

PFAS NON-TARGETED ANALYSIS AND METHODS INTERIM REPORT #6

Process and Non-Process Wastewater and Stormwater

Prepared by

The Chemours Company FC, LLC
Fayetteville Works
22828 NC Highway 87 W
Fayetteville, NC 28306

December 28, 2022

TABLE OF CONTENTS

INTRODUCTION	1
INVESTIGATION OF THE SECOND SET OF FIVE MOST ABUNDANT	
UNKNOWN PFAS IN GENERAL FACILITY DISCHARGE SAMPLES	4
INVESTIGATION OF THE FIVE MOST ABUNDANT UNKNOWN PFAS IN	
CHEMOURS PROCESS WASTEWATER SAMPLES	5
SUMMARY AND NEXT STEPS	5
REFERENCES	6
	UNKNOWN PFAS IN GENERAL FACILITY DISCHARGE SAMPLES

LIST OF TABLES

Table 1: Status of Unknown PFAS - Interim Report #5

ACRONYMS AND ABBREVIATIONS

iii

CFRW Cape Fear River Watch

Chemours The Chemours Company FC, LLC

EIC extracted ion chromatogram

Facility Chemours Fayetteville Works, North Carolina

LC liquid chromatography

m/z mass-to-charge ratio

MS/MS tandem mass spectrometry

NCDEQ NC Department of Environmental Quality

PFAS per- and polyfluoroalkyl substances

QToF quadrupole time-of-flight

TFA trifluoroacetate

1 INTRODUCTION

This interim report has been prepared by The Chemours Company FC, LLC (Chemours) to provide an update on the characterization of previously unidentified per- and polyfluoroalkyl substances (PFAS) in aqueous samples collected from process wastewater, non-process wastewater (i.e., non-contact cooling water) and stormwater at the Chemours Fayetteville Works, North Carolina site (the Facility). This work is being conducted pursuant to Paragraph 11 subpart (a) in the Consent Order executed 25 February 2019 between Chemours and the North Carolina Department of Environmental Quality (NCDEQ) with the Cape Fear River Watch (CFRW) as intervenor. The overall purpose of this program is to identify previously unknown PFAS that may be present in samples of collected water and to develop standards and methods to facilitate the quantitative analysis of these PFAS, as described in the PFAS Non-Targeted Analysis and Methods Development Plan, Version 2 (Chemours and Geosyntec, 2019). This is the sixth interim report.

First Interim Report - Summary

The samples assessed via the non-targeted program were divided into two categories:

- General Facility Discharge samples samples of stormwater, treated non-Chemours process wastewater and/or non-contact cooling water discharging to the Cape Fear River. These samples were collected at five locations; and
- Chemours Process Wastewater samples samples of process wastewater from Chemours manufacturing areas. These samples were collected at two locations.

Samples were analyzed by liquid chromatography (LC) coupled to high-resolution quadrupole time-of-flight (QToF) mass spectrometry (Chemours, 2020a). Unknown PFAS were assigned a tentative empirical formula (defined as the number of atoms present in a compound but not the arrangement of the atoms) from unidentified chromatographic peaks with a signal-to-noise level greater than six and using the atomic mass defect of fluorine as the molecular feature. An atomic mass defect refers to the phenomenon that the mass of an atom is not exactly equal to the number of subatomic particles (protons and neutrons) or the atomic mass number (except for carbon-12 by definition) as a result of differences in mass lost (as energy) when the atomic nucleus is formed for each isotope. Fluorine is well-known to have a negative mass defect, where the exact mass is slightly less than the mass number. When the QToF mass spectrometer is operated in the negative mode, one can select fluorine-containing features and empirical formulas using available software provided by the instrument vendor.

The tentative empirical formulas of the five most abundant unknown PFAS in each sample category were:

• General Facility Discharge - C₄H₅F₃O₂, C₄H₂F₄O₂, C₆H₆F₆O₂, C₈H₇F₉O₂ and C₁₀H₈F₁₂O₂; and

• Chemours Process Wastewater - C₈H₂F₁₄O₇S, C₈HF₁₃O₄, C₈H₅F₁₃O₆S, C₉H₂F₁₄O₆ and C₆HF₁₁O₄.

None of the identified five potential PFAS in the General Facility Discharge samples were represented in the five potential PFAS in the Chemours Process Wastewater samples. These ten (10) unknown PFAS were advanced to the next step in the program - identifying molecular structures (defined as the arrangement of the atoms into a molecule).

