow rate of dry stack gas at standard conditions, dscf/min.

10. Isokinetic variation calculated from intermediate values, percent.

I =	17.327 x Ts x Vm(std)
1 -	Vs x O x Ps x Md x (Dn) ²
I =	17.327 x 497 x 57.033
1 -	69.0 x 96 x 30.13 x 0.982 x (0.160)^2
Where:	
I =	Percent of isokinetic sampling.
O =	Total sampling time, minutes.
Dn =	Diameter of nozzle, inches.
17.327 =	Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D^{24} , conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in ²)(min) (deg R)(ft ²)(sec)

APPENDIX E EQUIPMENT CALIBRATION RECORDS

Type S Pitot Tube Inspection Data Form

Meter Box Number 12 Ambient Temp 72 Thermocouple Simulator Calibrator MDW Temp Reference Source (Accuracy +/- 1°F) **Date** 10-Sep-18 Wet Test Meter Number P-2952 Dry Gas Meter Number 14244707 Baro Press, in 29.96 Gas Volume Temperatures Setting Hg (Pb) Orifice Wet Test Wet Test Dry Gas Dry gas Meter Manometer Meter Meter Meter **Calibration Results** in H₂0 ft³ ft³ °F Time, min Outlet, °F Υ ΔH (0) (∆H) (Vw) (Vd) (Tw) (Td_o) 885.853 75.00 0.5 5.0 890.822 73.0 76.00 12.60 1.0097 1.7823 4.969 75.50 892.810 76.00 5.0 73.0 9.1 1.0071 1.8559 1.0 897.795 77.00 4.985 76.50 898.799 77.00 1.5 10.0 908.810 73.0 78.00 15.20 1.0036 1.9381 10.011 77.50 915.870 78.00 2.0 10.0 925.830 73.0 79.00 13.1 1.0094 1.9158 9.960 78.50 926.870 79.00 3.0 10.0 936.870 73.0 80.00 10.70 1.0048 1.9137 10.000 79.50 1.0069 1.8812 Vw - Gas Volume passing through the wet test meter 0 - Time of calibration run $Y = \frac{Vw * Pb * (td + 460)}{Vd * \left[Pb + \frac{(\Delta H)}{13.6}\right] * (tw + 460)}$ Vd - Gas Volume passing through the dry gas meter Pb - Barometric Pressure Tw - Temp of gas in the wet test meter ∆H - Pressure differential across Tdi - Temp of the inlet gas of the dry gas meter orifice Tdo - Temp of the outlet gas of the dry gas meter $\Delta H = \left[\frac{0.0317 * \Delta H}{Pb * (td + 460)}\right] * \left[\frac{(tw + 460) * O}{Vw}\right]^{2}$ Y - Ratio of accuracy of wet test Td - Average temp of the gas in the dry gas meter meter to dry gas meter Temperature Reading from Individual Thermocouple Input¹ Temp Reference Temperature Average Difference² Select Temperature Temperature **Channel Number** Reading (%) O°C ●°F 1 2 3 5 4 6 32 32 32 32 32 32 0.0% 32 32.0 212 212 212 212 212 212 212 212.0 0.0% 932 932 932 932 932 932 932 932.0 0.0% 1834 1834 1834 1832 1834 1834 1834 1834.0 -0.1% 1 - Channel Temps must agree with +/- 5°F or 3°C $(\text{Reference Temp}(^{\circ}\text{F}) + 460) - (\text{Test Temp}(^{\circ}\text{F}) + 460)$

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console

2 - Acceptable Temperature Difference less than 1.5 %

Temp Diff = $\frac{(reference refine ref$

Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN DIVISION STACK METER BOX NO. 12 1/16/2019 + 1/17/2019

	Run I	Run 2	Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.			
0.32 = Molecular weight of oxygen, divided by 100.			
0.44 = Molecular weight of carbon dioxide, divided by 100.			
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.			
% CO ₂ = Percent carbon dioxide by volume, dry basis.	0.0	0.0	0.0
$\% O_2 =$ Percent oxygen by volume, dry basis.	20.9	20.9	20.9

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 20.9) + (0.44 * 0) + (0.28 * (100 - (0 + 20.9)))

MWd = (6.69) + (0.00) + (22.15)

MWd =	28.84	28.84	28.84
Tma = Source Temperature, absolute([°] R)			
Tm = Average dry gas meter temperature , deg F.	49.1	59.2	40.9

Tma = Ts + 460

Tma = 49.08 + 460

Tma =

Ps = Absolute meter pressure, inches Hg.			
13.60 = Specific gravity of mercury.			
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	1.14	1.13	1.15
Pb = Barometric Pressure, in Hg.	30.15	30.06	30.18

Pm = Pb + (delta H / 13.6)

Pm = 30.15 + (1.143625 / 13.6)

Pm =

30.23 30.14 30.26

519.21

500.92

D.... 1

509.08

n.... 2

n.... 2

Yqa = dry gas meter calibration check value, dimensionless.			
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.			
29.00 = dry molecular weight of air, lb/lb-mole.			
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	53.660	53.775	53.146
Y = Dry gas meter calibration factor (based on full calibration)	1.0069	1.0069	1.0069
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.	1.8812	1.8812	1.8812
avg SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. $\rm H_2O$	1.0641	1.0581	1.0722
O = Total sampling time, minutes.	96	96	96

Yqa = (O / Vm) * SQRT (0.0319 * Tma * 29) / (Delta H@ * Pm * MWd) * avg SQRT Delta H

Yqa = (96.00 / 53.66) * SQRT (0.0319 * 509.08 * 29) / (1.88 * 30.23 * 28.84) * 1.06

