Formacel®1100 (FEA-1100), a Zero ODP and Low GWP Foam Expansion Agent for the Appliance Industry

Geraldo L Thomaz & José Guizoni Jr - Whirlpool Corporation
Paulo Altoe - Dow Brazil Sudeste Industrial
Gary Loh & Ana N Torio – DuPont Company

2013 Polyurethanes Technical Conference
Phoenix Arizona
September 23-25, 2013
Outline

• Introduction
• Properties of Formacel® 1100
• Experimental Work
• Appliance Trial Results
• Summary
Challenges for the Appliance Industry

More stringent environmental & energy requirements

<table>
<thead>
<tr>
<th></th>
<th>HCFCs (HCFC-141b)</th>
<th>HFCs (HFC-245fa)</th>
<th>HCs (Hydrocarbons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODP</td>
<td>Low</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>GWP</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>VOC</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>k-factor</td>
<td>Low</td>
<td>Higher</td>
<td>Much higher</td>
</tr>
</tbody>
</table>

Challenges - meet the requirements of environmental sustainability and energy efficiency while maintaining the cost effectiveness
Formacel® 1100 – a Sustainable & Balanced Option with Unique Properties

- A zero ODP and low GWP version of HCFC-141b
- The only zero ODP option that also provides low GWP, non-VOC, low toxicity, non-flammability, low thermal conductivity and suitable boiling point
- Excellent option to blend with commercially available FEAs for performance improvement

<table>
<thead>
<tr>
<th>Property</th>
<th>Formacel® 1100</th>
<th>HCFC-141b</th>
<th>HFC-245fa</th>
<th>HFC-365mfc</th>
<th>Cyclopentane</th>
<th>Methyl Formate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecule Structure</td>
<td>CF3CH=CHCF3</td>
<td>CCl2FCH3</td>
<td>CF3CH2CHF2</td>
<td>CF3CH2CF2CH3</td>
<td>(CH2)5</td>
<td>CH3(HCOO)</td>
</tr>
<tr>
<td>ODP</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GWP(100yr ITH)</td>
<td>8.9</td>
<td>725</td>
<td>1030</td>
<td>794</td>
<td>11</td>
<td><25</td>
</tr>
<tr>
<td>VOC</td>
<td>No[1]</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Exposure Limits (ppm)</td>
<td>500[2]</td>
<td>500</td>
<td>300</td>
<td>1000</td>
<td>600</td>
<td>100</td>
</tr>
<tr>
<td>Flammability</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lambda @ 25 C (mW/mK)</td>
<td>10.7</td>
<td>9.7</td>
<td>12.7</td>
<td>10.5</td>
<td>13</td>
<td>10.7</td>
</tr>
<tr>
<td>Boiling Point (C)</td>
<td>33</td>
<td>32</td>
<td>15</td>
<td>40</td>
<td>49</td>
<td>32</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>164</td>
<td>117</td>
<td>134</td>
<td>148</td>
<td>70.1</td>
<td>60</td>
</tr>
</tbody>
</table>

[1] Expected based on low MIR number
[2] AEL is DuPont Acceptable Exposure Limits (8-12 hr TWA)
Experimental Work

• Bench scale experiments by DuPont [1, 2]
 - Formacel® 1100 blends improved k-factor
 - Formacel® 1100 at reduced level provided equivalent or improved k-factor performance

• High pressure machine experiments by Dow Chemical [3]
 - Formacel® 1100 was dropped into an appliance formulation using cyclo-/iso-pentane (Cpisp) blend
 - The molar ratio of Formacel® 1100 was varied from 100% to 0% as designated as FEA100, FEA80, FEA60, FEA50, FEA40, FEA20 and FEA zero (100% Cpisp)
 - Several performance advantages were identified

Reactivity Profile

- Similar reactivity profile at various Formacel® 1100 levels
- Potential drop-in replacement with minimum reformulation efforts
Foam Flow and Density

- Better flow and lower density
- Potential opportunity to use less foam material per refrigerator unit
Demold Expansion

- Similar or slightly less demold expansion
- No negative impact on productivity
- Potential demold time reduction
Compressive Strength

- Comparable compressive strength even with lower density
- Potential density reduction without negative impact on compressive strength
Creep Deformation

- Comparable creep deformation even with reduced density
- Potential density reduction without negative impact on dimensional stability
• Reduced k-factor at various Formacel® 1100 levels
• Potential k-factor improvement with reduced Formacel® 1100 usage
Summary of Performance Advantages

• Similar reactivity profile
 ➢ Drop-in to the existing HC formulation with minimum reformulation work
 ➢ Use of existing HC production process without modification

• Improved flow
 ➢ Foam cost reduction (less foam material per refrigerator unit)
 ➢ Similar demold performance
 ➢ Potential opportunity for demold time reduction

• k-factor improvement
 ➢ Improve energy efficiency
 ➢ Reduce Formacel® 1100 usage to balance cost and energy efficiency
Appliance Trial

- Full-scale appliance trial in a Whirlpool production facility
 - The zero ODP and low GWP foam expansion agent, Formacel® 1100 was supplied by DuPont
 - Foam systems using Formacel® 1100 and Formacel® 1100-HC blend were developed by Dow Chemical
 - Tooling and cabinets/doors were supplied by Whirlpool