Second Interim Report - Summary

Investigation into the five most abundant unknown PFAS in the General Facility Discharge samples revealed that four (C₄H₅F₃O₂, C₆H₆F₆O₂, C₈H₇F₉O₂ and C₁₀H₈F₁₂O₂) coeluted from the LC (Chemours, 2020b). These compounds have different molecular weights and were therefore expected to be chromatographically resolved. Examination of the empirical formulas showed that the four compounds are related by C₂HF₃, that is, the addition of C₂HF₃ (trifluoroethylene, which is a potential impurity in tetrafluoroethylene, a feedstock at the Facility) to each compound generates the empirical formula of the following compound. This suggested that these four compounds may represent a single compound, C₄H₅F₃O₂, which, upon elution from the LC, undergoes adduction¹ of C₂HF₃ in the ion source of the mass spectrometer. Furthermore, the single compound C₄H₅F₃O₂ itself could be generated from a reaction between C₂HF₃ and acetate (CH₃COO⁻, present in the LC eluent) in the ion source of the mass spectrometer. The fifth unknown PFAS, C₄H₂F₄O₂, was not present in the samples at high enough concentrations to analyze by the QToF mass spectrometer.

Investigation into the five most abundant unknown PFAS in the Chemours Process Wastewater samples concluded:

- C₈H₂F₁₄O₇S the molecular structure was determined to be CF₃-CF(COOH)-O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₃H;
- C₈HF₁₃O₄ a molecular structure was tentatively identified for this unknown PFAS, however, background interference in the samples had to date interfered with confirmation of the tentatively identified structure;
- C₈H₅F₁₃O₆S the molecular structure was determined to be HO₃S-CF₂-CF₂-O-CF(CF₃)-CF₂-O-CHF-CF₂-OCH₃;
- C₉H₂F₁₄O₆ the molecular structure was tentatively determined to be HOOC-CF₂-CF₂-O-CF(CF₃)-CF₂-O-CF(CF₃)-COOH; and
- C₆HF₁₁O₄ a molecular structure was not yet identified; background contamination in the samples had to date interfered with confirmation of a tentatively identified molecular structure.

¹ Adduction is the process of the direct addition of two or more distinct molecules that result in a single reaction product referred to as an adduct which containing all atoms of the two initial reaction molecules.

2

Third Interim Report - Summary

The five most abundant unknown "PFAS" in the General Facility Discharge samples were identified to be sodium or potassium adducts of acetate clusters, containing no fluorine, rather than PFAS (Chemours, 2021a). They were therefore eliminated from the list of unknown PFAS.

The third interim report (Chemours, 2021a) showed that (for the three remaining unidentified PFAS of the five most abundant unknown PFAS in the Chemours Process Wastewater samples):

- C₈HF₁₃O₄ identified as EVE Acid, and was therefore no longer unknown;
- C₈H₅F₁₃O₆S the tentatively identified molecular structure was found to not match an existing authentic standard, and therefore another molecular structure needs to be proposed; and
- C₆HF₁₁O₄ tentatively identified as CF₃-O-CF₂-O-CF₂-CF₂-COOH.

Fourth Interim Report - Summary

Because the first set of five most abundant unknown "PFAS" in the General Facility Discharge samples turned out to be non-PFAS, the second set of five most abundant unknown PFAS in the General Facility Discharge samples were carried forward to identification of their molecular structures (Chemours, 2021b). In order of relative abundance, this resulted in the following:

- C₈HF₁₅O₈ was no longer detected in the original samples and, therefore, could not be further investigated. A new sample from the same location (Location 42) was proposed for collection during a rain event to investigate the presence and temporal stability of this compound;
- C₄H₂F₆O₂ was identified as the sodium salt of a trifluoroacetate (TFA) and acetate adduct. The correct formula was identified as C₄H₄F₃O₄Na;
- C₈HF₁₃O₄ was identified as R-EVE;
- C₄HF₉O₂S was identified as the sodium salt of sulfuric acid and acetate dimer adduct. The correct formula was identified as C₄H₇SO₈Na₃. This compound is not a PFAS; and
- C₆H₃F₇O₂ was identified as the sodium and potassium salt of an acetate dimer. The correct formula was identified as C₆H₁₀O₆NaK. This compound is not a PFAS.

There was one remaining unidentified PFAS (of the five most abundant unknown PFAS) in the Chemours Process Wastewater samples (C₈H₅F₁₃O₆S) for which the molecular structure identified was found to not match an existing authentic standard in Interim Report 3; a tentatively identified molecular structure for this unidentified PFAS continued to be in development.

Fifth Interim Report - Summary

For the unknown PFAS in the General Facility Discharge samples, a new sample was collected from Location 42 on March 17, 2022 during a rain event and analyzed. Initial analysis of the sample again showed that the peak (with a retention time of approximately 12.3 minutes) was not

present. The sample was concentrated 100-fold using solid-phase extraction (SPE) and reanalyzed. The peak corresponding to the unknown PFAS was then observed. Further analysis of the sample by tandem mass spectrometry (MS/MS) resulted in the proposal of the following molecular structure for $C_8HF_{15}O_8$:

• CF₃-O-CF₂

For the unknown PFAS in the Chemours Process Wastewater samples,

• one unknown PFAS (C₈H₅F₁₃O₆S) had a previously tentatively identified molecular structure, which was found to be incorrect upon comparison to an existing authentic standard. A revised tentatively identified molecular structure was being developed.

