Experimental Study of R-134a Alternative in a Supermarket Refrigeration System

June 26, 2011

Barbara Minor - DuPont Fluorochemicals
Dr. Frank Rinne - DuPont Fluorochemicals
Dr. Kahtan Salem - tebeg, Wurzburg, Germany

Disclaimer: The information set forth herein is furnished free of charge and based on technical data that DuPont believes to be reliable. It is intended for use by persons having technical skill, at their own risk. Since conditions of use are outside our control, we make no warranties, expressed or implied and assume no liability in connection with any use of this information. Nothing herein is to be taken as a license to operate under, or a recommendation to infringe any patents or patent applications.
Topics

- Supermarkets and Hybrid Systems
- XP10 Properties
- Thermodynamic Cycle Performance
- Calorimeter Testing
- Supermarket Testing
- TEWI analysis
- Summary
Supermarkets

- Climate change regulations driving emissions reduction in Europe and US

- New technologies:
 - Many retailers testing variations on \(\text{CO}_2 \) systems for new stores.
 - Growing trend toward 134a Med Temp/\(\text{CO}_2 \) Low Temp cascade hybrid systems
 - lower direct GWP, higher COP, lower leaks
 - XP10 developed as low GWP alternative to R-134a MT in cascade systems with \(\text{CO}_2 \)
 - 85-90% direct GWP reduction versus all R-404A system and energy efficiency improvement
XP10 Properties

<table>
<thead>
<tr>
<th></th>
<th>R-134a</th>
<th>XP10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Formula</td>
<td>CF₃CH₂F</td>
<td>Azeotrope</td>
</tr>
<tr>
<td>100 yr GWP (AR4)</td>
<td>1430</td>
<td>near 600</td>
</tr>
<tr>
<td>Toxicity/Flammability</td>
<td>A1</td>
<td>A1 expected</td>
</tr>
<tr>
<td>Boiling Point °C (°F)</td>
<td>-26 (-15)</td>
<td>-29 (-20)</td>
</tr>
<tr>
<td>Critical Point °C (°F)</td>
<td>101 (214)</td>
<td>98 (208)</td>
</tr>
<tr>
<td>Temperature Glide °C (F)</td>
<td>0</td>
<td>Negligible (Azeotrope)</td>
</tr>
</tbody>
</table>
Thermodynamic Cycle Performance

Conditions:
Evaporator Temp = -10°C (14°F)
Condenser Temp = 40°C (104°F)
Subcool amount = 6K (11R)
Suction Temp = 18°C (64°F)
Comp Isentropic Eff. = 70%

<table>
<thead>
<tr>
<th></th>
<th>Temp Glide C (F)</th>
<th>Suction Pressure kPa (Psia)</th>
<th>Disch Pressure kPa (Psia)</th>
<th>Comp Disch Temp C (F)</th>
<th>Capacity kJ/m3 (Btu/ft3)</th>
<th>Cap Rel to 134a</th>
<th>COP</th>
<th>COP Rel to 134a</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-134a</td>
<td>0 (0)</td>
<td>201 (29)</td>
<td>1017 (148)</td>
<td>90 (194)</td>
<td>1497 (40.2)</td>
<td>100%</td>
<td>3.06</td>
<td>100%</td>
</tr>
<tr>
<td>XP10</td>
<td>0 (0)</td>
<td>223 (32)</td>
<td>1070 (155)</td>
<td>82 (180)</td>
<td>1575 (42.3)</td>
<td>105%</td>
<td>3.04</td>
<td>99%</td>
</tr>
</tbody>
</table>

XP10 has about 5% higher capacity, equivalent energy efficiency, lower discharge temperature
Calorimeter Testing in a Recip Compressor
- EER 2% higher, Capacity 5% higher on average

XP 10 Versus R-134a Calorimeter Test
65F Return Gas Temperature

Evaporator/Condenser Condition

Rel EER
Rel Cap
Calorimeter Testing in a Scroll Compressor
- EER 1% lower, Capacity 5% higher on average

XP10 Versus R-134a Calorimeter Test
65F Return Gas Temperature

Evaporator/Condenser Condition

Rel EER
Rel Cap
German Discount Supermarket Field Test
- System retrofitted with XP10, no other changes made
Superheat Temperatures

XP10 superheat is about 2K higher than R-134a
Energy Consumption Versus Ambient Temperature
- range of ambient conditions

Graph showing energy consumption in kWh with R-134a and XP10, minimum and maximum ambient temperature, and average ambient temperature.
Specific Date Selected with Similar Ambient Temperature to Make Energy Comparison
XP10 energy consumption is 3.3% lower than R-134a
System Operating Temperatures

Operating temperatures are similar
COP based on system operating conditions is 4.5% higher for XP10
TEWI Analysis

Objective: To compare both direct impacts from refrigerant emissions and indirect impacts from energy usage for different supermarket refrigeration technologies

Assumptions

- Supermarket equipment life – 15 years
- Supermarket operating power – 75 kW for medium temp and 20 kW for low temp
- Fractional run time – 55% for medium temp and 85% for low temp
- Refrigerant charge size – 200 kg in medium temp, 100 kg in low temp
- Average refrigerant leak rate – 15% per year
- Refrigerant recovered at end of life – 80% of charge
- CO2 emitted from electricity generation (Brouwers, 2007) – 0.616 kg CO2/kw-hr
Systems Evaluated in TEWI Analysis:

• Uncoupled standard DX system using R-404A in both medium (MT) and low temp (LT) circuits,

• Cascade system with CO$_2$ in both MT and LT circuits
 - evaluated in both northern and southern European climates due to differences in CO$_2$ performance sub- and trans-critical*

• R-134a MT - CO$_2$ LT cascade system

• XP10 MT - CO$_2$ LT cascade system

* CO2-CO2 cascade systems were specified to match published data on energy consumption relative to an R-404A DX system (Seinel and Finckh, 2007)
TEWI Results – XP10-CO$_2$ cascade has lowest environmental impact

MT - LT

404A - 404A DX

CO2 - CO2 CCD S EU

CO2 - CO2 CCD N EU

134a - CO2 CCD

XP10 - CO2 CCD

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

INDIRECT-MT

INDIRECT-LT

RFR LEAK-MT

RFR LEAK -LT

million Kg CO2 Equivalent over 15 year life
Summary

- Supermarkets retailers are investigating several alternative options to reduce refrigerant GWP and increase energy efficiency.
- Growing trend is to use R-134a in medium temp cascaded to CO₂ low temp – “hybrid system”
- XP10/CO₂ has potential to reduce direct GWP 85-90% versus an all R-404A system
- XP10/CO₂ hybrid cascade system has lowest environmental impact based on TEWI analysis
Thank you!

Email: barbara.h.minor@usa.dupont.com