Yqa = 1.789 * SQRT 470.953 / 1,639.865 * 1.06

Yqa =	1.0202	1.0238	1.0291
Diff = Absolute difference between Yqa and Y	1.32	1.68	2.20

Diff = ((Y - Yqa) / Y) * 100

Diff = ((1.0069 - 1.020) / 1.0069) * 100

Average Diff = 1.73

Allowable = 5.0

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:

E03NI79E15A00E4 CC18055 124 - Riverton (SAP) - NJ B52018 CO2,O2,BALN

Reference Number: 82-401288926-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

150.5 CF 2015 PSIG 590 Sep 04, 2018

Expiration Date: Sep 04, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

ANALYTICAL RESULTS						
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON OXYGEN NITROGE		9.000 % 12.00 % Balance	8.864 % 12.00 %	G1 G1	+/- 0.7% NIST Traceable +/- 0.4% NIST Traceable -	
CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date						
NTRM	13060629	CC413730	13.359 % CARBON E	DIOXIDE/NITROGEN	+/- 0.6%	May 09, 2019
Instrument/Make/Model Analytical Principle Last Multipoint Calibration						
Horiba VIA 510-CO2-19GYCXEG Horiba MPA 510-O2-7TWMJ041			NDIR Paramagnetic		Aug 09, 2018 Aug 09, 2018	

Triad Data Available Upon Request

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI62E15A0224 SG9169108 124 - Riverton (SAP) - NJ B52017 CO2,O2,BALN

Reference Number: 82-401044874-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

157.2 CF 2015 PSIG 590 Nov 18, 2017

Expiration Date: Nov 18, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS						
Compone	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON [DIOXIDE	17.00 %	16.58 %	G1	+/- 0.7% NIST Traceable	11/18/2017
OXYGEN		21.00 %	21.00 %	G1	+/- 0.5% NIST Traceable	11/18/2017
NITROGEN	Ν	Balance			-	
CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date						
NTRM	12061336	CC360792	11.002 % CARBON DIOXIDE/NITROGEN		+/- 0.6%	Jan 11, 2018
NTRM	09061415	CC273526	22.53 % OXYGEN/NI	TROGEN	+/- 0.4%	Mar 08, 2019
			ANALYTICAL	•		
Instrument/Make/Model			Analytical Principle		Last Multipoint Calibration	
Horiba VIA 510-CO2-19GYCXEG			NDIR		Oct 30, 2017	
Horiba MPA 510-O2-7TWMJ041			Paramagnetic		Oct 27, 2017	

Triad Data Available Upon Request

INTERFERENCE CHECK

 Date:
 12/4/14-12/5/14

 Analyzer Type:
 Servomex - O2

 Model No:
 4900

 Serial No:
 49000-652921

 Calibration Span:
 21.09 %

 Pollutant:
 21.09% O2 - CC418692

	ANALYZEF			
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)	
CO ₂ (30.17% CC199689) 0.00 .		-0.01	0.00	
NO (445 ppm CC346681) 0.00		0.02	0.11	
NO ₂ (23.78 ppm CC500749) NA		NA	NA	
N ₂ O (90.4 ppm CC352661)	0.00	0.05	0.24	
CO (461.5 ppm XC006064B)	0.00	0.02	0.00	
SO ₂ (451.2 ppm CC409079) 0.00		0.05	0.23	
CH ₄ (453.1 ppm SG901795)	NA	NA	NA	
H ₂ (552 ppm ALM048043)	0.00	0.09	0.44	
HCl (45.1 ppm CC17830)	0.00	0.03	0.14	
NH ₃ (9.69 ppm CC58181)	0.00	0.01	0.03	
	1.20			
	< 2.5%			

^(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>Chod Waller</u>

INTERFERENCE CHECK

<u>Date: 12/4/14-12/5/14</u> <u>Analyzer Type: Servomex - CO₂</u> <u>Model No: 4900</u> <u>Serial No: 49000-652921</u> <u>Calibration Span: 16.65%</u> <u>Pollutant: 16.65% CO₂ - CC418692</u>

	ANALYZEF			
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)	
CO ₂ (30.17% CC199689) NA .		NA	NA	
NO (445 ppm CC346681) 0.00		0.02	0.10	
NO ₂ (23.78 ppm CC500749)	0.00	0.00	0.02	
N ₂ O (90.4 ppm CC352661)	0.00	0.01	0.04	
CO (461.5 ppm XC006064B)	0.00	0.01	0.00	
SO ₂ (451.2 ppm CC409079)	0.00	0.11	0.64	
CH ₄ (453.1 ppm SG901795)	0.00	0.07	0.44	
H ₂ (552 ppm ALM048043)	0.00	0.04	0.22	
HCl (45.1 ppm CC17830)	0.10	0.06	0.60	
NH ₃ (9.69 ppm CC58181)	0.00	0.02	0.14	
	2.19			
	< 2.5%			

^(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>Chod Waller</u>

BALANCE CALIBRATION LOG

Balance ID:

Date	Initials	Calibration Weight	Measured Weight ⁽¹⁾	Maintenance and Adjustments
116/19	CSW	500.0	419.6	NA Chemarks
1/17/19	CSW.	500-0	499.6	NA dimars
1/19/19	WF	500.0	496.7	NA Chemains
1/19/19	NF	500.0	499.7	NA Chemans NA Chemans NA Chemans NA Chemans

(1) Must be within \pm 0.5 grams of calibration weight

APPENDIX F LIST OF PROJECT PARTICIPANTS

The following WESTON employees participated in this project.

Paul Meeter	Senior Project Manager	
Steve Rathfon	Team Member	
Matt Winkeler	Team Member	
Chad Walker	Team Member	