The next step proposed was to develop pathways for the synthesis of the authentic standards for the proposed molecular structures on paper for the most abundant unknown PFAS in each sample category (C₈HF₁₅O₈ for the General Facility Discharge samples and C₈H₂F₁₄O₇S for the Chemours Process Wastewater samples).

Sixth Interim Report

Each sample category (General Facility Discharge and Chemours Process Wastewater) has at least one unknown compound that has been determined to be a PFAS and for which a molecular structure has been proposed. This sixth interim report provides an update on the status of the most abundant unknown PFAS in each sample category.

The remainder of this sixth interim report consists of:

- Section 2: Investigation of the Second Set of Five Most Abundant Unknown PFAS in General Facility Discharge Samples
- Section 3: Investigation of the Five Most Abundant Unknown PFAS in Chemours Process Wastewater Samples; and
- Section 4: Summary and Next Steps.

2 INVESTIGATION OF THE SECOND SET OF FIVE MOST ABUNDANT UNKNOWN PFAS IN GENERAL FACILITY DISCHARGE SAMPLES

The following molecular structure has been proposed for C₈HF₁₅O₈:

• CF₃-O-CF₂

Since the issue of the fifth interim report, this compound has become commercially available (Fluoryx Labs (Carson City, NV); catalog number FC23-PFO6TeANa). This standard has been

purchased by Chemours and the General Facility Discharge samples will be assessed against this standard.

The current status of the second set of five most abundant PFAS in the General Facility Discharge samples (as well as of the first set of five most abundant PFAS) is summarized in Table 1.

3 INVESTIGATION OF THE FIVE MOST ABUNDANT UNKNOWN PFAS IN CHEMOURS PROCESS WASTEWATER SAMPLES

The most abundant unknown PFAS in the Chemours Process Wastewater samples ($C_8H_2F_{14}O_7S$) has the following proposed structure:

• CF₃-CF(COOH)-O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₃H

Two routes are being followed to confirm the identification of this PFAS:

- The development of a synthetic pathway is under consideration by Chemours. This is challenging, and may take considerable time to complete given the complex structure of the compound;
- The compound may be an intermediate product in one of the production processes at the Facility. Consequently, efforts are underway to isolate the intermediate product from production samples so that it can be further compared to the unknown PFAS.

The current status of the five most abundant PFAS in the Chemours Process Wastewater samples is summarized in Table 1.

4 SUMMARY AND NEXT STEPS

A summary of results to date and the next steps for the potential unknown PFAS in General Facility Discharge and Chemours Process Wastewater samples is provided below and in Table 1.

In the General Facility Discharge samples, the 10 most abundant unknown "PFAS" have been identified:

seven were identified as sodium or potassium adducts of acetate clusters. These are formed
in the mass spectrometer source from sodium or potassium present in the sample matrix
and acetate or sulfate present in the LC eluent buffer. The incorrect empirical formulas
(containing fluorine) were generated by the computer algorithm used to determine
empirical formulas and were mistakenly flagged as fluorinated compounds (Chemours,
2021a). These compounds are not PFAS and the proposed empirical formulas have been
revised showing the absence of fluorine;

- one was identified as the sodium salt of a TFA acetate adduct. TFA is a known PFAS associated with the Facility;
- one was identified as R-EVE, which is a known PFAS associated with the Facility;
- one (C₈HF₁₅O₈) was identified as an unknown PFAS, and a molecular structure has been proposed. A commercial standard is available for the proposed molecular structure. The commercial standard has been purchased by Chemours.

The next step for the General Facility Discharge samples will be to compare the remaining unknown PFAS (C₈HF₁₅O₈) to the commercially available standard to confirm or refute the proposed molecular structure.

In the Chemours Process Wastewater samples, the five most abundant unknown PFAS have been identified:

- one was identified as EVE Acid, which is a known PFAS associated with the Facility;
- three were identified as unknown PFAS, and molecular structures have been proposed;
- one was identified as an unknown PFAS, and a molecular structure has not yet been proposed.

The most abundant unknown PFAS (C₈H₂F₁₄O₇S) may be an intermediate product in one of the production processes at the Facility. Consequently, the next step for the Chemours Process Wastewater samples will be to isolate the intermediate product from production samples so that it can be further compared to the unknown PFAS. Meanwhile, the development of a synthetic pathway for this compound will continue.

5 REFERENCES

Chemours, 2022. PFAS Non-Targeted Analysis and Methods Interim Report #3. June 30, 2022.