- Trial details
 - Formacel® 1100 was dropped into a commercial HC formulation without optimization
 - The existing production process/equipment was used without modification/optimization
 - Refrigerators were built using Formacel® 1100 & Formacel® 1100-HC blend
 - Ratio of Formacel® 1100 in blend was determined based on economic factors of FEAs
Performance Evaluation vs HC Control

• Cabinet and door foam processing
 ➢ Drop-in performance
 ➢ Foam shot weight
 ➢ Demold performance

• Foam properties
 ➢ Core density
 ➢ Compressive strength
 ➢ Dimensional stability and creep deformation
 ➢ Liner compatibility
 ➢ K-factor and aged k-factor

• Energy consumption
Cabinet & Door Foam Processing

- Same equipment/process conditions
- No process or productivity issue
- Improved foam flow
- Reduced 4 - 6% foam shot weight (improved foam cost effectiveness)

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>Formacel® 1100 -HC blend</th>
<th>Formacel® 1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total output rate (g/sec)</td>
<td>1255</td>
<td>1255</td>
<td>1255</td>
</tr>
<tr>
<td>Injection pressure (kg/cm²)</td>
<td>140 - 150</td>
<td>140 - 150</td>
<td>140 - 150</td>
</tr>
<tr>
<td>Mold/fixture temperature (ºC)</td>
<td>40 - 50</td>
<td>40 - 50</td>
<td>40 - 50</td>
</tr>
<tr>
<td>Chemical material temperature (ºC)</td>
<td>20 - 23</td>
<td>20 - 23</td>
<td>20 - 23</td>
</tr>
<tr>
<td>Demold time</td>
<td>Control</td>
<td>Identical</td>
<td>Identical</td>
</tr>
<tr>
<td>Gel time</td>
<td>Control</td>
<td>Within 10%</td>
<td>Within 10%</td>
</tr>
<tr>
<td>Foam flow</td>
<td>Control</td>
<td>Better</td>
<td>Much better</td>
</tr>
<tr>
<td>Foam shot weight</td>
<td>Control</td>
<td>-4%</td>
<td>-6%</td>
</tr>
</tbody>
</table>
Foam Core Density

- Lower foam density with the addition of Formacel® 1100
- Less foam material per refrigerator unit

![Average Foam Core Density Comparison](chart.png)
Compressive Strength

- Comparable compressive strength with lower density
- Less foam usage without negative impact on foam mechanical property
Dimensional Stability & Creep Deformation

- Comparable dimensional stability after 1 year storage at -25 °C
- Creep deformation within specifications with lower density
- Less foam usage without negative impact on foam dimensional stability
Liner Compatibility

- High impact polystyrene (HIPS) used in the refrigerator model
- Thermal cycle test
 - Refrigerators were heated to 50°C for 10 hours then cooled to -23°C for an additional 10 hours
 - The cycle was repeated for 8 days
- Comparable performance for refrigerators using Formacel 1100® & Formacel 1100®-HC blend
 - No visual defects such as blistering or cracking
 - Comparable to HC baseline
Average k-factor & Aged k-factor

- **Sampling:** Core foams from different locations in cabinets and doors
- **Average k-factor:** 5-10% reduction compared to HC control
- **Aged k-factor:** Improvement maintained after 5 months of aging

![Relative k-factor vs HC Control](image-url)
Energy Consumption

Energy efficiency improvement: 4 - 10% reduction in energy consumption

Energy Consumption Comparison

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>Formace® 1100-HC blend</th>
<th>Formace® 1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Consumption</td>
<td>1.0</td>
<td>0.96</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Impact of Formacel® 1100 Concentration in Foam Cell – k-factor

- Refrigerators with higher level of Formacel® 1100 in foam cells were also evaluated
- Formacel®1100-HC blend with higher Formacel®1100 concentration showed lowest k-factor at 10°C
- All other standard foam properties met specifications
Impact of Formacel® 1100 Concentration in Foam Cell – Energy Consumption

- Formacel®1100-HC blend with higher Formacel®1100 concentration showed lowest energy consumption
- Formacel®1100 level can be optimized to balance energy efficiency and cost effectiveness
Summary

• DuPont has developed Formacel® 1100, a zero ODP and low GWP foam expansion agent for the appliance industry
• Dow Chemical developed Formacel® 1100 foam systems with significant performance benefits
• Whirlpool confirmed the performance benefits in a full-scale production trial
• Formacel® 1100 can be dropped into a HC production line without process/equipment modification
• The demold performance is comparable to the HC system, with potential for demold time reduction
• The foam cost effectiveness per refrigerator unit can be improved without any negative impact on foam properties
• The energy efficiency of the refrigerators can be significantly improved
• Formacel® 1100 level can be optimized to balance energy efficiency and cost effectiveness
DISCLAIMER

The information set forth herein is furnished free of charge and based on technical data that DuPont believes to be reliable. It is intended for use by persons having technical skill, at their own risk. Since conditions of use are outside our control, we make no warranties, expressed or implied and assume no liability in connection with any use of this information. Nothing herein is to be taken as a license to operate under, or a recommendation to infringe any patents or patent applications.