Table of Contents

English Units
Liquid Viscosity ... 3
Liquid Thermal Conductivity ... 4
Liquid Heat Capacity .. 5
Vapor Viscosity ... 6
Vapor Thermal Conductivity .. 7
Vapor Heat Capacity ... 8-11
Equations for Property Estimation 12

Metric Units
Liquid Viscosity ... 13
Liquid Thermal Conductivity ... 14
Liquid Heat Capacity .. 15
Vapor Viscosity ... 16
Vapor Thermal Conductivity .. 17
Vapor Heat Capacity ... 18-21
Equations for Property Estimation 22
Liquid Viscosity

Temperature, °F

Liquid Viscosity, Centipoises

FREON 11
HFC - 134a
HCFC - 123

FREON 12
Vapor Viscosity at Atmospheric Pressure

Temperature, °F

Vapor Viscosity, centipoises

-FREON® 12
-FREON® 11
-HCFC-123
-HFC-134a
Vapor Thermal Conductivity at Atmospheric Pressure

Temperature, °F

Vapor Thermal Conductivity, \(\frac{Btu}{hr \cdot ft \cdot \mathbf{F}} \)

- HFC - 134a
- HCFC - 123
- "FREON" 12
- "FREON" 11
Equations for Property Estimation

English Units

The measured data has been curve-fitted to obtain the following equations for estimation of properties within the ranges specified.

Liquid Viscosity in cP

- **HCFC-123**: \(\mu_f = -0.000000133 T^3 + 0.00005259 T^2 - 0.0079787 T + 0.79566 \) \((-70 \leq T \leq 200^\circ F)\)
- **HFC-134a**: \(\mu_f = -0.0000000376 T^3 + 0.00001575 T^2 - 0.00292 T + 0.346317 \)

Liquid Thermal Conductivity in Btu/hr ft °F

- **HCFC-123**: \(k_f = 0.0548 - 0.000104 T \) \((-76 \leq T \leq 248^\circ F)\)
- **HFC-134a**: \(k_f = 0.06041 - 0.000166 T \) \((-76 \leq T \leq 140^\circ F)\)

Liquid Heat Capacity in Btu/lbm °F

- **HCFC-123**: \(c_p = 0.2016 + 0.0004125 T \) \(\text{for } T < 160^\circ F\)
 \(c_p = \exp [-580.035 + 119.419 \ln T + \frac{8262.6}{T} - 0.5637 T + 0.000437 T^3]\) \(\text{for } 160 \leq T \leq 350^\circ F\)
- **HFC-134a**: \(c_p = 0.2935 + 0.000729 T \) \(\text{for } T < 170\)
 \(c_p = \exp [9776.1 - 1887.24 \ln T - \frac{168763}{T} + 5.40 T - 0.000334 T^3]\) \(\text{for } 170^\circ F \leq T \leq 210^\circ F\)

Vapor Viscosity in cP

- **HCFC-123**: \(\mu_v = 0.00956 + 0.0000179 T \) \(100 \leq T \leq 300^\circ F\)
- **HFC-134a**: \(\mu_v = 0.010338 + 0.0000214 T \) \(100 \leq T \leq 300^\circ F\)

Vapor Thermal Conductivity in Btu/Lb ft °F

- **HCFC-123**: \(k_v = 0.004465 + 0.000025 T \) \(104 \leq T \leq 248^\circ F\)
- **HFC-134a**: \(k_v = 0.006006 + 0.000031 T \) \(32 \leq T \leq 248^\circ F\)
Saturated Liquid Heat Capacity

Temperature, °C

Freon™ Refrigerants
Vapor Viscosity at Atmospheric Pressure

Vapor Viscosity, μPa·s

Temperature, °C
Vapor Thermal Conductivity at Atmospheric Pressure

Vapor Thermal Conductivity, watts m⁻¹°C

Temperature, °C

HFC - 134a
HCFC - 123
"FREON" 12
"FREON" 11
HFC - 134a Vapor Heat Capacity

Saturation Pressure, kPa

Pressure, kPa

Temperature, °C
HCFC - 123 Vapor Heat Capacity

Temperature, °C

Pressure, kPa

Saturation Pressure, kPa
Equations for Property Estimation

Metric Units

The measured data has been curve-fitted to obtain the following equations for estimation of properties within the ranges specified.

Liquid Viscosity in \(\mu \text{Pa's} \)

- HCFC-123: \(\mu_l = -0.0007765T^3 + 0.12886T^2 - 9.0295T + 589.72 \quad (-57 \leq T \leq 93^\circ \text{C}) \)
- HFC-134a: \(\mu_l = -0.0002191T^3 + 0.039304T^2 - 3.6494T + 267.67 \)

Liquid Thermal Conductivity in W/m°C

- HCFC-123: \(k_l = 0.08908 - 0.0003244T \quad (-60 \leq T \leq 120^\circ \text{C}) \)
- HFC-134a: \(k_l = 0.09537 - 0.000517T \quad (-60 \leq T \leq 60^\circ \text{C}) \)

Liquid Heat Capacity in kJ/kg °C

- HCFC-123: \(c_p = 0.9104 + 0.00257T \quad (\text{for } T < 90^\circ \text{C}) \)
 \[c_p = \exp[-1515.07 + 354.086 \ln T + \frac{13952.48}{T} - 2.95702 + 0.004074T^2] \]
 \(\quad (\text{for } 90 \leq T \leq 176.7^\circ \text{C}) \)
- HFC-134a: \(c_p = 1.327 + 0.005509T \quad (\text{for } T \leq 75^\circ \text{C}) \)
 \[c_p = \exp[1979.525 - 374.95752 \ln T - \frac{24459.904}{T} - 1.62846 + 0.015674T^2] \]
 \(\quad (\text{for } 75^\circ \text{C} < T \leq 100^\circ \text{C}) \)

Vapor Viscosity in \(\mu \) Pa's

- HCFC-123: \(\mu_v = 10.131 + 0.03224T \quad (38 \leq T \leq 149^\circ \text{C}) \)
- HFC-134a: \(\mu_v = 11.021 + 0.038599T \)

Vapor Thermal Conductivity in W/m°C

- HCFC-123: \(k_v = 0.009171 + 0.000077T \quad (40 \leq T \leq 120^\circ \text{C}) \)
- HFC-134a: \(k_v = 0.01212 + 0.000096T \quad (0 \leq T \leq 120^\circ \text{C}) \)
For more information on the Freon™ family of refrigerants, or other refrigerant products, visit freon.com or call (800) 235-7882.

The information set forth herein is furnished free of charge and based on technical data that Chemours believes to be reliable. It is intended for use by persons having technical skill, at their own risk. Because conditions of use are outside our control, Chemours makes no warranties, expressed or implied, and assumes no liability in connection with any use of this information. Nothing herein is to be taken as a license to operate under, or a recommendation to infringe, any patents or patent applications.

© 2017 The Chemours Company FC, LLC. Freon™ and any associated logos are trademarks or copyrights of The Chemours Company FC, LLC. Chemours™ and the Chemours Logo are trademarks of The Chemours Company.

Replaces: H-43655-2
C-11317 (7/17)