Chemours, 2021a. PFAS Non-Targeted Analysis and Methods Interim Report #3. July 30, 2021.

Chemours, 2021b. PFAS Non-Targeted Analysis and Methods Interim Report #4. December 22, 2021.

Chemours, 2020a. PFAS Non-Targeted Analysis and Methods Interim Report. June 30, 2020.

Chemours, 2020b. PFAS Non-Targeted Analysis and Methods Interim Report #2. December 31, 2020.

Chemours and Geosyntec Consultants, 2019. PFAS Non-Targeted Analysis and Methods Development Plan. Version 2. December 5, 2019.

TABLE 1 STATUS OF UNKNOWN PFAS - INTERIM REPORT #6 Chemours Fayetteville Works, North Carolina

Sample Source	Mass	Mass to	Empirical Formula			
	(Da)	Charge Ratio (m/z)	Tentative	Revised Proposed Molecular Structure Next Steps	Proposed Molecular Structure Next	Next Steps
General Facility Discharge	142.0241	141.0168	C ₄ H ₅ F ₃ O ₂ *	C ₄ H ₇ O ₄ Na	Structures identified as sodium or potassium adducts of acetate clusters; these are formed in the MS source from sodium or potassium present in the sample matrix and acetate from the LC eluent buffer. Compounds are not PFAS.	
	157.9983	156.9910	C ₄ H ₂ F ₄ O ₂ *	C ₄ H ₆ O ₄ K		
	224.0272	223.0199	C ₆ H ₆ F ₆ O ₂ *	$C_6H_{10}O_6Na_2$		None
	306.0302	305.0230	C ₈ H ₇ F ₉ O ₂ *	$C_8H_{13}O_8Na_3$		
	388.0331	387.0258	$C_{10}H_8F_{12}O_2*$	$C_{10}H_{16}O_{10}Na_4$		
	509.9432	508.9357	$C_8HF_{15}O_8$		CF ₃ -O-CF ₂ -O-CF ₂ -O-CF ₂ -O-CF ₂ -O-CF ₂ -O-CF ₂ -COOH	Authentic standard now commercially available (Fluoryx Labs; catalog number FC23-PFO6TeANa) and will be purchased. General Facility Discharge sample will be assessed against this standard.
	195.9956	194.9884	C ₄ H ₂ F ₆ O ₂ *	$C_4H_4F_3O_4Na$	Structure identified as sodium salt of TFA and acetate adduct. Correct formula is ${\rm C_4H_4F_3O_4Na}$	None
	407.9670	406.9596	$C_8HF_{13}O_4$		Identified as R-EVE	None
	283.9544	282.9471	C ₄ HF ₉ O ₂ S*	C ₄ H ₇ SO ₈ Na ₃	Structure identified as sodium salt of sulfuric acid and acetate dimer adduct. Correct formula is $C_4H_7SO_8Na_3$. This compound is not a PFAS.	None
	240.0010	238.9937	C ₆ H ₃ F ₇ O ₂ *	C ₆ H ₁₀ O ₆ NaK	Structure identified as sodium and potassium salt of acetate dimer. Correct formula is $\rm C_6H_{10}O_6NaK$. This compound is not a PFAS.	None
Chemours Process Wastewater	507.9302	506.9229	$C_8H_2F_{14}O_7S$		CF ₃ -CF(COOH)-O-CF ₂ -CF(CF ₃)-O-CF ₂ -CF ₂ -SO ₃ H	May be an intermediate product at the Facility. Work to isolate the imterdiate product from production samples so that it can be further compared to the unknown PFAS. Continue considering synthesis of an authentic standard.
	407.9670	406.9598	$C_8HF_{13}O_4$		Identified as EVE Acid	None
	475.9587	474.9515	$C_8H_5F_{13}O_6S$		No proposed molecular structure yet	Continue to develop a proposed molecular structure.
	471.9630	470.9556	$C_9H_2F_{14}O_6$		HOOC-CF ₂ -CF ₂ -O-CF(CF ₃)-CF ₂ -O-CF(CF ₃)-COOH	Synthesis of an authentic standard is under consideration.
	345.9693	344.9620	$C_6HF_{11}O_4$		CF ₃ -O-CF ₂ -O-CF ₂ -CF ₂ -CF ₂ -COOH	Synthesis of an authentic standard is under consideration.

Notes:

- $\boldsymbol{*}$ tentative empirical formula has been revised following further investigation
- -- revised empirical formula not required

adduct - a product of a direct addition of two or more distinct molecules resulting in a single reaction product containing all atoms of all components

- further investigation not required

C - carbon LC - liquid chromatograph
Da - dalton MS - mass spectrometer

F - fluorine O - oxygen

H - hydrogen PFAS - per- and polyfluoroalkyl substances

S - sulfur